Supporting information for:

Photo-induced Oxidative Cleavage of C-C Double Bond for

the Synthesis of Biaryl Methanone via CeCl₃ Catalysis

Pan Xie,* Cheng Xue, Dongdong Du, and SanShan Shi College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, China 710021.

* Corresponding author: pan.xie@sust.edu.cn

Supporting Information

List of Contents

1.	General Information	3
2.	Optimization of the reaction conditions	3
3.	General procedure for Ce-catalyzed photooxidative cleavage of olefins	7
4.	Experimental characterization data for products	7
Re	ferences	28
5.	The reaction practicability emanations	31
	5.1 Reaction at low catalyst loading	
	5.2 5 mmol scale reaction	
6.	Mechanistic studies	32
	6.1 Control experiments	
(6.2 Radical scavenger effect studies	
l	6.3 Quenching experiments	
	6.4 ¹⁸ O labeling experiment	
7.	NMR spectra	

1. General Information

Unless otherwise indicated, all reactions and manipulations were performed under air. The photocatalytic reactions were performed on WATTCAS Parallel Light Reactor (WP-TEC-1020SL). All starting materials and solvents were purchased from Adamas-beta, Alfa Aesar, Chempur, Merck as well as Sigma Aldrich, and used without further purification, unless otherwise stated. All reactions were monitored by TLC with silica gel-coated plates. Column chromatography was carried out on silica gel, particle size 37-48 µm, using flash techniques. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Ascend 400 (400 MHz) spectrometer. ¹H NMR are referenced to the residual solvent peak at 7.26 ppm (CDCl₃), and quoted in ppm to 2 decimal places with coupling constants (*J*) to the nearest 0.1 Hz. ¹³C NMR spectra, recorded at 101 MHz, are referenced to the solvent peak at 77.16 ppm (CDCl₃), and quoted in ppm to 2 decimal places 1 Hz.

2. Optimization of the reaction conditions

A mixture of stilbene, catalyst, additive (alcohol) and solvent were added into a quartz tube which was placed in a photochemical reactor. The

reaction mixture was stirred at the designed temperature under air. After concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel and eluted with EtOAc/petroleum ether (1/100~10/1) to afford the desired product.

1a	[Ce] (10 mol%) Blue LED (4 W), CH ₃ CN 25 °C, 40 h	
Entry	Ce(10mol%)	Yield (%)
1	-	0
2	CeCl ₃	52
3	CeBr ₃	42
4	Ce(acac) ₃ . xH ₂ O	35
5	Ce (OAc) ₃	38
6	Ce (OTf) ₃	40

Table 1. Screening of catalysts^[a]

[a] Reaction conditions: **1a** (0.2mmol), [Ce] (10 mol%), CH₃CN (1.0 mL) at room temperature (25°C), Blue LED (405-410 nm, 4 W) for 40 h, isolated yield.

Table 2. screening of the catalyst loading^[a]

l 1a	CeCl ₃ (X mol%) Blue LED (4 W), CH ₃ CN 25 °C, 40 h	0 2a
Entry	CeCl ₃ (X mol%)	Yield (%)
1	1	40
2	5	45
3	10	50
4	20	53

[a] Reaction conditions: **1a** (0.2mmol), CeCl₃ (X mol%), CH₃CN (1.0 mL) at room temperature (25°C), Blue LED (405-410 nm, 4 W) for 40 h, isolated yield.

	eCl ₃ (10 mol%), ROH (20 mol%) Blue LED (4 W), CH ₃ CN	
1a	25 °C, 40 h	2a
Entry	ROH	Yield (%)
1	-	52
2	IPA	71
3	EtOH	68
4	CH ₃ OH	60
5	CCl ₃ CH ₂ OH	92
6	TFE	65
7	HFIP	60
8	TAA	62
9	EG	63

Table 3. Screening of the additives^[a]

[a] Reaction conditions: **1a** (0.2mmol), CeCl₃ (10 mol%), ROH (20 mol%), CH₃CN (1.0 mL) at room temperature (25°C), Blue LED (405-410 nm, 4 W) for 40 h, isolated yield.

Table 4. Screening of the amount of alcohol^[a]

	CeCl ₃ (10 mol%) CCl ₃ CH ₂ OH (X mol%)	
	Blue LED (4 W), CH ₃ CN	
1a	25 °C, 40 h	2a
Entry	CCl ₃ CH ₂ OH (X mol%)	Yield (%)
1	10	72
2	20	92
3	40	81
4	60	82
5	100	84

[a] Reaction conditions: **1a** (0.2mmol), CeCl₃ (10 mol%), CCl₃CH₂OH (X mol%), CH₃CN (1.0 mL) at room temperature (25°C), Blue LED (405-410 nm, 4 W) for 40 h, isolated yield.

Table 5. Screening of solvents^[a]

	CeCl ₃ (10 mol%) CCl ₃ CH ₂ OH (20 mol%) Blue LED (4 W), Solvent	
1a	25 °C, 40 h	2a
Entry	Solvent	Yield (%)
1	DMSO	60
2	DMF	65
3	DMAC	63
4	THF	64
5	MeCN	92
6	DCM	73
7	DCE	60
8	Acetone	62
9	CCl ₃ CH ₂ OH	55
10	Chlorobenzene	62

[a] Reaction conditions: **1a** (0.2mmol), CeCl₃ (10 mol%), CCl₃CH₂OH (20 mol%), solvent (1.0 mL) at room temperature (25°C), Blue LED (405-410 nm, 4 W) for 40 h, isolated yield.

Table 6. Screening of reaction time^[a]

	CeCl ₃ (10 mol%) <u>CCl₃CH₂OH (20 mol%)</u> Blue LED (4 W), CH ₃ CN, 25 °C	O C
1a		2a
Entry	Time (h)	Yield (%)
1	16	60
2	24	65
3	36	74
4	40	92

[a] Reaction conditions: **1a** (0.2mmol), CeCl₃ (10 mol%), CCl₃CH₂OH (20 mol%), CH₃CN (1.0 mL) at room temperature (25°C), Blue LED (405-410 nm, 4 W), isolated yield.

3. General procedure for Ce-catalyzed photooxidative cleavage of olefins

A mixture of olefin (0.2 mmol), CeCl₃ (10 mol%, 4.9 mg), CCl₃CH₂OH (20 mol%, 5.9 mg) and CH₃CN (1.0 mL) was added into a quartz tube which was placed in a photochemical reactor (Blue LED, 405-410 nm, 4 W). The reaction mixture was stirred at 25 °C under air for 40 h. After concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel and eluted with EtOAc/petroleum ether (1/100~10/1) to afford the desired product.

4. Experimental characterization data for products

Benzophenone (2a). The product 2a was obtained via the *general procedure* using ethene-1,1-diyldibenzene 1a (36.0 mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (33.5 mg, 92%). Known compound, mp 48-49 °C, spectroscopic data matched those previously reported.^[1]

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.8 Hz, 4H), 7.63 (t, *J* = 7.4 Hz, 2H), 7.52 (t, *J* = 7.6 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 196.86, 137.65 (2C), 132.37 (2C), 130.02 (4C), 128.26 (4C).

2-Methylbenzophenone (2b). The product **2b** was obtained in 2 W Blue LED via the *modified procedure* using 1-methyl-2-(1-phenylvinyl) benzene **1b** (38.8 mg, 0.2 mmol) and isolated by flash column chromatography as colorless liquid (25.1 mg, 64%).

Known compound, spectroscopic data matched those previously reported.^[2]

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.5 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.46 - 7.29 (m, 4H), 7.29 -7.20 (m, 2H), 2.36 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 198.25, 138.70, 137.82, 136.67, 133.10, 131.04, 130.25, 130.05 (2C), 128.49 (2C), 125.24, 19.94.

4-Methylbenzophenone (**2c**). The product **2c** was obtained via the *general procedure* using 1-methyl-4-(1-phenylvinyl) benzene **1c** (38.8 mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (34.8 mg, 89%).

Known compound, mp 59-61 °C, spectroscopic data matched those previously reported.^[3]

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 1.3 Hz, 2H), 7.73 (d, *J* = 8.1 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.16, 143.13, 137.98, 134.92, 132.11, 130.23(2C), 129.85(2C), 128.97(2C), 128.20(2C), 21.56.

3-Methylbenzophenone (**2d**). The product **2d** was obtained via the *general procedure* using 1-methyl-3-(1-phenylvinyl) benzene **1d** (38.8 mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (32.9 mg, 84%).

Known compound, spectroscopic data matched those previously reported.^[4]

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.7 Hz, 2H), 7.66 (s, 1H), 7.57 (dd, *J* = 15.5, 7.4 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.36 (dt, *J* = 14.8, 7.5 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.64, 138.09, 137.79, 137.68, 133.16, 132.30, 130.40 (2C), 129.98 (2C), 128.24, 128.11, 127.31, 21.29.

4-Methoxybenzophenone (**2e**). The product **2e** was obtained in 2 W Blue LED via the *general procedure* using 1-methoxy-4-(1-phenylvinyl) benzene **1e** (42 mg, 0.2 mmol) and isolated by flash column chromatography as a yellow solid (35.2 mg, 83%).

Known compound, mp 60-62 °C, spectroscopic data matched those previously reported.^[1]

¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 2H), 7.77 (d, *J* = 7.9 Hz, 2H), 7.56 (t, J = 7.1 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 6.96 (d, *J* = 8.5 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.35, 163.24, 138.31, 132.47 (2C), 131.84, 130.13, 129.65 (2C), 128.17 (2C), 113.58 (2C), 55.42.

4,4'-Dimethylbenzophenone (2f). The product **2f** was obtained via the *general procedure* using 4,4'-(ethene-1,1-diyl) bis(methylbenzene) **1f** (41.6 mg, 0.2 mmol) and isolated by flash column chromatography as a brown solid (36.1 mg, 86%).

Known compound, mp 95-97 °C, spectroscopic data matched those previously reported.^[5]

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.16, 142.87, 135.27, 130.15, 128.89, 21.58.

3,4-Dimethylbenzophenone (2g). The product **2g** was obtained via the *general procedure* using 1,2-dimethyl-4-(1-phenylvinyl) benzene **1g** (41.6 mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (33.6 mg, 80%).

Known compound, mp 46-48 °C, spectroscopic data matched those previously reported.^[6]

¹H NMR (400 MHz, CDCl₃) δ 7.85 - 7.81 (m, 2H), 7.67 (s, 1H), 7.60 (dd, *J* = 12.4, 5.2, 4.1 Hz, 2H), 7.51 (t, *J* = 7.5 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 1H), 2.39 (s, 3H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.61, 141.91, 138.13, 136.71, 135.36, 132.05, 131.17, 129.90 (2C), 129.45, 128.17 (2C), 128.01, 19.95, 19.71.

(4-Methoxyphenyl) (2-methylphenyl) methanone (2h). The product 2e was obtained in 10 W Blue LED via the *modified procedure* using 1-(1-(4-methoxyphenyl) vinyl)-2-methylbenzene 1h (44.8 mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (33.5 mg, 74%). Known compound, spectroscopic data matched those previously reported.^[7]

¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 6.7, 4.8 Hz, 2H), 7.37 (td, J = 7.5, 1.5 Hz, 1H), 7.31 (s, 1H), 7.26 (d, J = 3.4 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 6.92 (t, J = 5.8 Hz, 2H), 3.84 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.11, 163.75, 139.28, 136.08, 132.41 (2C), 130.82, 130.53, 129.77, 127.89, 125.18, 113.75 (2C), 55.34, 19.71.

2-Fluorobenzophenone (**2i**). The product **2i** was obtained via the *general procedure* using 1-fluoro-2-(1-phenylvinyl) benzene **1i** (39.6 mg, 0.2 mmol) and isolated by flash column chromatography as a colorless oil (29.6 mg, 74%).

Known compound, spectroscopic data matched those previously reported.^[8]

¹H NMR (400 MHz, CDCl₃) δ 7.89 - 7.84 (m, 2H), 7.61 - 7.43 (m, 5H), 7.25 (td, *J* = 7.6, 0.8 Hz, 1H), 7.18 - 7.11 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.29, 161.32 (d, *J* = 254 Hz), 137.41, 133.40, 133.10 (d, *J* = 8 Hz), 130.68 (d, *J* = 2 Hz), 129.76 (2C), 128.47 (2C), 127.13 (d, *J* = 14 Hz), 124.31 (d, *J* = 4 Hz), 116.34 (d, *J* = 22 Hz).

4-Fluoroacetophenone (2j). The product **2j** was obtained via the *general procedure* using 1-fluoro-4-(1-phenylvinyl) benzene **1j** (39.6 mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (34.4 mg, 86%).

Known compound, spectroscopic data matched those previously reported.^[9]

¹H NMR (400 MHz, CDCl₃) δ 7.88 - 7.81 (m, 2H), 7.80 - 7.74 (m, 2H), 7.58 (dd, *J* = 10.6, 4.3 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.20 - 7.08 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 194.99, 166.59 (d, *J* = 255 Hz), 137.51, 133.84 (d, *J* = 3 Hz), 132.64 (d, *J* = 2 Hz, 2C), 132.39, 129.80 (2C), 128.32 (2C), 115.49 (d, *J* = 22 Hz, 2C).

Bis (4-fluorophenyl)-methanone (2k). The product **2k** was obtained via the *general procedure* using 4,4'-(ethene-1,1-diyl) bis(fluorobenzene) **1k** (43.2 mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (30.5 mg, 70%).

Known compound, mp 107-109 °C, spectroscopic data matched those previously reported.^[4]

¹H NMR (400 MHz, CDCl₃) δ 7.89 - 7.82 (m, 1H), 7.21 (dd, *J* = 8.9, 4.3, 2.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.70, 166.65 (d, *J* = 256 Hz,

2C), 133.74 (d, *J* = 3 Hz, 2C), 132.49 (d, *J* = 9 Hz, 4C), 115.62 (d, *J* = 21 Hz, 4C).

2-Chlorobenzophenone (2l). The product **2l** was obtained in 10 W Blue LED via the *modified procedure* using 1-chloro-4-(1-phenylvinyl) benzene **1l** (42.8 mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (33.8 mg, 78%).

Known compound, mp 51-54 °C, spectroscopic data matched those previously reported.^[10]

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.9 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.46 (dd, *J* = 11.2, 8.9, 5.2 Hz, 4H), 7.43 - 7.35 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 195.16, 138.63, 136.51, 133.69, 131.26, 131.14, 130.03 (2C), 129.10, 128.62 (2C), 126.70.

4-Chlorobenzophenone (2m). The product **2m** was obtained via the *general procedure* using 1-chloro-4-(1-phenylvinyl) benzene **1m** (42.8 mg, 0.2 mmol) and isolated by flash column chromatography as a yellow solid (35.5 mg, 82%).

Known compound, mp 75-77 °C, spectroscopic data matched those previously reported.^[1]

¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 15.8, 8.2 Hz, 4H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.45 - 7.34 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 194.91, 138.67, 137.18, 135.85, 132.53, 131.37 (2C), 129.83 (2C), 128.54 (2C), 128.35 (2C).

4,4'-Dichlorobenzophenone (2n). The product **2n** was obtained via the *general procedure* using 4,4'-(ethene-1,1-diyl) bis(chlorobenzene) **1n** (49.6 mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (44.2 mg, 88%).

Known compound, mp 145-147 °C, spectroscopic data matched those previously reported.^[4]

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.5 Hz, 1H), 7.49 (d, *J* = 8.4 Hz, 1H); 13C NMR (101 MHz, CDCl₃) δ 194.07, 139.11 (2C), 135.53 (2C), 131.26 (4C), 128.73 (4C).

(2-chlorophenyl) (naphthalen-1-yl) methanone (20). The product 20 was obtained in 10 W Blue LED via the *modified procedure* using 1-(1-(2-

chlorophenyl) vinyl) naphthalene **10** (52.8 mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (21.3 mg, 40%).

Known compound, mp 84-86 °C, spectroscopic data matched those previously reported.^[11]

¹H NMR (400 MHz, CDCl₃) δ 8.94 (d, *J* = 8.5 Hz, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.97 (d, *J* = 8.1 Hz, 1H), 7.71 (dd, *J* = 8.5, 6.9, 1.3 Hz, 1H), 7.62 (dd, *J* = 12.0, 4.0 Hz, 2H), 7.58 -7.53 (m, 1H), 7.51 - 7.48 (m, 2H), 7.46 (dd, *J* = 7.9, 3.8 Hz, 1H), 7.41 (dd, *J* = 7.4, 6.5, 2.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 197.03, 139.99, 134.40, 134.02, 133.76, 132.09, 131.79, 131.52, 130.98, 130.32, 130.14, 128.53, 128.39, 126.71, 126.67, 126.00, 124.30.

4-Benzoylbiphenyl (2p). The product **2p** was obtained via the *general procedure* using 4-(1-phenylvinyl)-1,1'-biphenyl **1p** (51.2 mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (45.5mg, 88%).

Known compound, mp 100-103 °C, spectroscopic data matched those previously reported.^[12]

¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, *J* = 19.8, 7.9 Hz, 4H), 7.74 (dd, *J* = 18.9, 7.7 Hz, 4H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.55 (dd, *J* = 14.8, 7.6 Hz, 4H), 7.46 (t, *J* = 7.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 196.19, 145.22,

139.98, 137.87, 136.34, 132.40, 130.77 (2C), 130.03 (2C), 129.05 (2C), 128.38 (2C), 128.27, 127.34 (2C), 127.00 (2C).

4,4'-Bis (dimethylamino) benzophenone (2q). The product **2q** was obtained via the *general procedure* using 4,4'-(ethene-1,1-diyl) bis (N, N-dimethylaniline) **1q** (53.2 mg, 0.2 mmol) and isolated by flash column chromatography as a green solid (32.8 mg, 65%).

Known compound, mp 171-174 °C, spectroscopic data matched those previously reported.^[13]

¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 4H), 6.75 (s, 4H), 3.11 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 193.97, 152.72 (2C), 132.16 (4C), 126.42 (2C), 110.59 (4C), 40.08 (4C).

4-Nitrobenzophenone (2r). The product **2r** was obtained via the *general procedure* using 1-nitro-4-(1-phenylvinyl) benzene **1r** (45 mg, 0.2 mmol) and isolated by flash column chromatography as a yellow solid (30.9 mg, 68%).

Known compound, mp 135-138 °C, spectroscopic data matched those previously reported.^[1]

¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 8.3 Hz, 2H), 7.97 (d, *J* = 8.3 Hz, 2H), 7.84 (d, *J* = 7.5 Hz, 2H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.56 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 194.71, 149.85, 142.90, 136.32, 133.42, 130.64 (2C), 130.06 (2C), 128.66 (2C), 123.50 (2C).

reported.^[1]

2-benzoylthiophene (2s). The product **2s** was obtained via the *general procedure* using 2-(1-phenylvinyl) thiophene **1s** (37.2mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (28.6 mg, 76%). Known compound, spectroscopic data matched those previously

¹H NMR (400 MHz, CDCl₃) δ 7.94 - 7.88 (m, 2H), 7.77 (d, J = 4.7 Hz, 1H), 7.70 (d, J = 3.4 Hz, 1H), 7.64 (dd, J = 8.4, 6.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.21 (dd, J = 7.7, 3.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 188.17, 143.65, 138.20, 134.77, 134.14, 132.23, 129.14 (2C), 128.40 (2C), 127.93.

2-benzoyl pyridine (2t). The product 2t was obtained in 10 W Blue LED via the *modified procedure* using 2-(1-phenylvinyl) pyridine 1t (36.2mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (25.6mg, 70%).

Known compound, mp 40-44 °C, spectroscopic data matched those previously reported.^[10]

¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 8.11 (d, *J* = 7.4 Hz, 2H), 8.09 - 8.04 (m, 1H), 7.92 (dd, *J* = 7.5, 4.6, 1.7 Hz, 1H), 7.65 - 7.59 (m, 1H), 7.54 - 7.48 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.79, 155.17, 148.54, 137.01, 136.33, 132.87, 130.98 (2C), 128.14 (2C), 126.11, 124.56.

3-benzoyl pyridine (2u). The product **2u** was obtained via the *general procedure* using 3-(1-phenylvinyl) pyridine **1u** (36.2mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (27 mg, 72%).

Known compound, spectroscopic data matched those previously reported.^[14]

¹H NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.82 - 8.75 (m, 1H), 8.10 (tt, *J* = 5.3, 3.5, 1.7 Hz, 1H), 7.83 - 7.77 (m, 2H), 7.65 - 7.58 (m, 1H), 7.54 - 7.47 (m, 2H), 7.44 (dt, *J* = 8.0, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.72, 152.75, 150.85, 137.06, 136.70, 133.12, 133.07, 129.93 (2C), 128.55 (2C), 123.26.

Acetophenone (4a). The product 4a was obtained via the *general procedure* using prop-1-en-2-ylbenzene 3a (23.6 mg, 0.2 mmol) and isolated by flash column chromatography as colorless oil (17.3 mg, 72%). Known compound, spectroscopic data matched those previously reported.^[15]

¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 2.64 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.03, 137.20, 133.03, 128.53 (2C), 128.26 (2C), 26.50.

2'-Methylacetophenone (4b). The product **4b** was obtained via the *general procedure* using 1-methyl-2-(prop-1-en-2-yl) benzene **3b** (26.4 mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (18.2 mg, 68%).

Known compound, spectroscopic data matched those previously reported.^[16]

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.24 (dd, *J* = 12.7, 7.5 Hz, 2H), 2.56 (s, 3H), 2.54 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.45, 138.25, 137.68, 131.96, 131.41, 129.27, 125.65, 29.37, 21.43.

4'-Methylacetophenone (4c). The product **4c** was obtained via the *general procedure* using 1-methyl-4-(prop-1-en-2-yl) benzene **3c** (26.4 mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (19.6 mg, 73 %).

Known compound, spectroscopic data matched those previously reported.^[17]

¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 2.57 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.60, 143.74, 134.77, 129.18 (2C), 128.37 (2C), 26.36, 21.50.

3,5-DiMethylacetoph (4d). The product **4d** was obtained via the *general procedure* using 1,3-dimethyl-5-(prop-1-en-2-yl) benzene **3d** (29.2 mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (20.8 mg, 70%).

Known compound, spectroscopic data matched those previously reported.^[18]

¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 2H), 7.21 (s, 1H), 2.59 (s, 3H), 2.39 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 198.40, 138.12, 137.30, 134.63 (2C), 126.07 (2C), 26.57, 21.12 (2C).

2-Methoxyacetophenone (4e). The product **4e** was obtained via the *general procedure* using 1-methoxy-2-(prop-1-en-2-yl) benzene **3e** (29.6 mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (15.3 mg, 51 %).

Known compound, spectroscopic data matched those previously reported.^[16]

¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.50 - 7.44 (m, 1H), 7.03 - 6.96 (m, 2H), 3.92 (s, 3H), 2.63 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 199.67, 158.90, 133.62, 130.23, 120.47, 111.61, 55.41, 31.72.

4-Methoxyacetophenone (4f). The product **4f** was obtained via the *general procedure* using 1-methoxy-4-(prop-1-en-2-yl) benzene **3f** (29.6 mg, 0.2 mmol) and isolated by flash column chromatography as a yellow solid (19.2 mg, 64%).

Known compound, mp 36-38 °C, spectroscopic data matched those previously reported.^[17]

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 3.90 (s, 3H), 2.58 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.64, 163.48, 130.53, 130.37 (2C), 113.66 (2C), 55.40, 26.22.

4'-Bromoacetophenone (**4g**). The product **4g** was obtained via the *general procedure* using 1-bromo-4-(prop-1-en-2-yl) benzene **3g** (39.2 mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (19.9 mg, 50%).

Known compound, mp 48-51 °C, spectroscopic data matched those previously reported.^[19]

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 8.3 Hz, 2H), 2.60 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.84, 135.87, 131.85 (2C), 129.79 (2C), 128.23, 26.43.

2-Acetonaphthone (4h). The product **4h** was obtained via the *general procedure* using 2-(prop-1-en-2-yl) naphthalene **3h** (33.6 mg, 0.2 mmol) and isolated by flash column chromatography as a white solid (24.1 mg, 71%).

Known compound, mp 55-57 °C, spectroscopic data matched those previously reported.^[17]

¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.08 (d, *J* = 8.6 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.92 (dd, *J* = 7.9, 5.5 Hz, 2H), 7.62 (dt, *J* = 14.9, 6.9 Hz, 2H), 2.76 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.97, 135.60, 134.56, 132.55, 130.12, 129.53, 128.43, 128.39, 127.76, 126.75, 26.60.

1-(pyridin-2-yl)ethan-1-one (4i). The product **4i** was obtained via the *general procedure* using 2-(prop-1-en-2-yl) pyridine **3i** (23.8 mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (8.3 mg, 34 %).

Known compound, spectroscopic data matched those previously reported.^[20]

¹H NMR (600 MHz, Chloroform-d) δ 8.66 – 8.62 (m, 1H), 8.03 – 7.95 (m, 1H), 7.79 (tt, J = 7.77, 1.48 Hz, 1H), 7.42 (ddd, J = 7.55, 4.78, 1.35 Hz, 1H), 2.68 (s, 3H). ¹³C NMR (151 MHz, CDCl3) δ 200.08, 153.56, 148.96, 136.81, 127.07, 121.61, 25.74.

1-(pyridin-3-yl)ethan-1-one (4j). The product 4j was obtained via the general procedure using 3-(prop-1-en-2-yl) pyridine 3j (23.8 mg, 0.2

mmol) and isolated by flash column chromatography as yellow oil (9.9 mg, 41 %).

Known compound, spectroscopic data matched those previously reported.^[20]

¹H NMR (600 MHz, Chloroform-d) δ 9.09 (qd, J = 2.18, 1.36 Hz, 1H), 8.70 (dq, J = 4.87, 1.61 Hz, 1H), 8.16 (dq, J = 7.98, 1.78 Hz, 1H), 7.36 (dddd, J = 6.79, 4.81, 2.48, 1.26 Hz, 1H), 2.57 (s, 3H).¹³C NMR (151 MHz, CDCl3) δ 196.69, 153.50, 149.89, 135.41, 132.22, 123.59, 26.67.

4-Acetylpyridine (**4**k). The product **4**k was obtained via the *general procedure* using 4-(prop-1-en-2-yl) pyridine **3**k (23.8 mg, 0.2 mmol) and isolated by flash column chromatography as yellow oil (6.1 mg, 25 %).

Known compound, spectroscopic data matched those previously reported.^[20]

¹H NMR (400 MHz, CDCl₃) δ 8.79 (dd, *J* = 4.5, 1.6 Hz, 2H), 7.71 (dd, *J* = 4.4, 1.6 Hz, 2H), 2.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.24, 150.89, 142.75, 121.16, 26.53.

СНО

Benzaldehyde (**4l**). The product **4l** was obtained via the *general procedure* using styrene **3l** (20.8 mg, 0.2 mmol) and isolated by flash column chromatography as colorless liquid (13.6 mg, 64%).

Known compound, spectroscopic data matched those previously reported.^[21]

¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.82 (d, J = 7.9 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 192.22, 136.39, 134.35, 129.61 (2C), 128.92 (2C).

p-Tolualdehyde (4m). The product 4m was obtained via the *general procedure* using 1-methyl-4-vinylbenzene 3m (23.6 mg, 0.2 mmol) and isolated by flash column chromatography as colorless liquid (14.7 mg, 61%).

Known compound, spectroscopic data matched those previously reported.^[22]

¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.72 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 7.9 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.69, 145.37, 134.24, 129.70 (2C), 129.65 (2C), 21.66.

4-tert-Butylbenzaldehyde (4n). The product 4n was obtained via the general procedure using 1-(tert-butyl)-4-vinylbenzene 3l (32 mg, 0.2

mmol) and isolated by flash column chromatography as colorless liquid (23 mg, 71%).

Known compound, spectroscopic data matched those previously reported.^[23]

¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 191.81, 158.33, 134.14, 129.63 (2C), 125.92 (2C), 35.26, 31.01 (3C).

p-Anisaldehyde (40). The product 40 was obtained via the *general procedure* using 1-methoxy-4-vinylbenzene 30 (26.8 mg, 0.2 mmol) and isolated by flash column chromatography as colorless liquid (25.2 mg, 60%).

Known compound, spectroscopic data matched those previously reported.^[24]

¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 7.67 - 7.63 (m, 2H), 6.82 (d, *J* = 8.8 Hz, 2H), 3.68 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 190.44, 164.44, 131.69 (2C), 129.83, 114.16 (2C), 55.30.

4-Bromobenzaldehyde (4p). The product **4p** was obtained via the *general procedure* using 1-bromo-4-vinylbenzene **3p** (36.4 mg, 0.2 mmol) and isolated by flash column chromatography as a yellow solid (20 mg, 54%).

Known compound, mp 65-68 °C, spectroscopic data matched those previously reported.^[24]

¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 7.80 - 7.77 (m, 2H), 7.72 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 190.92, 135.13, 132.42 (2C), 130.92 (2C), 129.73.

4-Nitrobenzaldehyde (**4q**). The product **4q** was obtained via the *general procedure* using 1-nitro-4-vinylbenzene **3q** (29.8 mg, 0.2 mmol) and isolated by flash column chromatography as a yellow solid (15.1 mg, 50%). Known compound, mp 104-106 °C, spectroscopic data matched those previously reported.^[24]

¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 8.41 (d, *J* = 8.6 Hz, 2H), 8.11 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 190.22, 151.15, 140.07, 130.45 (2C), 124.28 (2C).

References

- [1] J. O. Kyu, H. J. Jung, S. Y. Ji and K. L. Chang. J. Heterocyclic. Chem.2003, 40, 763.
- [2] D. Xing, B. Guan, G. Cai, Z. Fang, L. Yang and Z. Shi. Org. Lett. 2006, 8, 693.

- [3] S. W. Lee, K. Lee, D. Seomoon, S. Kim, H. Kim, E. Shim, M. Lee, S. Lee, M. Kim and P. H. Lee. J. Org. Chem. 2004, 69, 4852.
- [4] M. L. N. Rao, V. Venkatesh and D. Banerjee. *Tetrahedron* 2007, 63, 12917.
- [5] G. A. Babu and P. Ramasamy. J. Cryst. Growth. 2008, 15, 3561.
- [6] S. K. Murari, S. N. Sriharsha, S. Shashikanth and B. S. Vishwanath. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 2423.
- [7] P. Tang, W. Wang and T. Ritter. J. Am. Chem. Soc. 2011, 133, 11482.
- [8] M. Li, C. Wang and H. Ge. Org. Lett. 2011, 13, 2062.
- [9] O. Chuzel, A. Roesch, J.-P. Genet and S. Darses. J. Org. Chem. 2008, 73, 7800.
- [10] J. Zhang, Z. Wang, Y. Wang, C. Wan, X. Zheng and Z. Wang. Green Chem. 2009, 11, 1973.
- [11] J. Cason and J. D. Wordie. J. Org. Chem. 1950, 15, 617.
- [12] I. Sapountzis, W. Lin, C. C. Kofink, C. Despotopoulou and P. Knochel. Angew. Chem. Int. Ed. 2005, 44, 1654.
- [13] B. Landers, C. Berini, C. Wang and O. Navarro. J. Org. Chem. 2011, 76, 1390.
- [14] L. J. Gooßen, F. Rudolphi, C. Oppel and N. Rodríguez. *Angew. Chem.Int. Ed.* 2008, 47, 3043.
- [15] Y. Yuan, X. Shi and W. Liu. SynLett. 2011, 559.

- [16] J. Ruan, J. A. Iggo, N. G. Berry and J. Xiao. J. Am. Chem. Soc. 2010, 132, 16689.
- [17] A. Cunningham, V. Mokal-Parekh, C. Wilson and S. Woodward. *Org.Biomol. Chem.* 2004, 2, 741.
- [18] D. E. Pearson and J. D. Bruton. J. Org. Chem. 1954, 19, 957.
- [19] B. Scheiper, M. Bonnekessel, H. Krause and A. Fürstner. J. Org. Chem. 2004, 69, 3943.
- [20] W. Pei, J. Mo and J. Xiao. J. Organomet. Chem. 2005, 690, 3546.
- [21] K. Hayamizu and O. Yamamoto. J. Mol. Spectrosc. 1968, 28, 89.
- [22] B.-C. Hong, H.-C. Tseng and S.-H. Chen. Tetrahedron 2007, 63, 2840.
- [23] C. Jin, J. P. Burgess, J. A. Kepler and C. E. Cook. Org. Lett. 2007, 9, 1887.
- [24] M. Iinuma, K. Moriyama, and H. Togo. *Tetrahedron* 2013, 69, 2961.

5. The reaction practicability emanations

5.1 Reaction with low catalyst loading

A mixture of ethene-1,1-diyldibenzene (1.0 mmol, 180.1 mg), CeCl₃ (0.5 mol%, 1.3 mg), CCl₃CH₂OH (20 mol%, 29.8 mg) and CH₃CN (4.0 mL) was added into a quartz tube which was placed in a photochemical reactor (Blue LED, 405-410 nm, 4 W)). The reaction mixture was stirred at 25 °C under air for 60 h. After concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel and eluted with EtOAc/petroleum ether (1/100~10/1) to afford the desired product.

5.2 5 mmol scale reaction

A mixture of ethene-1,1-diyldibenzene (5.0 mmol, 901.3 mg), CeCl₃ (1 mol%, 13.5 mg), CCl₃CH₂OH (5 mol%, 37.4 mg) and CH₃CN (10.0 mL) was added into a quartz tube which was placed in a photochemical reactor (Blue LED, 405-410 nm, 4 W)). The reaction mixture was stirred at 25 °C

under air for 48 h. After concentrated under reduced pressure, the residue was purified by flash column chromatography on silica gel and eluted with EtOAc/petroleum ether (1/100~10/1) to afford the desired product.

6. Mechanistic studies

6.1 Control experiments

To explore the reaction mechanism for our oxidative process, some control experiments were first carried out.

la la	CeCl ₃ (10 mol%), TCE (20 mol%) Blue LED (4 W), MeCN, Air Additive, 25 °C, 40 h	2a
Entry	Additive	Yield (%)
1	No catalyst	No reaction
2	No light	No reaction
3	N ₂ -atmosphere	No reaction

Reaction condition: **1a** (0.2mmol), CeCl₃ (10 mol%), TCE (20 mol%), CH₃CN (1.0 mL) at room temperature (25°C), Blue LED (5 W) for 40 h.

The results demonstrated that light, Ce catalyst and air, none of these three can be excluded. The absence of any one lead to the complete inhibition of this oxidative process.

6.2 Radical scavenger effect studies

To further investigate the reaction mechanism for this photocatalytic reaction, radical scavengers, such as TEMPO and BHT, were employed in the standard reaction, and the reaction was inhibited obviously. This result suggested that a free radical process might be involved in the present oxidative reaction.

a) Reaction in the presence of TEMPO

A mixture of ethene-1,1-diyldibenzene (0.2 mmol, 36.0 mg), CeCl₃ (10 mol%, 4.9 mg), CCl₃CH₂OH (20 mol%, 5.9 mg), TEMPO (0.4 mmol, 62.4 mg) and CH₃CN (1.0 mL) was added into a quartz tube which was placed in a photochemical reactor (Blue LED, 405-410 nm, 4 W)). The reaction mixture was stirred at 25 °C under air. After 40 h, no desired product was observed.

b) Reaction in the presence of BHT

A mixture of ethene-1,1-diyldibenzene (0.2 mmol, 36.0 mg), CeCl₃ (10 mol%, 4.9 mg), CCl₃CH₂OH (20 mol%, 5.9 mg), BHT (0.4 mmol, 88.1 mg) and CH₃CN (1.0 mL) was added into a quartz tube which was placed in a photochemical reactor (Blue LED, 405-410 nm, 4 W)). The

reaction mixture was stirred at 25 °C under air. After 40 h, only trace amount of product was observed.

6.3 Quenching experiments

	CeCl ₃ (10 mol%), TCE (20 mol%) Blue LED (4 W), MeCN, Air Additive, 25 °C, 40 h	°
Entry	Quenching reagent	Yield (%)
1	$CuCl_2$ (1.0 equiv.)	Trace
2	Benzoquinone (1.0 equiv.)	8%

Finally, some quenching reagents were subjected to the reaction.

Reaction condition: **1a** (0.2mmol), $CeCl_3$ (10 mol%), TCE (20 mol%), CH_3CN (1.0 mL) at room temperature (25°C), Blue LED (5 W) for 40 h.

When CuCl₂ was added, only trace amount of product was observed, which proved the involvement of a single electron processes. Then benzoquinone was subjected and 8% of product was obtained, demonstrating superoxide radicals was involved in the reaction.

6.4¹⁸O labeling experiment

In order to show the actual source of oxygen in the ketone product, $H_2^{18}O$ was first used to instead TCE as the additive for the reaction.

Besides, the reaction involved ${}^{18}O_2$ was carried out and the ${}^{18}O$ labelled product was generated in 70% yield.

The products were detected by GC-MS and both results demonstrated that the oxygen of product was from dioxygen in the air, rather than from the H_2O or alcohols.
7. NMR spectra

¹H NMR spectrum of 2a in CDCl₃ at 400 MHz

^{13}C NMR spectrum of 2a in CDCl3 at 101 MHz

¹H NMR spectrum of 2b in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 2b in CDCl₃ at 101 MHz

¹H NMR spectrum of 2c in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 2c in CDCl₃ at 101 MHz

¹H NMR spectrum of 2d in CDCl₃ at 400 MHz

^{13}C NMR spectrum of 2d in CDCl₃ at 101 MHz

¹H NMR spectrum of 2e in CDCl₃ at 400 MHz

^{13}C NMR spectrum of 2e in CDCl3 at 101 MHz

^1H NMR spectrum of 2f in CDCl3 at 400 MHz

^{13}C NMR spectrum of **2f** in CDCl₃ at 101 MHz

¹H NMR spectrum of 2g in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 2g in CDCl3 at 101 MHz

¹H NMR spectrum of 2h in CDCl₃ at 400 MHz

^{13}C NMR spectrum of 2h in CDCl3 at 101 MHz

¹H NMR spectrum of 2i in CDCl₃ at 400 MHz

7,87 7,87 7,050 7,

^{13}C NMR spectrum of 2i in CDCl3 at 101 MHz

¹H NMR spectrum of 2j in CDCl₃ at 400 MHz

^{13}C NMR spectrum of 2j in CDCl₃ at 101 MHz

¹H NMR spectrum of 2k in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 2k in CDCl3 at 101 MHz

¹H NMR spectrum of **2l** in CDCl₃ at 400 MHz

¹³C NMR spectrum of **2l** in CDCl₃ at 101 MHz

¹H NMR spectrum of 2m in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 2m in CDCl_3 at 101 MHz

 ^1H NMR spectrum of 2n in CDCl_3 at 400 MHz

 ^{13}C NMR spectrum of 2n in CDCl3 at 101 MHz

¹H NMR spectrum of 20 in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 2o in CDCl₃ at 101 MHz

¹H NMR spectrum of $\mathbf{2p}$ in CDCl₃ at 400 MHz

^{13}C NMR spectrum of 2p in CDCl₃ at 101 MHz

 ^1H NMR spectrum of 2q in CDCl3 at 400 MHz

 ^{13}C NMR spectrum of 2q in CDCl3 at 101 MHz

¹H NMR spectrum of 2r in CDCl₃ at 400 MHz

^{13}C NMR spectrum of 2r in CDCl₃ at 101 MHz

¹H NMR spectrum of 2s in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 2s in CDCl3 at 101 MHz

¹H NMR spectrum of **2t** in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 2t in CDCl3 at 101 MHz

¹H NMR spectrum of 2u in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 2u in CDCl₃ at 101 MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

^1H NMR spectrum of 4a in CDCl_3 at 400 MHz

^{13}C NMR spectrum of 4a in CDCl3 at 101 MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

^1H NMR spectrum of 4b in CDCl_3 at 400 MHz

 ^{13}C NMR spectrum of 4b in CDCl3 at 101 MHz

¹H NMR spectrum of 4c in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 4c in CDCl_3 at 101 MHz

¹H NMR spectrum of 4d in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 4d in CDCl3 at 101 MHz

¹H NMR spectrum of **4e** in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 4e in CDCl₃ at 101 MHz

¹H NMR spectrum of **4f** in CDCl₃ at 400 MHz

^{13}C NMR spectrum of 4f in CDCl_3 at 101 MHz

¹H NMR spectrum of 4g in CDCl₃ at 400 MHz

 ^{13}C NMR spectrum of 4g in CDCl3 at 101 MHz

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

¹H NMR spectrum of **4h** in CDCl₃ at 400 MHz

^{13}C NMR spectrum of **4h** in CDCl₃ at 101 MHz

^1H NMR spectrum of 4k in CDCl3 at 400 MHz

 ^{13}C NMR spectrum of 4k in CDCl₃ at 101 MHz

^1H NMR spectrum of 4l in CDCl_3 at 400 MHz

 ^{13}C NMR spectrum of **4l** in CDCl₃ at 101 MHz

 ^1H NMR spectrum of 4m in CDCl3 at 400 MHz

 ^{13}C NMR spectrum of 4m in CDCl3 at 101 MHz

 ^1H NMR spectrum of 4n in CDCl_3 at 400 MHz

 ^{13}C NMR spectrum of 4n in CDCl3 at 101 MHz

^1H NMR spectrum of 4o in CDCl_3 at 400 MHz

 ^{13}C NMR spectrum of 4o in CDCl3 at 101 MHz

^1H NMR spectrum of 4p in CDCl3 at 400 MHz

 ^{13}C NMR spectrum of 4p in CDCl3 at 101 MHz

 ^1H NMR spectrum of 4q in CDCl3 at 400 MHz

 ^{13}C NMR spectrum of 4q in CDCl3 at 101 MHz

