Nickel catalyzed sustainable synthesis of benzazoles and purines via acceptorless dehydrogenative coupling and borrowing hydrogen approach

Gargi Chakraborty, Rakesh Mondal, Amit Kumar Guin and Nanda D. Paul*

Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India

Table of Contents						
Optimization of Reaction Conditions for 8-Substituted-9H-purines and 8,9-	S 3					
disubstituted-9H-purines						
Deuterium Labelling Experiment						
Figures of ¹ H and ¹³ C NMR spectra						
References	S61					

Table S1. Optimization of Reaction Conditions for 8-Substituted-9*H*-purines and 8,9-disubstituted-9*H*-purines^{a-f}.

Entry	Ni- Catalyst	Solvent	Base	Temp.	Yield (%)		
-	(mol%)			-	Purines		
				(°C)	10a	11a	
1	1a (3.0)	toluene	KO ^t Bu	100°C	70	45	
2	1a (3.0)	toluene	NaO ^t Bu	100°C	59	35	
3	1a (3.0)	toluene	KOH	100°C	53	32	
4	1a (3.0)	toluene	K ₃ PO ₄	100°C	NR	NR	
5	1a (3.0)	toluene	NEt ₃	100°C	NR	NR	
6	1a (3.0)	xylene	KO ^t Bu	100°C	67	41	
7	1a (3.0)	THF	KO ^t Bu	100°C	trace	trace	
8	1a (3.0)	ethanol	KO ^t Bu	100°C	NR	NR	
9	1a (3.0)	xylene	KO ^t Bu	120°C	57	51	
10	1a (3.0)	xylene	KO ^t Bu	140°C	42	39	
11	1a (3.0)	toluene	KO ^t Bu	100°C	68 ^d	NR ^d	
12	1b (3.0)	toluene	KO ^t Bu	100°C	34	-	
13	1a (3.0)	xylene	KO ^t Bu	120°C	-	23	
14	-	xylene	KO ^t Bu	120°C	trace	trace	
15	1a (3.0)	xylene	-	120°C	NR	NR	
16	NiCl ₂ (10.0)	xylene	KO ^t Bu	120°C	NR	NR	
17	Ni(OAc) ₂ (10.0)	xylene	KO ^t Bu	120°C	NR	NR	
18	NiCl ₂ (3.0) +	xylene	KO ^t Bu	120°C	trace	trace	
	DME						
19	NiCl ₂ (3.0) +	xylene	KO ^t Bu	120°C	trace	trace	
	$P(C_4H_9)_3$						
For 10a. ^a Stoichiometry: benzylalcohol (2a) (1.0 mmol), 4,5-diaminopyrimidine							

For **10a**. ^aStoichiometry: benzylalcohol (**2a**) (1.0 mmol), 4,5-diaminopyrimidine (**7a**) (1.0 mmol), base (0.75 mmol); ^bSolvent: 5.0 mL; ^cUnder argon atmosphere; ^dUnder aerobic condition; ^eTime: 24h; ^fIsolated yield after column chromatography. For **11a**. ^aStoichiometry: benzylalcohol (**2a**) (2.0 mmol), 4,5-diaminopyrimidine (**7a**) (1.0 mmol), base (2.0 mmol); ^bSolvent: 5.0 mL; ^cUnder argon atmosphere; ^dUnder aerial condition; ^eTime: 36h; ^fIsolated yield after column chromatography.

Deuterium Labelling Experiment.

Fig S1. ¹H NMR spectra of 8a and 8a-d in CDCl₃ solvent ([#]dichloromethane, ^xwater, ^{*}hexane)

Figures of ¹H and ¹³C NMR Spectra of Isolated Compounds.

Fig S2. ¹H and ¹³C NMR spectra of **5a** (in DMSO-d₆ and CDCl₃+ 1drop CD₃OD solvent) (^xwater, *hexane, ⁺ethyl acetate).

Fig S3. 1 H and 13 C NMR spectra of **5b** (in DMSO-d₆ solvent) (^xwater, ⁺ethyl acetate).

Fig S4. ¹H and ¹³C NMR spectra of **5c** (in CDCl₃+ 1 drop CD₃OD solvent) (*hexane).

Fig S5. ¹H and ¹³C NMR spectra of 5d (in CDCl₃+ 1 drop CD₃OD solvent) (*hexane).

Fig S6. ¹H and ¹³C NMR spectra of 5e (in DMSO-d₆ solvent) (^xwater,*hexane).

Fig S7. ¹H and ¹³C NMR spectra of **5f** (in CDCl₃+ 1 drop CD₃OD solvent) (*hexane).

Fig S8. ¹H and ¹³C NMR spectra of 5g (in CD₃OD solvent).

Fig S9. ¹H and ¹³C NMR spectra of **5h** (in CD₃OD solvent) (*hexane).

Fig S10. ¹H spectrum of **5i** (in DMSO-d₆ solvent) (^xwater, *hexane).

Fig S11. ¹H and ¹³C NMR spectra of **5j** (in DMSO-d₆ solvent) (^xwater, *hexane, ⁺ethyl acetate).

Fig S12. ¹H and ¹³C NMR spectra of **5**k (in DMSO-d₆ solvent) ([#]dichloromethane, ⁺ethyl acetate, ^xwater, ^{*}hexane).

Fig S13. ¹H and ¹³C NMR spectra of 5l (in CD₃OD solvent) ([#]dichloromethane, ^xwater, *hexane).

Fig S14. ¹H and ¹³C NMR spectra of **5m** (in DMSO-d₆ solvent) ([#]dichloromethane, ⁺ethyl acetate, ^xwater, *hexane).

Fig S15. ¹H and ¹³C NMR spectra of **5n** (in CDCl₃ and CDCl₃+1 drop CD₃OD solvent) (*hexane).

Fig S16. ¹H and ¹³C NMR spectra of 50 (in CDCl₃ solvent).

Fig S17. ¹H and ¹³C NMR spectra of **5p** (in CD₃OD solvent) (⁺ethyl acetate, ^xwater).

Fig S18. ¹H and ¹³C NMR spectra of **6a** (in CDCl₃ solvent) ([#]acetone, *hexane).

Fig S19. ¹H and ¹³C NMR spectra of **6b** (in CDCl₃ solvent) (*hexane).

Fig S20. ¹H and ¹³C NMR spectra of 6c (in CDCl₃ solvent).

Fig S21. ¹H and ¹³C NMR spectra of **6d** (in CDCl₃ solvent) (*hexane).

Fig S22. ¹H NMR spectrum of 6e (in CDCl₃ solvent) ([#]acetone, *hexane).

Fig S23. ¹H and ¹³C NMR spectra of 6f (in CDCl₃ solvent) (*hexane).

Fig S24. ¹H NMR spectrum of 6g (in CDCl₃ solvent) ([#]acetone, *hexane).

Fig S25. 1 H and 13 C NMR spectra of **6h** (in CDCl₃ solvent) (*hexane).

Fig S26. ¹H and ¹³C NMR spectra of **6i** (in CDCl₃ solvent) (*hexane).

Fig S27. ¹H and ¹³C NMR spectra of 6j (in CDCl₃ solvent) (*hexane).

Fig S28. ¹H and ¹³C NMR spectra of **6k** (in CDCl₃ solvent) (*hexane).

Fig S29. ¹H and ¹³C NMR spectra of 6l (in CD₃OD solvent) (^xwater, *hexane).

Fig S30. ¹H and ¹³C NMR spectra of 6m (in DMSO-d₆ solvent).

Fig S31. ¹H and ¹³C NMR spectra of **6n** (in CDCl₃ solvent) (*hexane).

Fig S32. ¹H and ¹³C NMR spectra of **60** (in CDCl₃ solvent, *hexane).

Fig S33. ¹H and ¹³C NMR spectra of 6p (in CDCl₃ solvent, * hexane).

Fig S34. 1 H and 13 C NMR spectra of 10a (in CD₃OD solvent) (^xwater, *hexane).

Fig S35. ¹H (in DMSO-d₆ solvent) and ¹³C NMR spectra of **10b** (in CD₃OD solvent) (^xwater, #acetone, *hexane).

Fig S36. ¹H and ¹³C NMR spectra of **10c** (in DMSO-d₆ solvent) (^xwater, ⁺ethylacetate, *hexane).

Fig S37. ¹H and ¹³C NMR spectra of 10d (in DMSO-d₆ solvent) (^xwater, ⁺ethylacetate, *hexane).

Fig S38. ¹H and ¹³C NMR spectra of 10e (in CD₃OD solvent) (^xwater, *hexane).

Fig S39. ¹H (in DMSO-d₆ solvent) and ¹³C (in CD₃OD solvent) NMR spectra of 10f (^xwater, #acetone, ⁺ethylacetate, *hexane).

Fig S40. ¹H (in DMSO-d₆ solvent) and ¹³C (in CDCl₃+ 1drop CD₃OD solvent) NMR spectra of **10g** (^xwater, ⁺ethylacetate, *hexane).

Fig S41. ¹H and ¹³C NMR spectra of **10g** (in DMSO-d₆ solvent) (^xwater, *hexane).

Fig S42. ¹H and ¹³C NMR spectra of **11a** (in CDCl₃ solvent) ([#]water, * hexane).

Fig S43. ¹H and ¹³C NMR spectra of 11b (in CDCl₃ solvent) ([#]water, * hexane).

Fig S44. ¹H and ¹³C NMR spectra of 11c (in DMSO-d₆ solvent) (^xwater, ⁺ethylacetate, *hexane).

Fig S45. ¹H and ¹³C NMR spectra of 12a (in CDCl₃ solvent) (^xwater, *hexane).

Fig S46. ¹H and ¹³C NMR spectra of **12b** (in CDCl₃ solvent) (* acetone).

Fig S47. ¹H and ¹³C NMR spectra of 12c (in CDCl₃ solvent) (*hexane, [#]dichloromethane).

Fig S48. ¹H and ¹³C NMR spectra of **12d** (in CDCl₃ solvent) (*hexane, ^xwater).

Fig S49. ¹H and ¹³C NMR spectra of 12e (in CDCl₃ solvent) (*hexane).

Fig S50. ¹H and ¹³C NMR spectra of 13a (in CDCl₃ solvent) (#water, *hexane).

Fig S51. ¹H and ¹³C NMR spectra of 13b (in CDCl₃ solvent) (#acetone, *hexane).

Fig S52. ¹H and ¹³C NMR spectra of **13c** (in CDCl₃ solvent) (* hexane).

Fig S53. ¹H and ¹³C NMR spectra of 13d (in CDCl₃ solvent, #water, *hexane).

Fig S54. ¹H NMR spectrum of reaction mixture (in CDCl₃ solvent) (* 2,4-dimethoxybenzyl alcohol)¹

Fig S55. 'H NMR spectrum of 5a' (in CDCl₃ solvent) (* hexane)

Figure S56. ESI-MS spectrum of $[C_{13}H_{13}N_2]^+([5a'+H]^+)$.

Fig S57. ¹H and ¹³C NMR spectra of **10a'** (in DMSO-d₆ solvent) (^xwater, *hexane).

Figure S58. ESI-MS spectrum of $[C_{11}H_{11}N_4]$ + ([10a'+ H] +).

References.

- (a) S. Parua, R. Sikari, S. Sinha, S. Das, G. Chakraborty and N. D. Paul, *Org. Biomol. Chem.*, 2018, 16, 274–284; (b) S. Parua, S. Das, R. Sikari, S. Sinha and N. D. Paul, *J. Org. Chem.*, 2017, 82, 7165–7175.
- 2 H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512–7515.
- 3 S. Das, S. Sinha, D. Samanta, R. Mondal, G. Chakraborty, P. Brandão and N. D. Paul, J. Org. Chem., 2019, 84, 10160-10171