Supporting Information

Access to the Benzene-modified 2nd generation Strigolactam and GR24 Analogues by Merging of C-H Olefination with Decarboxylative Giese Cyclization

Yuhua Ge,^{*a} Xingyue Chen,^a Yi Dong,^b Hua-Nan Wang,^b Yangyan Li^{b,c} and Gang Chen^{*b}

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China. Email: geyuhua@seu.edu.cn.

^b Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China. Email: gchen2018@sjtu.edu.cn.

^c College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, People's Republic of China.

Table of Contents

1. General informationS4
2. Experimental Procedure and Spectroscopic Data
2.1. C-H Olefination of N-Boc L-phenylalanine and O-Piv L-phenyllactic acidS8
2.2. B-Ring formation <i>via</i> decarboxylative Giese cyclizationS23
2.3. C-Ring formation <i>via</i> intramolecular cyclizationS36
2.4. Final synthetic route of 2 nd generation strigolactams and GR24S50
2.5. The germination efficacy assay of strigolactams and strigolactonesS67
3. Supporting Schemes, Tables and Figures
Scheme S1-1. Previous synthetic route of strigolactone analogues S4
Scheme S1-2. Synthetic strategies of substrates 3 S6

Scheme S2. Our synthetic route of 2 nd generation strigolactam	S7
Scheme S3. Our synthetic route of 2 nd generation GR24	S7
Table S1. Optimization of C–H olefination of N-Boc L-phenylalanine	S8
Table S2. Substrate scope of C–H olefination of N-Boc L-phenylalanine	S9
Table S3. Optimization of C–H olefination of O-Piv L-phenyllactic acid	S17
Table S4. Substrate scope of C-H olefination of O-Piv L-phenyllactic acid	S19
Table S5. Optimization of Ir-catalyzed photo-redox decarboxylative coupling	S23
Table S6. Optimization of Ni-catalyzed decarboxylative coupling via RAEs	S24
Table S7. Decarboxylative cyclization reaction of substrates 3a-h	S25
Table S8. Decarboxylative cyclization reactions of substrates 6a-c	S31
Table S9. C-Ring formation from substrates 8a-h	\$36
Table S10. Boc-protection of substrates 11a-h	\$45
Table S11. C-Ring formation from substrates 9a-c	\$47
Table S12. Final synthetic route of 2 nd generation strigolactam	S51
Table S13. Final synthetic route of 2 nd generation GR24	S61
Table S14. Numeric data for the assay	S68
Figure S1. Orobanche aegyptiaca seeds germination	S69
4. References	S71
5. NMR Spectra	S72

1. General Information

All the chemicals were purchased commercially and used without further purification. General reagents were obtained from Adamas, Leyan, Innochem and Bidepharm. Anhydrous solvents were obtained from J&K. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. ¹H NMR spectra were recorded on Bruker-400 MHz and Bruker-500 MHz instruments. When the ¹H NMR solvent was CDCl₃, chemical shifts were quoted in parts per million (ppm) referenced to 7.26 ppm for solvent CDCl₃; When the ¹H NMR solvent was DMSO-*d*-6, chemical shifts were quoted in parts per million (ppm) referenced to 2.50 ppm for solvent DMSO-d-6. When the ¹H NMR solvent was Methanol-*d*-4, chemical shifts were quoted in parts per million (ppm) referenced to 3.31 ppm for solvent Methanol-d-4. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q= quartet, m = multiple, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker-400 instrument (100 MHz) and Bruker-500instrument (125 MHz), and were fully decoupled by broad band proton decoupling. When the ¹³C NMR solvent was CDCl₃ chemical shifts were reported in ppm referenced to 77.00 ppm for CDCl₃; When the ¹³C NMR solvent was DMSO-*d*-6, chemical shifts were quoted in parts per million (ppm) referenced to 39.52 ppm for solvent DMSO-*d*-6. When the ¹³C NMR solvent was Methanol-d-4, chemical shifts were quoted in parts per million (ppm) referenced to 49.00 ppm for solvent Methanol-d-4. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). Optical rotations were measured on an Anton Paar MCP100 automatic polarimeter using a 100 mm path-length cell at 589 nm. Melting points were measured with microscope WRX-4 (Shanghai Yice).

Scheme S1-1. Previous synthetic route of strigolactone analogues^[1]

Binne Zwanenburg and coworkers, synthesis of GR24 J. Agrie. Food Chem., 1992, **40**, 1230.

Jiayang Li and coworkers, synthesis of GR24 Nature, 2020, 583, 277.

Binne Zwanenburg and coworkers, synthesis of diversified GR-24 analogues Tetrahedron, 2010, 66, 7198.

4

Alain De Mesmaeker and coworkers, synthesis of 2nd generation GR24

WO 2018/145979

Alain De Mesmaeker and coworkers, synthesis of 1st generation strigolactams Bioorg. Med. Chem. Lett., 2015, **25**, 2184.

Sensuke Ogoshi and coworkers, synthesis of 1st generation strigolactams *J. Am. Chem. Soc.*, 2020, **142**, 1594.

Alain De Mesmaeker and coworkers, synthesis of 2nd generation strigolactams

WO 2019/175025

Scheme S1-2. Synthetic strategies of substrates 3

5-step synthetic route using -NHNs as a directing group (previous strategy):

Scheme S2. Our synthetic route of 2nd generation strigolactams

Scheme S3. Our synthetic route of 2nd generation GR24

2. Experimental Procedure and Spectroscopic Data

2.1 C–H Olefination of N-Boc L-phenylalanine and O-Piv L-phenyllactic acid

All L-phenylalanine analogues in this work are commercially available.

Table S1. Optimization of C–H olefination of N-Boc L-phenylalanine^[2]

Solvent screening^{*a*}:

Me	∼CO₂H NHBoc	5.0 equiv CO ₂ Et (2) 0.1 equiv Pd(OAc) ₂ 2.0 equiv AgOAc 2.0 equiv NaOAc Solvent (0.14 M), 100°C	Me	O ₂ Et CO ₂ H NHBoc Dno Ba	Me di di di
	Entry	Solvent	Yield	mono:di	_
	1	DCE	11%	10:1	_
	2	Toluene	11%	3:1	
	3	EtOAc	0%	1	
	4	THF	11%	10:1	
	5	MeCN	5%	1:0	
	6	<i>t</i> -AmylOH	34%	16:1	
	7	DMSO	N. D.	1	

^a Reaction conditions: Boc-L-4-Me-Phe-OH (0.1 mmol), Ethyl acrylate (0.5 mmol), $Pd(OAc)_2$ (0.01 mmol), AgOAc (0.2 mmol), NaOAc (0.2 mmol), Solvent (0.7 mL), 100 °C, 12 h; The yields were determined by ¹H NMR analysis of the crude product using 1,3,5-Trimethoxybenzene as an internal standard. DCE = 1,2-Dichloroethane; *t*-AmylOH = 2-Methyl-2-butanol; HFIP = 1,1,1,3,3-Hexafluoro-2-propanol; THF = Tetrahydrofuran.

Ligand screening using *t*-AmylOH as solvent^{*a*}:

^a Reaction conditions: Boc-L-4-Me-Phe-OH (0.1 mmol), Ethyl acrylate (0.5 mmol), Pd(OAc)₂ (0.01 mmol), Ligand (0.02 mmol), AgOAc (0.2 mmol), NaOAc (0.2 mmol), AmylOH (0.7 mL), 100 °C, 12 h; The yields were determined by ¹H NMR analysis of the crude product using 1,3,5-Trimethoxybenzene as an internal standard.

Base screening using Ac-L-Ala-OH as a ligand^{*a*}:

^a Reaction conditions: Boc-L-4-Me-Phe-OH (0.1 mmol), Ethyl acrylate (0.5 mmol), Pd(OAc)₂ (0.01 mmol), Ac-L-Ala-OH (0.02 mmol), AgOAc (0.2 mmol), Base (0.2 mmol), *t*-AmylOH (0.7 mL), 100 °C, 12 h; The yields were determined by ¹H NMR analysis of the crude product using 1,3,5-Trimethoxybenzene as an internal standard.

Table S2. Substrate scope of C-H olefination of N-Boc L-phenylalanine

Reaction conditions: Substrate (0.1 mmol), Ethyl acrylate (0.5 mmol), Pd(OAc)₂ (0.01 mmol), Ac-L-Ala-OH (0.02 mmol), AgOAc (0.2 mmol), Na₂CO₃ (0.2 mmol), *t*-AmylOH (0.14 M), 100 °C, 12 h.

General procedure A (0.1 mmol scale): Substrate **1a-h** (0.1mmol, 1.0 equiv), Pd(OAc)₂ (2.3 mg, 0.01 mmol, 0.1 equiv), Ac-L-Ala-OH (2.6 mg, 0.02 mmol, 0.2 equiv), AgOAc (33.2 mg, 0.2 mmol, 2 equiv), Na₂CO₃ (21.2 mg, 0.2 mmol, 2 equiv) and Ethyl acrylate (54 μ L,0.5 mmol, 5.0 equiv) were dissolved in 0.7 mL *t*-AmylOH. The tube was sealed and the reaction mixture was then placed to a pre-heated oil bath maintaining at 100 °C for 12h. The reaction mixture was then cooled to room temperature, and was filtered through celite. The filtrate was concentrated under reduced pressure and the residue was purified by PTLC (hexane:EtOAc = 75:25 with 0.2% HOAc).) to give the pure products **3a-h**.

General procedure B (gram scale): Substrate 1a-h (1.0 equiv), $Pd(OAc)_2$ (0.1 equiv), Ac-L-Ala-OH (0.2 equiv), AgOAc (2.0 equiv), Na₂CO₃ (2 equiv) and Ethyl acrylate (5.0 equiv) were dissolved in *t*-AmylOH (0.14 M). The tube was sealed and then placed to a pre-heated oil bath maintaining at 100 °C for 12 h. the reaction mixture was stirred at 100 °C (oil bath) for 12h. *Caution: The tube was carefully capped and covered with safety shield*. The reaction mixture was then cooled to room temperature, and was filtered through celite. The filtrate was concentrated under vacuum and the residue was purified by column chromatography (C18 Spherical silica) using H₂O/MeOH as the eluent to give the products **3a-h**.

(*S*,*E*)-2-((*tert*-butoxycarbonyl)amino)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-4methylphenyl)propanoic acid (3a)

CO₂Et COal

Substrate **1a** was olefinated following the general procedure **A** on 0.1 mmol scale (17.3 mg, 46%, mono:di = 20:1) and the general procedure **B** on gram scale (6.0 mmol scale; mono: 1.012 g, 44%; di: 0.155 g, 6%) to provide compound **3a**. Yellow solid, mp 120.8-121.4 °C; $[\alpha]_D^{25}$ +74.50 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, a mixture of rotational isomers 1.5:1) δ 8.69 (br s, 1H), 8.10–7.96 (m, 1H), 7.44–7.35 (m, 1H), 7.13 (s, 2H), 6.69 (d, *J* = 8.4 Hz, 0.4H), 6.42–6.30 (m, 1H), 5.08 (d, *J* = 8.4 Hz, 0.6H), 4.62–4.31 (m, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 3.53–3.27 (m, 1H), 3.18–2.88 (m, 1H), 2.33 (d, *J* = 5.3 Hz, 3H), 1.38–1.26 (m, 9H), 1.13 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 175.4, 175.1 (minor), 167.3, 166.9 (minor), 156.2 (minor), 155.2, 142.1, 141.5 (minor), 137.1, 133.8 (minor), 133.7, 133.6 (minor), 133.0, 131.5, 131.0, 127.3, 127.2 (minor), 34.7, 28.2, 27.7 (minor), 21.0, 14.2. HRMS-ESI m/z Calcd for C₂₀H₂₇NNaO₆ [M+Na]⁺: 400.1731; found 400.1731.

(*S*,*E*)-2-((*tert*-butoxycarbonyl)amino)-3-(2-(3-ethoxy-3-oxoprop-1-en-1yl)phenyl)propanoic acid (3b)

Substrate **1b** was olefinated following the general procedure **A** on 0.1 mmol scale (mono: 16.8mg, 46%; di: 2.9 mg, 6%) and the general procedure **B** on gram scale (10.0 mmol scale; mono: 1.510 g, 42%; di: 0.121g, 3%) to provide compound **3b**. Yellow solid, mp 61.5-62.8 °C; $[\alpha]_{D}^{25}$ +73.00 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, a mixture of rotational isomers 1.2:1) δ 8.14–8.00 (m, 1H), 7.82 (br s, 1H), 7.61–7.56 (m, 1H), 7.37–7.21 (m, 3H), 6.84–6.66 (m, 0.45H), 6.43–6.31 (m, 1H), 5.11 (d, *J* = 8.0 Hz, 0.55H), 4.62–4.37 (m, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 3.53–3.31 (m, 1H), 3.20–2.85 (m, 1H), 1.38–1.22 (m, 9H), 1.11 (s, 3H). ¹³C NMR (125

MHz, CDCl₃) δ 175.1, 167.3, 166.9 (minor), 156.3 (minor), 155.2, 142.0, 141.4 (minor), 136.9 (minor), 136.1, 134.0, 133.9 (minor), 131.6 (minor), 131.1, 130.1, 127.6, 126.9, 126.8 (minor), 120.3 (minor), 120.2, 81.3 (minor), 80.1, 60.8, 60.7 (minor), 55.6 (minor), 54.2, 37.5 (minor), 35.2, 28.2, 27.8 (minor), 14.3. >99% ee as determined by HPLC (Chiralpak ADH, 85:15 hexane/*i*-PrOH, 0.5 mL/min, 25 °C, λ = 250 nm), tr (minor) = 16.5 min, tr (major) = 30.2 min. HRMS-ESI m/z Calcd for C₁₉H₂₅NNaO₆ [M+Na]⁺: 386.1574; found 386.1573.

Area % Report (racemic)

Area % Report (chiral)

(*S*,*E*)-2-((*tert*-butoxycarbonyl)amino)-3-(3-(3-ethoxy-3-oxoprop-1-en-1-yl)-[1,1'biphenyl]-4-yl)propanoic acid (3c)

Substrate **1c** was olefinated following the general procedure **A** on 0.1 mmol scale (mono: 17.6 mg, 40%; di: 2.6 mg, 5%) and the general procedure **B** on gram scale (12.0 mmol scale; mono: 2.003 g, 38%; di: 0.306 g, 5%) to provide compound **3c**. Yellow solid, mp 81.2-83.7 °C; $[\alpha]_{D}^{25}$ +66.00 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, a mixture of rotational isomers 1.5:1) δ 8.16–8.07(m, 1H), 7.83–7.74 (m, 1H), 7.59–7.49 (m, 3H), 7.49–7.40 (m, 2H), 7.40–7.27 (m, 2H), 6.86 (s, 0.4H), 6.54–6.42 (m, 1H), 5.70 (br s, 1H), 5.14 (s, 0.6H), 4.76–4.41 (m, 1H), 4.28 (q, *J* = 6.7 Hz, 2H), 3.64–3.38 (m, 1H), 3.35–3.02 (m, 1H), 1.42–1.23 (m, 9H), 1.11 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 166.8, 156.3, 155.2, 142.1, 141.4, 140.5, 140.1, 135.8, 134.9, 134.3, 132.1, 131.6, 128.8, 128.7, 127.6, 127.0, 125.4, 120.4, 81.3, 80.1, 60.9, 60.7, 55.5, 54.2, 37.3, 34.8, 28.2, 27.7, 14.2. HRMS-ESI m/z Calcd for C₂₅H₂₉NNaO₆ [M+Na]⁺: 462.1887; found 462.1885.

(*S*,*E*)-2-((*tert*-butoxycarbonyl)amino)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-4fluorophenyl)propanoic acid (3d)

Substrate **1d** was olefinated following the general procedure **A** on 0.1 mmol scale (11.1 mg, 29%; di: 1.2 mg, 3%) and the general procedure **B** on gram scale (16.0 mmol scale; mono: 1.951 g, 32%; di: 0.240 g, 3%) to provide compound **3d**. Yellow solid, mp 83.6-84.5 °C; $[\alpha]_{p}^{25}$ +76.50 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, a mixture of rotational isomers 1.5:1) δ 8.05–7.93 (m, 1H), 7.31–7.18 (m, 2H), 7.07–6.99 (m, 1H), 6.82 (d, *J* = 8.0 Hz, 0.4H), 6.40–6.29 (m, 1H), 5.13 (d, *J* = 8.5 Hz, 0.6H), 4.61–4.32 (m, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.48–3.32 (m, 1H), 3.20–2.87 (m, 1H), 1.38–1.29 (m, 9H), 1.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, a mixture of rotational isomers) δ 174.9, 174.7 (minor), 167.0, 166.5 (minor), 161.9 (d, *J* = 246.5 Hz), 156.3 (minor), 155.2, 140.9, 140.2 (minor), 135.7, 133.20 (minor), 132.8, 131.9, 121.5 (minor), 121.2, 117.0 (d, *J* = 21.4 Hz), 113.2 (d, *J* = 22.2 Hz), 81.5 (minor), 80.2, 60.9, 60.8 (minor), 55.5 (minor), 54.1, 36.7 (minor), 34.6, 28.2, 27.8 (minor), 14.2. ¹⁹F NMR (375 MHz, CDCl₃) δ -114.7, -115.0. HRMS-ESI m/z Calcd for C₁₉H₂₄FNNaO₆ [M+Na]⁺: 404.1480; found 404.1483.

(*S*,*E*)-2-((*tert*-butoxycarbonyl)amino)-3-(4-chloro-2-(3-ethoxy-3-oxoprop-1-en-1yl)phenyl)propanoic acid (3e)

Substrate **1e** was olefinated following the general procedure A on 0.1 mmol scale (mono: 14.4 mg, 36%; di: 3.2 mg, 2%) and the general procedure **B** on gram scale (15.0 mmol scale; mono: 2.144 g, 36%; di: 0.262 g, 4%) to provide compound **3e**. Yellow solid, mp 118.5-120.2 °C; $[\alpha]_{1D}^{25}$ +62.75 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, a mixture of rotational isomers 1.5:1) δ 8.23 (br s, 1H), 8.03–7.93 (m, 1H), 7.60–7.52 (m, 1H), 7.33–7.27 (m, 2H), 7.22–7.16 (m, 1H), 6.93 (d, *J* = 8.1 Hz, 0.4H), 6.43–6.30 (m, 1H), 5.15 (d, *J* = 8.5 Hz, 0.6H), 4.63–4.32 (m, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.50–3.29 (m, 1H), 3.18–2.87 (m, 1H), 1.46–1.25 (m, 9H), 1.15 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 174.6 (minor), 166.9, 166.4 (minor), 156.4 (minor), 155.2, 140.7, 140.0 (minor), 135.6, 135.6 (minor), 135.2 (minor), 134.5, 133.4, 132.8 (minor), 132.4, 129.8, 126.7, 126.5 (minor), 121.6 (minor), 121.4, 81.7 (minor), 80.2, 60.9,

60.8 (minor), 55.3 (minor), 53.9, 36.9 (minor), 34.7, 28.2, 27.7 (minor), 14.2. HRMS-ESI m/z Calcd for C₁₉H₂₄ClNNaO₆ [M+Na]⁺: 420.1184; found 420.1190.

(*S*,*E*)-2-((*tert*-butoxycarbonyl)amino)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-4methoxyphenyl)propanoic acid (3f)

Substrate **1f** was olefinated following the general procedure **A** on 0.1 mmol scale (mono: 18.0 mg, 46%; di: 2.7 mg, 6%) and the general procedure **F** on gram scale (10.0 mmol scale; mono: 1.730 g, 44%; di: 0.134 g, 3%) to provide compound **3f**. Yellow solid, mp 90.5-91.9 °C; $[\alpha]_{D}^{25}$ +74.50 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, a mixture of rotational isomers 2.3:1) δ 8.00 (d, *J* = 15.5 Hz, 1H), 7.18–7.11 (m, 1H), 7.07 (s, 1H), 6.92–6.85 (m, 1H), 6.35 (d, *J* = 15.3 Hz, 1H), 6.02–5.85 (m, 0.3H), 5.08 (s, 0.7H), 4.49–4.28(m, 1H), 4.26 (q, *J* = 6.9 Hz, 2H), 3.80 (s, 3H), 4.34–3.25 (m, 1H), 3.19–2.80 (m, 1H), 1.39–1.29 (m, 9H), 1.26–1.22 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.0, 167.5, 158.6, 155.4, 142.3, 134.7, 132.5, 129.1, 119.8, 116.3, 111.2, 79.7, 60.8, 55.3, 47.6, 34.7, 28.3, 28.0 (minor), 14.3. HRMS-ESI m/z Calcd for C₂₀H₂₇NNaO₇ [M+Na]⁺: 416.1680; found 416.1680.

(*S*,*E*)-2-((*tert*-butoxycarbonyl)amino)-3-(4-ethoxy-2-(3-ethoxy-3-oxoprop-1-en-1yl)phenyl)propanoic acid (3g)

Substrate **1g** was olefinated following the general procedure **A** on 0.1 mmol scale (mono: 18.1 mg, 44%; di: 3.5 mg, 7%) and the general procedure **B** on gram scale (12.0 mmol scale; mono: 1.905 g, 39%; di: 0.391 g, 7%) to provide compound **3g**. Yellow solid, mp 113.0-116.2 °C; $[\alpha]_{D}^{25}$ +76.75 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, a mixture of rotational isomers 2.3:1) δ 8.00 (d, *J* = 15.5 Hz, 1H), 7.17–7.03 (m, 2H), 6.89–6.80 (m, 1H), 6.33 (d, *J* = 15.7 Hz, 1H), 6.05–5.89 (m, 0.3H), 5.68 (br s, 1H), 5.13–5.07 (m, 0.7H), 4.55–4.39 (m, 1H), 4.24 (q, *J* = 7.0 Hz, 2H), 4.07–3.93 (m, 2H), 3.41–3.21 (m, 1H), 3.19–2.83 (m, 1H), 1.45–1.35 (m, 9H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.27–1.19 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 167.6, 158.0,

155.2, 142.3, 134.7, 132.5, 128.5, 119.6, 116.8, 111.8, 79.8, 63.5, 60.8, 54.7, 34.5, 28.3, 14.8, 14.2. HRMS-ESI m/z Calcd for C₂₁H₂₉NNaO₇ [M+Na]⁺: 430.1836; found 430.1836.

(*S*,*E*)-3-(4-(benzyloxy)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)phenyl)-2-((*tert*-butoxycarbonyl)amino)propanoic acid (3h)

Substrate **1h** was olefinated following the general procedure **A** on 0.1 mmol scale (mono: 19.7 mg, 42%; di: 3.5mg, 6%) and the general procedure **B** on gram scale (12.0 mmol scale; mono: 2.080 g, 37%; di: 0.208 g, 3%) to provide compound **3h**. Yellow solid, mp 80.7-86.5 °C; $[\alpha]_{p}^{25}$ +56.750 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, a mixture of rotational isomers 2.3:1) δ 7.08–7.95 (m, 1H), 7.49–7.30 (m, 5H), 7.20–7.12 (m, 2H), 6.99–6.92 (m, 1H), 6.69 (d, *J* = 8.2 Hz, 0.3H), 6.38–6.29 (m, 1H), 5.17 –5.09 (m, 0.7H), 5.09–5.00 (m, 2H), 4.61–4.30 (m, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.44–3.26 (m, 1H), 3.21–2.83 (m, 1H), 1.43–1.25 (m, 9H), 1.16 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 167.2, 158.0, 155.2, 141.8, 136.6, 135.0, 132.3, 128.6, 128.1, 127.5, 127.4, 120.3, 117.0, 112.5, 80.1, 70.1, 60.8, 54.2, 34.3, 28.2, 27.8 (minor), 14.2. HRMS-ESI m/z Calcd for C₂₆H₃₁NNaO₇ [M+Na]⁺: 492.1993; found 492.1993.

Synthesis of O-Piv-L-phenyllactic acid analogues: ^[3]

General Procedure C

The phenyllactic acid substrate (1 equiv) and pivaloyl chloride (1.5 equiv) were stirred in DCM (1M) at RT for 24 h. The reaction mixture was then concentrated in vacuum and the resulting residue was purified by column chromatography (hexane:EtOAc = 75:25 with 0.2% HOAc).

(S)-3-phenyl-2-(pivaloyloxy)propanoic acid (5a)

Substrate **5a** was obtained following general procedure **C** from L-phenyllactic acid (commercial available, 20.0 mmol, 3.3 g). After purification by column chromatography, **5a** was obtained as a colorless oil (4.2g, 84%), colorless oil; $[\alpha]_D^{25}$ -13.50 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 10.10 (br s, 1H), 7.35–7.22 (m, 5H), 5.21 (dd, *J* = 9.4, 3.9 Hz, 1H), 3.26 (dd, *J* = 14.3, 3.9 Hz, 1H), 3.13 (dd, *J* = 14.3, 9.4 Hz, 1H), 1.16 (s, 9H). HRMS-ESI m/z Calcd for C₁₄H₁₈NaO₄ [M+Na]⁺: 273.1097; found 273.1086.

(S)-2-(pivaloyloxy)-3-(p-tolyl)propanoic acid (5b)

Substrate **5b** was obtained following general procedure **C** from 4-Methyl-L-phenyllactic acid (commercial available, 12.6 mmol, 2.3 g). After purification by column chromatography, **5b** was obtained as a white solid (2.3 g, 70%), white solid, mp 86.0-86.6 °C; $[\alpha]_{D}^{25}$ -11.25 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.15–7.08 (m, 4H), 5.18 (dd, *J* = 9.0, 4.2 Hz, 1H), 3.20 (dd, *J* = 14.3, 4.2 Hz, 1H), 3.09 (dd, *J* = 14.3, 9.0 Hz, 1H), 2.32 (s, 3H), 1.17 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.8, 174.7, 136.6, 132.7, 129.3, 129.1, 72.3, 38.6, 36.8, 26.9, 21.1. HRMS-ESI m/z Calcd for C₁₅H₂₀NaO₄ [M+Na]⁺: 287.1254; found 287.1250.

(S)-3-(4-chlorophenyl)-2-(pivaloyloxy)propanoic acid (5c)

Substrate **5c** was obtained following general procedure **C** from 4-chloro-L-phenyllactic acid (commercial available, 16.0 mmol, 3.2 g). After purification by column chromatography, **5c** was obtained as a white solid (2.7 g, 59%), mp 110.6-113.9 °C; $[\alpha]_{D}^{25}$ -13.50 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.53 (br s, 1H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.18 (d, *J* = 8.2 Hz, 2H), 5.18 (dd, *J* = 9.0, 3.9 Hz, 1H), 3.22 (dd, *J* = 14.4, 4.0 Hz, 1H), 3.11 (dd, *J* = 14.4, 9.0 Hz, 1H), 1.16 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.7, 174.9, 134.2, 133.1, 130.7, 128.6, 71.8, 38.6, 36.5, 26.9. HRMS-ESI m/z Calcd for C₁₄H₁₇NaClO₄ [M+Na]⁺:307.0708; found 307.0716.

Table S3. Optimization of C-H olefination of O-Piv L-phenyllactic acid^[2]

Ligand screening

^a Reaction conditions: O-Piv L-phenyllactic acid (0.1 mmol), Ethyl acrylate (0.5 mmol), Pd(OAc)₂ (0.01 mmol), Ligand (0.02 mmol), AgOAc (0.2 mmol), KHCO₃ (0.2 mmol), HFIP (0.7 mL), 100 °C, 12 h; The yields were determined by ¹H NMR analysis of the crude product using 1,3,5-Trimethoxybenzene as an internal standard.

Base screening

^a Reaction conditions: O-Piv L-phenyllactic acid (0.1 mmol), Ethyl acrylate (0.5 mmol), Pd(OAc)₂
 (0.01 mmol), Ac-L-Ala-OH (0.02 mmol), AgOAc (0.2 mmol), Base (0.2 mmol), HFIP (0.7 mL), 100
 [°]C, 12 h; The yields were determined by ¹H NMR analysis of the crude product using 1,3,5 Trimethoxybenzene as an internal standard.

Solvent screening

^a Reaction conditions: O-Piv L-phenyllactic acid (0.1 mmol), Ethyl acrylate (0.5 mmol), Pd(OAc)₂ (0.01 mmol), Ac-L-Ala-OH (0.02 mmol), AgOAc (0.2 mmol), KHCO₃ (0.2 mmol), Solvent (0.7 mL), 100 °C, 12 h; The yields were determined by ¹H NMR analysis of the crude product using 1,3,5-Trimethoxybenzene as an internal standard. TFE = 2,2,2-Trifluoroethanol; HFIP = 1,1,1,3,3,3-Hexafluoro-2-propanol.

Table S4. Substrate scope of C-H olefination of O-Piv L-phenyllactic acid

^a Reaction conditions: Substrate (0.1 mmol), Ethyl acrylate (0.5 mmol), Pd(OAc)₂ (0.01 mmol), Ac-L-Ala-OH (0.02 mmol), AgOAc (0.2 mmol), KHCO₃ (0.2 mmol), TFE (2,2,2-Trifluoroethanol, 0.7 mL), 100 °C, 12 h; ^b using HFIP instead of TFE

General procedure D (0.1 mmol scale): Substrate **5a-c** (0.1 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.3 mg, 0.01 mmol, 0.1 equiv), Ac-L-Ala-OH (2.6mg, 0.02 mmol, 0.2 equiv), AgOAc (33.2 mg, 0.2 mmol, 2 equiv), KHCO₃ (21.2 mg, 0.2 mmol, 2.0 equiv) and Ethyl acrylate (54 μ L, 0.5 mmol, 5.0 equiv) were dissolved in 0.7 mL TFE. The tube was sealed and the reaction mixture was then placed to a pre-heated oil bath maintaining at 100 °C for 12 h. The reaction mixture was then cooled to room temperature, and was filtered through celite. The filtrate was

concentrated under reduced pressure and the residue was purified by PTLC (hexane:EtOAc:HOAc = 75:25 with 0.2% HOAc) to give the pure products **6a-c**.

General procedure E (gram scale): Substrate **5a-c** (1.0 equiv), $Pd(OAc)_2$ (0.1 equiv), Ac-L-Ala-OH (0.2 equiv), AgOAc (2.0 equiv), KHCO₃ (2 equiv) and Ethyl acrylate (5.0 equiv) were dissolved in TFE (0.14 M). The tube was sealed and then placed to a pre-heated oil bath maintaining at 100 °C for 12 h. (*Caution: The tube was carefully capped and covered with safety shield.*) The reaction mixture was then cooled to room temperature, and was filtered through celite. The filtrate was concentrated under vacuum and the residue was purified by column chromatography (C18 Spherical silica) using H₂O/MeOH as the eluent to give the products **6a-c**.

(S,E)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)phenyl)-2-(pivaloyloxy)propanoic acid (6a)

Substrate **5a** was olefinated following the general procedure **D** on 0.1 mmol scale (mono: 18.4 mg, 53%; di: 2.8 mg, 4%) and the general procedure **E** on gram scale (using HFIP instead of TFE; 20.0 mmol scale; mono: 3.123 g, 46%; di: 0.340 g, 4%) to provide compound **6a**. Colourless oil; $[\alpha]_{D}^{25}$ +56.75(c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 15.8 Hz, 1H), 7.62–7.57 (m, 1H), 7.38–7.25 (m, 3H), 6.40 (d, *J* = 15.8 Hz, 1H), 5.37 (br s, 1H), 5.15 (dd, *J* = 9.8, 3.8 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.44 (dd, *J* = 14.6, 3.8 Hz, 1H), 3.31 (dd, *J* = 14.6, 9.8 Hz, 1H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.12 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.8, 173.8, 166.8, 141.6, 135.5, 133.9, 131.0, 130.0, 127.7, 126.7, 120.6, 72.2, 60.7, 38.5, 33.9, 26.8, 14.3. >99% ee as determined by HPLC (Chiralpak ADH, 85:15 hexane/*i*-PrOH, 1.0 mL/min, 25 °C, λ = 250 nm), tr (major) = 9.4 min, tr (minor) = 18.5 min. HRMS-ESI m/z Calcd for C₁₉H₂₄NaO₆ [M+H]⁺: 371.1465; found 371.1474.

Area % Report (racemic)

<Chromatogram>

<Peak Table>

Detector A Channel 1 250nm					
Peak#	Ret. Time	Height	Area	Height%	
1	9.662	19525	940724	63.429	
2	19.506	11258	823679	36.571	
Tota		30783	1764402	100.000	

Area % Report (chiral)

(S,E)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-4-methylphenyl)-2-(pivaloyloxy)propanoic acid (6b)

100.000

Substrate **5b** was olefinated following the general procedure **D** on 0.1 mmol scale (mono: 18.8 mg, 52%; di: 3.0 mg, 7%) and the general procedure **E** on gram scale (8 mmol scale; mono: 1.448 g, 50% ;di: 0.284 g, 8%) to provide compound **6b**. Yellow oil; $[\alpha]_D^{25}$ +14.75 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 15.8 Hz, 1H), 7.71 (br s, 1H), 7.40 (s, 1H), 7.20–7.10 (m, 2H), 6.39 (d, *J* = 15.8 Hz, 1H), 5.11 (dd, *J* = 9.5, 3.8 Hz, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 3.38 (dd, *J* = 14.6, 3.9 Hz, 1H), 3.26 (dd, *J* = 14.6, 9.6 Hz, 1H), 2.33 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H), 1.12 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.9, 174.3, 167.0, 141.8, 137.2, 133.5, 132.7, 130.9, 130.9, 127.2, 120.0, 72.4, 60.6, 38.5, 33.5, 26.8, 21.0, 14.2. HRMS-ESI m/z Calcd for C₂₀H₂₆NaO₆ [M+Na]⁺: 385.1622; found 385.1614.

(*S*,*E*)-3-(4-chloro-2-(3-ethoxy-3-oxoprop-1-en-1-yl)phenyl)-2-(pivaloyloxy)propanoic acid (6c)

Substrate **5c** was olefinated following the general procedure **D** on 0.1 mmol scale (mono:12.8 mg, 34%;di: 3.3 mg, 7%) and the general procedure **E** on gram scale (9.6 mmolscale;mono:1.310 g, 36%; di: 0.147 g, 3%) to provide compound **6c**. Yellow oil; $[\alpha]_{D}^{25}$ +12.25 (c 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 16.1 Hz, 1H), 7.49 (s, 1H), 7.24–7.13 (m, 2H), 6.33 (d, *J* = 15.7 Hz, 1H), 4.86 (d, *J*=9.8 Hz, 1H), 4.18–4.07 (m, 2H), 3.43 (d, *J* = 14.7 Hz, 1H), 3.10 (t, *J* = 12.4 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.01 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 179.5, 176.0, 167.2, 141.7, 137.2, 135.0, 132.6, 132.5, 129.7, 125.9, 120.2, 60.8, 38.6, 34.1, 29.7, 26.9, 14.1. HRMS-ESI m/z Calcd for C₁₉H₂₄ClO₆ [M+H]⁺ 383.1256; found 383.1264.

2.2 B-Ring formation via decarboxylative giese cyclization

Table S5. Optimization of Ir-catalyzed photo-redox decarboxylative coupling ^[4]

Screening of bases and solvents ^{*a*}:

	O₂Et → CO₂H NHBoc	1 mol% lr[dF(N equiv Bas solv	CF ₃)ppy)] ₂ (dtl se, 2.0 equiv a rent (0.02 M) Blue LED	dditive	-NHBoc ⁺	D ₂ C NHBoc
3	b			cis- 8b	t	rans- 8b
Entry	Solvent	N equiv	Base	Additive	Yield	cis- : trans ^c
1	DMSO	2	DBU	1	0%	/
2	DMSO	2	DIPEA	1	25% ^b	/
3	DMSO	2	DMAP	1	0%	/
4	DMSO	2	DABCO	1	19% ^b	/
5	DMSO	1	Li ₂ CO ₃	1	90%	1:1
6	DMSO	1	LiOH•H ₂ O	1	90%	1:1
7	DMSO	1	Cs_2CO_3	1	90%	1:1
8	DMSO	1	Cs ₂ CO ₃	MgBr₂•OEt₂	0%	/
9	DMSO	1	Cs_2CO_3	LiCl	95% (90% ^b)	1:1
10	DMSO	2	Cs_2CO_3	LiCl	90%	1:1
11	DMF	1	Cs ₂ CO ₃	LiCl	65% ^b	1:0.9
12	MeCN	1	Cs_2CO_3	LiCl	24%	1:1
13	THF	1	Cs ₂ CO ₃	LiCl	17%	1
14	NMP	1	Cs_2CO_3	LiCl	16%	/

^a Conditions: [IrdF(CF₃)ppy)₂(dtbbpy)]PF₆ (0.001 mmol, 0.01 equiv), substrate (0.1 mmol, 1.0 equiv), Base (0.2 mmol, 2.0 equiv), and 5 mL of DMSO (0.02 M). The yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^b isolated yield. ^c The dr value was determined by ¹H NMR. DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene.

Table S6. Optimization of Ni-catalyzed decarboxylative coupling via RAEs ^[5]

Entry	Ligand	Solvent	Yield ^b	cis : trans ^c
1	/	MeCN	73%	1:1.7
2	/	DMF	70%	1:2.3
3	/	DMA	60%	1:1.9
4	/	NMP	77%	1:2.3
5	/	DMSO	62%	1:2.4
6	/	THF	72%	1:1.5
7	/	1,4 - Dioxane	53%	1:1.1
8	1	THF:DMF = 2:1	86%	1:1.5
9	/	DMI	80%	1:2.5
10 ^d	/	DMI	80%	1:2.9
11	Dtbbpy	DMI	68%	1:2.5
12	Bphen	DMI	74%	1:2.9
13	Тру	DMI	72%	1:3.2

^a Reaction conditions: Substrate **3b** (0.1 mmol), DIC (0.11 mmol), NHPI (0.11 mmol), DCM (0.5 mL), solvent removed after 2 h, then Ni(ClO₄)₂·6H₂O (0.02 mmol), Zn (0.2 mmol), LiCl (0.3 mmol), ligand (0.2 equiv), solvent (0.5 mL), 20°C, 12 h. ^b Isolated yields. ^c *dr* value determined by ¹H NMR.^d The reaction was performed at 0 °C. DMF = N,N-Dimethylformamide, DMA = N,N-Dimethylacetamide, NMP = N-Methyl-2-pyrrolidinone, DMSO = Methyl sulfoxide, THF = Tetrahydrofuran, DMI = 1,3-Dimethyl-2-imidazolidinone. Dtbbpy = 4,4'-Di-tert-butyl-2,2'-bipyridine, Bphen = 4,7-Diphenyl-1,10-phenanthroline, Tpy = 2''-Terpyridine

Table S7. Decarboxylative cyclization reaction of substrates 3a-h

^a Reaction conditions: Substract (0.1 mmol), Ir (1 mol%), Cs₂CO₃ (0.1 mmol), LiCl (0.2mmol), DMSO (0.02M), Blue LED, RT. ^b Isolated yields. ^c dr value determined by ¹H NMR; dr ration refers to cis versus trans.

General procedure F (0.1 mmol scale): An oven-dried 25 mL Schlenck-type tube with a magnetic stir bar was charged with $Ir[dF(CF_3)ppy)]_2(dtbbpy)PF_6$ (1.1 mg, 0.001 mmol, 0.01 equiv), substract **3a-h** (0.1 mmol, 1.0 equiv), Cs₂CO₃ (32.6 mg, 0.1 mmol, 1.0 equiv), LiCl (8.4 mg, 0.2 mmol, 2.0 equiv) as additive and DMSO (5 mL). The reaction mixture was cooled to -78 °C under vacuum for 5 min and then back filled with nitrogen while being allowed to rt. This process was repeated 3 times, then the reaction mixture was irradiated with blue LEDs (2 cm away from two 20W blue LED strips). After 12 h, the reaction mixture was diluted with saturated aqueous 1 M HCl solution, extracted with EtOAc (4 × 50 mL). The combined organic extracts were washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by silica gel flash column chromatography or PTLC (hexane:EtOAc = 90:10) to yield pure compound, and the dr value was determined by ¹H NMR.

General procedure G (1.0 mmol scale): An oven-dried 100 mL Schlenck-type tube with a magnetic stir bar was charged with $Ir[dF(CF_3)ppy)]_2(dtbbpy)PF_6$ (11 mg, 0.01 mmol, 0.01 equiv), substract **3a-h** (1.0 mmol, 1.0 equiv), Cs₂CO₃ (325.8mg, 1.0 mmol, 1.0 equiv), LiCl (84 mg, 2.0 mmol, 2.0 equiv.) as additive and DMSO (50 mL). The reaction mixture was cooled to -78 °C under vacuum for 5 min and then backfilled with nitrogen while being allowed to rt. This process was repeated 3 times, then the reaction mixture was irradiated with blue LEDs (2 cm away from two 20W blue LED strips). After 24 h, the reaction mixture was diluted with saturated aqueous 1 M HCl solution, extracted with EtOAc (4 × 100 mL). The combined organic extracts were washed with water and brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (eluted with hexane:EtOAc = 90:10) to furnish the desired product.

Ethyl 2-((2S)-2-((tert-butoxycarbonyl)amino)-6-methyl-2,3-dihydro-1H-inden-1-yl)acetate (8a)

Substrate **3a** was cyclized following the general procedure **F** on 0.1 mmol scale (29.6 mg, 89%, 1:1.2 d.r.) and the general procedure **G** on 1 mmol scale (0.307 g, 92%, 1:1.2 d.r.) to provide compound **8a**. Yellow oil, ¹H NMR (400 MHz, CDCl₃, 1:1.2 d.r.) δ 7.11–7.06 (m, 1H), 7.03–6.93 (m, 2H), 4.90–4.62 (m, 1H), 4.28–4.00 (m, 2H), 3.71 (q, *J* = 7.0 Hz, 0.45H), 3.39 (q, *J* = 7.0 Hz, 0.55H), 3.30 (dd, *J* = 15.6, 7.6 Hz, 0.55H), 3.15 (dd, *J* = 16.6, 6.7 Hz, 0.45H), 2.78–2.64 (m, 2H), 2.67–2.57 (m, 1H), 2.31 (m, 3H), 1.45–1.38 (m, 9H), 1.31–1.23 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 155.6, 155.5, 143.4, 143.0, 137.4, 137.2, 136.6, 136.5, 128.1,

127.9, 124.7, 124.5, 124.5, 124.3, 79.3,79.2, 60.6, 60.5, 58.2, 54.6, 47.4, 44.2, 38.4, 38.4, 37.9, 34.0, 28.4, 28.3, 21.4, 21.3, 14.2, 14.2. HRMS-ESI m/z Calcd for C₁₉H₂₇NNaO₄ [M+Na]⁺: 356.1832; found 356.1830.

Ethyl 2-((2S)-2-((tert-butoxycarbonyl)amino)-2,3-dihydro-1H-inden-1-yl)acetate (8b)

Substrate **3b** was cyclized following the general procedure **F** on 0.1 mmol scale (28.7 mg, 90%, 1:1 d.r.) and the general procedure **G** on 1 mmol scale (0.229 g, 72%, 1:1 d.r.) to provide compound **8b**. Colorless oil, ¹H NMR (400 MHz, CDCl₃, 1:1 d.r.) δ 7.25–7.10 (m, 4H), 4.91–4.65 (m, 1H), 4.25–4.07 (m, 2H), 3.75 (q, *J* = 6.8 Hz, 0.5H), 3.44 (q, *J* = 7.0 Hz, 0.5H), 3.35 (dd, *J* = 15.7, 7.4 Hz, 0.5H), 3.20 (dd, *J* = 16.0, 6.9 Hz, 0.5H), 2.83–2.67 (m, 2H), 2.66–2.61 (m, 1H), 1.45–1.43 (m, 9H), 1.30–1.22 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 155.6, 155.5, 143.3, 142.9, 140.5, 140.3, 127.3, 127.2, 126.9, 126.9, 124.8, 124.7, 124.1, 123.6, 79.3, 60.7, 60.6, 58.0, 54.4, 47.5, 44.3, 38.8, 37.8, 34.0, 31.4, 28.4, 28.3, 14.2, 14.1. <5% ee as determined by HPLC (Chiralcel OZH, 85:15 hexane/*i*-PrOH, 0.5 mL/min, 25 °C, λ = 250 nm), tr = 22.0 min, tr = 25.2 min, tr = 30.7 min, tr = 37.3 min. HRMS-ESI m/z Calcd for C₁₈H₂₅NNaO₄ [M+Na]⁺: 342.1676; found 342.1683.

Area % Report (racemic)

<Peak Table>

Detector A Channel 1 250nm					
Peak# Ret. Time		Height	Area	Area%	
1	21.961	13659	350442	21.481	
2	25.230	16037	469326	28.769	
3	30.750	9393	347708	21.314	
4	37.652	10015	463898	28.436	
Total		49103	1631374	100.000	

Area % Report (chiral)

Ethyl 2-((2*S*)-2-((*tert*-butoxycarbonyl)amino)-6-phenyl-2,3-dihydro-1*H*-inden-1yl)acetate (8c)

Substrate **3c** was cyclized following the general procedure **F** on 0.1 mmol scale (37.5 mg, 95%, 1:1.3 d.r.) and the general procedure **G** on 1 mmol scale (0.336 g, 85%, 1:1.3 d.r.) to provide compound **8c**. Colorless oil; ¹H NMR (400 MHz, CDCl₃, 1:1.3 d.r.) δ 7.58–7.50 (m, 2H), 7.46–7.38 (m, 3H), 7.38–7.22 (m, 3H), 5.05–4.63 (m, 1H), 4.28–4.08 (m, 2H), 3.82 (q, *J* = 6.9 Hz, 0.43H), 3.50 (q, *J* = 7.0 Hz, 0.57H), 3.39 (dd, *J* = 16.0, 7.3 Hz, 0.57H), 3.25 (dd, *J* = 16.1, 6.9 Hz, 0.43H), 2.88–2.64 (m, 3H), 1.47–1.44 (m, 9H), 1.30–1.21 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 155.6, 155.5, 144.0, 143.6, 141.3, 141.3, 140.3, 140.3, 139.6, 139.5, 128.7, 128.7, 127.1, 127.1, 127.1, 127.1, 126.5, 126.3, 125.1, 125.0, 122.9, 122.5, 79.4, 60.7, 60.6, 58.2, 54.6, 47.6, 44.4, 38.5, 37.9, 34.1, 29.7, 28.4, 28.3, 14.2, 14.1. HRMS-ESI m/z Calcd for C₂₄H₂₉NNaO₄ [M+Na]⁺: 418.1989; found 418.1991.

Ethyl 2-((2S)-2-((*tert*-butoxycarbonyl)amino)-6-fluoro-2,3-dihydro-1*H*-inden-1yl)acetate (8d)

EtO₂C NHBoc

Substrate **3d** was cyclized following the general procedure **F** on 0.1 mmol scale (30.7 mg, 91%, 1:1.2 d.r.) and the general procedure **G** on 1 mmol scale (0.293 g, 87%, 1:1.2 d.r.) to provide compound **8d**. Colorless oil;¹H NMR (400 MHz, CDCl₃, 1:1.2 d.r.) δ 7.16–7.10 (m, 1H), 6.90–6.83 (m, 2H), 4.97–4.57 (m, 1H), 4.27–4.07 (m, 2H), 3.73 (q, *J* = 6.8 Hz, 0.44H), 3.41 (q, *J* = 6.8 Hz, 0.56H), 3.29 (dd, *J* = 15.9, 7.6 Hz, 0.56H), 3.15 (dd, *J* = 16.1, 7.5 Hz, 0.44H), 2.81–2.47 (m, 3H), 1.49–1.42 (m, 9H), 1.30–1.22 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 162.2 (d, *J* = 244.0 Hz), 155.5, 155.4 (minor), 145.5, 145.0 (minor), 135.7 (minor), 135.6, 125.7, 114.20 (d, *J* = 22.4 Hz), 110.0 (d, *J* = 22.5 Hz), 79.5, 60.8, 60.7 (minor), 58.3, 54.8 (minor), 47.6, 44.4 (minor), 38.0, 37.9 (minor), 37.6, 33.9 (minor), 28.4, 28.3 (minor), 14.2, 14.1 (minor). ¹⁹F NMR (375 MHz, CDCl₃) δ -115.8, -115.9. HRMS-ESI m/z Calcd for C₁₈H₂₄FNNaO₄ [M+Na]⁺: 360.1586; found 360.1578.

Ethyl 2-((2S)-2-((*tert*-butoxycarbonyl)amino)-6-chloro-2,3-dihydro-1*H*-inden-1yl)acetate (8e)

Substrate **3e** was cyclized following the general procedure **F** on 0.1 mmol scale (30.7 mg, 87%, 1:1.2 d.r.) and the general procedure **G** on 1 mmol scale (0.253 g, 75%, 1:1.2 d.r.) to provide compound **8e**. Colorless oil; ¹H NMR (400 MHz, CDCl₃, 1:1.2 d.r.) δ 7.20–7.11 (m, 3H), 5.03–4.61 (m, 1H), 4.30–4.08 (m, 2H), 3.74 (t, *J* = 6.9 Hz, 0.45H), 3.44 (q, *J* = 7.1 Hz, 0.55H), 3.31 (dd, *J* = 15.9, 7.4 Hz, 0.55H), 3.18 (dd, *J* = 16.0, 6.9 Hz, 0.45H), 2.86–2.47 (m, 3H), 1.46–1.44 (m, 9H), 1.33–1.24 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 155.5, 155.4, 145.3, 144.9, 138.9, 138.7, 132.6, 132.6, 127.5, 127.3, 125.9, 125.8, 124.5, 124.1, 79.5, 60.8, 60.7, 58.1, 54.5, 47.4, 44.3, 38.2, 37.6, 33.8, 28.4, 28.3, 14.2, 14.1. HRMS-ESI m/z Calcd for C₁₈H₂₄ClNNaO₄ [M+Na]⁺: 376.1286; found 376.1286.

Ethyl 2-((2S)-2-((*tert*-butoxycarbonyl)amino)-6-methoxy-2,3-dihydro-1*H*-inden-1yl)acetate (8f)

Substrate **3f** was cyclized following the general procedure **F** on 0.1 mmol scale (26.3 mg, 75%, 1:1.2 d.r.) and the general procedure **G** on 1 mmol scale (0.227 g, 65%, 1:1.2 d.r.) to provide compound **8f**. Colorless oil; ¹H NMR (400 MHz, CDCl₃, 1:1.2 d.r.) δ 7.14–7.07 (m, 1H), 6.75–6.70 (m, 2H), 4.98–4.57 (m, 1H), 4.27–4.07 (m, 2H), 3.77 (s,3H), 3.72 (q, *J* = 7.0, 6.5 Hz, 0.45H), 3.40 (q, *J* = 7.2 Hz, 0.55H), 3.27 (dd, *J* = 15.5, 7.5 Hz, 0.55H), 3.13 (dd, *J* = 15.7, 7.0 Hz, 0.45H), 2.72–2.54 (m, 3H), 1.48–1.37 (m, 9H), 1.35–1.23 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 159.1, 159.1, 155.6, 155.5, 144.9, 144.4, 132.3, 132.2, 125.4, 125.3, 113.0, 112.9, 109.9, 109.5, 79.3, 60.7, 60.6, 58.3, 55.4, 54.8, 47.8, 44.5, 38.0, 37.9, 34.0, 33.7, 28.4, 28.3, 14.2, 14.2. HRMS-ESI m/z Calcd for C₁₉H₂₇NNaO₅ [M+Na]⁺: 372.1781; found 372.1788.

Ethyl 2-((2S)-2-((*tert*-butoxycarbonyl)amino)-6-ethoxy-2,3-dihydro-1*H*-inden-1yl)acetate (8g)

EtO₂C **FtO** NHBoo

Substrate **3g** was cyclized following the general procedure **F** on 0.1 mmol scale (29.0 mg, 80%, 1:1.2 d.r.) and the general procedure **G** on 1 mmol scale (0.309 g, 85%, 1:1.2 d.r.) to provide compound **8g**. Colorless oil; ¹H NMR (400 MHz, CDCl₃, 1:1.2 d.r.) δ 7.10–7.05 (m, 1H), 6.74–6.69 (m, 2H), 4.94–4.57 (m, 1H), 4.25–4.04 (m, 2H), 4.01–3.95 (m, 2H), 3.70 (q, *J* = 6.8 Hz, 0.44H), 3.39 (q, *J* = 7.1 Hz, 0.56H), 3.26 (dd, *J* = 15.5, 7.4 Hz, 0.56H), 3.12 (dd, *J* = 15.2, 7.0 Hz, 0.44H), 2.74–2.55 (m, 3H), 1.45–1.42 (m, 9H), 1.41–1.36 (m, 3H), 1.30–1.20 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 158.4, 158.4, 155.6, 155.5, 144.8, 144.3, 132.1, 132.0, 125.3, 125.3, 113.6, 113.5, 110.5, 110.1, 79.3, 63.6, 63.6, 60.7, 60.6, 58.3, 54.8, 47.7, 44.5, 38.0, 37.9, 34.0, 28.4, 28.3, 14.8, 14.2, 14.2. HRMS-ESI m/z Calcd for C₂₀H₂₉NNaO₅ [M+Na]⁺: 386.1938; found 386.1940.

Ethyl 2-((2S)-6-(benzyloxy)-2-((*tert*-butoxycarbonyl)amino)-2,3-dihydro-1*H*-inden-1yl)acetate (8h)

BnO _____NHBoc

Substrate **3h** was cyclized following the general procedure **F** on 0.1 mmol scale (35.3 mg, 83%, 1:1.25 d.r.) and the general procedure **G** on 1 mmol scale (0.361 g, 85%, 1:1.2 d.r.) to provide compound **8h**. Colorless oil; ¹H NMR (400 MHz, CDCl₃, 1:1.2 d.r.) δ 7.50–7.26 (m, 5H), 7.12–7.07 (m, 1H), 6.85–6.77 (m, 2H), 5.02 (d, *J* = 2.3 Hz, 2H), 4.93–4.63 (m, 1H), 4.26–4.07 (m, 2H), 3.72 (q, *J* = 6.9 Hz, 0.45H), 3.40 (q, *J* = 7.1 Hz, 0.55H), 3.27 (dd, *J* = 15.5, 7.4 Hz, 0.55H), 3.14 (dd, *J* = 15.6, 6.9 Hz, 0.45H), 2.80–2.50 (m, 3H), 1.51–1.43 (m, 9H), 1.30–1.21 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.4, 158.3, 158.3, 155.6, 155.4, 144.9, 144.4, 137.0, 132.6, 132.5, 128.5, 127.9, 127.4, 125.4, 125.3, 113.9, 113.7, 110.9, 110.5, 79.3, 70.2, 60.7, 60.6, 58.3, 54.8, 47.7, 44.5, 38.0, 37.9, 37.8, 34.0, 28.4, 28.3, 14.2, 14.1. HRMS-ESI m/z Calcd for C₂₅H₃₁NNaO₅ [M+Na]⁺: 448.2094; found 448.2090.

Table S8. Decarboxylative cyclization reactions of substrates 6a-c

^a Reaction conditions: Substrate **6a-c** (0.1 mmol), DIC (0.11 mmol), NHPI (0.11 mmol), DCM (0.5 mL), solvent removed after 2 h, then Ni(ClO₄)₂·6H₂O (0.02 mmol), Zn (0.2 mmol), LiCl (0.3 mmol), THF (0.5 mL), 20°C, 12 h. ^b dr ration refers to cis versus trans.

General procedure H (Condition B, 0.1 mmol scale): A culture tube was charged with substrate 6a-c (0.1 mmol, 1.0 equiv) and NHPI (0.11 mmol, 1.1 equiv). DCM (0.5 mL, anhydrous, 0.2 M) was added, and DIC (0.11 mmol, 17 μ L) was added drop wise. The reactions were monitored by TLC (typical time was 1 h). After consumption of all starting material, the solvent was removed on a rotary evaporator at 40 °C under reduced pressure and dried on a high-vacuum line for at least 5 minutes to remove residue of DCM. Then, the culture tube was charged with LiCl (12.7 mg, 0.3 mmol, 3.0 equiv), Zn powder (13.1 mg, 0.2 mmol, 2.0 equiv), and Ni(ClO₄)₂•6H₂O (7.4 mg, 0.04 mmol, 0.2 equiv), and the culture tube was evacuated and backfilled with argon from a balloon. To the reaction mixture was added THF (0.2 M), and the mixture was stirred overnight at room temperature. After 12 hours, sat. aq. NH₄Cl solution was added. The mixture was purified by silica gel flash column chromatography or PTLC (hexane:EtOAc = 90:10) to yield pure compound, and the dr value was determined by ¹H NMR.

General procedure I (Condition B, 1.0 mmol scale): A culture tube was charged with substrate 6a-c (1.0 equiv) and NHPI (1.1 equiv). DCM (0.2 M) was added, and DIC (1.1 mmol) was added drop wise. The reactions were monitored by TLC (typical time was 1 h). After consumption of all starting material, the solvent was removed on a rotary evaporator at 40 $^{\circ}$ C under reduced pressure and dried on a high-vacuum line for at least 5 minutes to remove residue of DCM. Then, the culture tube was charged with LiCl (12.7 mg, 0.3 mmol, 3.0 equiv), Zn powder (13.1 mg, 0.2 mmol, 2.0 equiv), and Ni(ClO₄)₂•6H₂O (7.4 mg, 0.04 mmol, 0.2 equiv), and the culture tube was evacuated and backfilled with argon from a balloon. To the reaction mixture was added THF (0.2 M), and the mixture was stirred overnight at room temperature.

After 12 hours, sat. aq. NH₄Cl solution were added. The mixture was extracted with EtOAc three times, and the organic layer was dried over Na₂SO₄. The crude product was purified by silica gel flash column chromatography (hexane:EtOAc = 90:10) to yield pure compound, and the dr value was determined by ¹H NMR.

(15,2S)-1-(2-ethoxy-2-oxoethyl)-2,3-dihydro-1H-inden-2-yl pivalate (trans-9a)

Substrate **6a** as cyclized following the general procedure **H** on 0.1 mmol scale (20.3 mg, 67%, cis:trans = 1:1.6) and the general procedure **I** on gram scale (gram scale: 4.35 mmol, 0.404 g, 42%, cis:trans = 1:1.1) to provide compound **9a**. The trans isomer *trans-***9a** was separated by PTLC (preparative TLC) (Hexane: EtOAc = 9:1). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.21–7.19 (m, 4H), 5.24 (dt, *J* = 6.9, 4.5 Hz, 1H), 4.23–4.09 (m, 2H), 3.66 (td, *J* = 7.0, 4.4 Hz, 1H), 3.43 (dd, *J* = 16.8, 7.0 Hz, 1H), 2.86 (dd, *J* = 16.8, 4.5 Hz, 1H), 2.66 (d, *J* = 7.0 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.18 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 178.5, 171.8, 142.5, 139.9, 127.4, 127.0, 124.7, 123.9, 79.5, 60.6, 47.4, 38.6, 38.0, 38.0, 27.1, 14.2. <5% ee as determined by HPLC (Chiralcel OZH, 95:5 hexane/*i*-PrOH, 0.5 mL/min, 25 °C, λ = 250 nm), tr = 8.7 min, tr = 9.4 min, tr = 9.8 min, tr = 11.0 min. HRMS-ESI m/z Calcd for C₁₈H₂₄NaO₄ [M+Na]⁺: 327.1567; found 327.1570.

(1R,2S)-1-(2-ethoxy-2-oxoethyl)-2,3-dihydro-1H-inden-2-yl pivalate (cis-9a)

The cis isomer *cis*-**9a** was separated by PTLC (preparative TLC) (Hexane: EtOAc = 9:1). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.15 (m, 4H), 5.61 (td, *J* = 5.9, 2.8 Hz, 1H), 4.25–4.11 (m, 2H), 3.83 (dt, *J* = 8.5, 6.4 Hz, 1H), 2.89 (dd, *J* = 17.0, 2.8 Hz, 1H), 2.81–2.68 (m, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.14 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.9, 172.2, 142.8, 140.2, 127.2, 126.8, 124.7, 123.4, 75.9, 60.6, 44.2, 38.9, 38.7, 33.4, 27.0, 14.2. HRMS-ESI m/z Calcd for C₁₈H₂₄NaO₄ [M+H]⁺: 327.1567; found 327.1572.

Area % Report (racemic)

<Chromatogram>

<Peak Table>

Detector A Channel 1 250nm					
Peak# Ret. Time		Ret. Time	Height	Area	Area%
	1	8.667	29092	313354	19.011
	2	9.365	26740	309849	18.798
	3	9.807	43036	512367	31.085
	4	10.988	40246	512709	31.106
	Total		139114	1648279	100.000

Area % Report (chiral)

(15,2S)-1-(2-ethoxy-2-oxoethyl)-6-methyl-2,3-dihydro-1*H*-inden-2-yl pivalate (*trans-*9b)

Substrate **6b** as cyclized following the general procedure **H** on 0.1 mmol scale (16.4 mg, 52%, cis:trans = 1:1.2) and the general procedure **I** on gram scale (gram scale: 3.0 mmol, 0.415 g, 43%, cis:trans = 1:1.2) to provide compound **9b.** The trans isomer *trans-***9b** was separated by PTLC (preparative TLC) (Hexane: EtOAc = 9:1). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.11–7.06 (m, 1H), 7.05–6.98 (m, 2H), 5.22 (dt, *J* = 7.0, 4.5 Hz, 1H), 4.22–4.10 (m, 2H), 3.62 (td, *J* = 7.1, 4.2 Hz, 1H), 4.42–4.32 (m, 1H), 3.84–3.76 (m, 1H), 2.64 (d, *J* = 7.1 Hz, 2H), 2.32 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.17 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 178.5, 171.9, 142.6, 136.8, 136.6, 128.2, 124.5, 124.4, 79.7, 60.6, 47.3, 38.6, 38.0, 37.6, 27.0, 21.4, 14.2. HRMS-ESI m/z Calcd for C₁₉H₂₆NaO₄ [M+Na]⁺: 341.1723; found 341.1727.

(1R,2S)-1-(2-ethoxy-2-oxoethyl)-6-methyl-2,3-dihydro-1H-inden-2-yl pivalate (cis-9b)

The cis isomer *cis*-**9b** was separated by PTLC (preparative TLC) (Hexane: EtOAc = 9:1). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.12–7.07 (m, 1H), 7.07–6.95 (m, 2H), 5.60 (td, J = 6.0, 2.9 Hz, 1H), 4.26–4.10 (m, 2H), 3.79 (q, J = 6.5 Hz, 1H), 3.27–3.18 (m, 1H), 2.87–2.79 (m, 1H), 2.78–2.68 (m, 2H), 2.33 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.14 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.9, 172.3, 142.9, 137.1, 136.5, 128.0, 124.4, 124.1, 76.1, 60.6, 44.1, 38.9, 38.3, 33.5, 27.0, 21.4, 14.2. HRMS-ESI m/z Calcd for C₁₉H₂₆NaO₄ [M+Na]⁺: 341.1723; found 341.1717.

(15,2S)-6-chloro-1-(2-ethoxy-2-oxoethyl)-2,3-dihydro-1*H*-inden-2-yl pivalate (*trans-9*c)

Substrate **6c** as cyclized following the general procedure **H** on 0.1 mmol scale (23.8 mg, 59%, cis:trans = 1.7:1) and the general procedure **I** on gram scale (gram scale: 3.43 mmol, 0.480 g, 45%, cis:trans = 1.1:1) to provide compound **9c**. The trans isomer *trans*-**9c** was separated by PTLC (preparative TLC) (Hexane: EtOAc = 9:1). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.17–7.10 (m, 3H), 5.24–5.21 (m, 1H), 4.21–4.10 (m, 2H), 3.61 (td, *J* = 7.0, 4.1 Hz, 1H), 3.37 (dd, *J* = 16.9, 6.9 Hz, 1H), 2.81 (dd, *J* = 17.0, 4.2 Hz, 1H), 2.69–2.57 (m, 2H), 1.24 (t, *J*

= 7.1 Hz, 3H), 1.16 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 178.3, 171.4, 144.6, 138.4, 132.6, 127.6, 125.8, 124.4, 79.4, 60.7, 47.4, 38.5, 37.6, 37.4, 27.0, 14.1. HRMS-ESI m/z Calcd for C₁₈H₂₄ClO₄ [M+H]⁺: 339.1358; found 339.1352.

(1R,2S)-6-chloro-1-(2-ethoxy-2-oxoethyl)-2,3-dihydro-1*H*-inden-2-yl pivalate (*cis*-9c)

The cis isomer *trans-*9c was separated by PTLC (preparative TLC) (Hexane: EtOAc = 9:1). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.12 (m, 3H), 5.59 (td, *J* = 5.8, 2.6 Hz, 1H), 4.24-4.12 (m, 2H), 3.79 (q, *J* = 7.1 Hz, 1H), 3.22 (dd, *J* = 17.1, 5.7 Hz, 1H), 2.84 (dd, *J* = 17.1, 2.6 Hz, 1H), 2.72 (d, *J* = 7.7 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.12 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.8, 171.9, 144.9, 138.7, 132.6, 127.4, 125.8, 123.8, 76.0, 60.7, 44.2, 38.9, 38.2, 33.1, 27.0, 14.2. HRMS-ESI m/z Calcd for C₁₈H₂₄ClO₄ [M+H]⁺: 339.1358; found 339.1366.

2.3 C-Ring formation via intramolecular cyclization

2.3.1 Synthetic route of compounds 11 from 8a-h (NHBoc series)

Table S9. C-Ring formation from substrates 8a-h

General Procedure J: To a stirred solution of substrate **8a-h** (1.0 equiv) in DCM (10 mL/ mmol) was added TFA (10.0 equiv) at 0°C. When the addition was complete, the reaction mixture was warmed to room temperature (RT) and stirred for an additional 2h. The mixture was quenched with saturated aqueous NaHCO₃ followed by the addition of EtOAc. The organic layer was separated, and the aqueous phase was further extracted with EtOAc (2 times). The combined organic phase was dried over Na₂SO₄. After removal of the solvent *in vacuo*, the residue was stirred with silica gel (400 mesh, RT, 6 h) in DCM immediately before purified by column chromatography on silica gel to give the products **10a-h** and **11a-h**.

(3aR,8aS)-5-methyl-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11a)

Compound **11a** was obtained following general procedure **J** from **8a** (0.922 mmol, 0.307g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **11a** was obtained as a white solid (0.072 g, 42%); mp 202.3-203.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.12–7.01 (m, 3H), 5.96 (s, 1H), 4.48 (t, *J* = 6.3 Hz, 1H), 3.90 (t, *J* = 7.9 Hz,
1H), 3.18 (dd, J = 16.7, 6.3 Hz, 1H), 2.94–2.79 (m, 2H), 2.49 (dd, J = 17.1, 1.8 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.0, 144.1, 137.2, 137.1, 128.7, 125.2, 124.9, 58.1, 44.8, 39.2, 36.9, 21.2. HRMS-ESI m/z Calcd for C₁₂H₁₃NNaO [M+Na]⁺: 210.0889; found 210.0886.

Ethyl 2-((15,25)-2-amino-6-methyl-2,3-dihydro-1*H*-inden-1-yl)acetate (10a)

Compound **10a** was obtained following general procedure **J** from **8a** (0.922 mmol, 0.307g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **10a** was obtained as a colorless oil(0.107 g, 50%); ¹H NMR (400 MHz, CDCl₃) δ 7.11–6.94 (m, 3H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.43 (br s, 2H), 3.24–3.14 (m, 2H), 2.73–2.50 (m, 3H), 2.31 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 144.0, 137.9, 136.3, 127.9, 124.6, 124.5, 60.6, 59.8, 50.9, 41.1, 38.3, 21.4, 14.3. HRMS-ESI m/z Calcd for C₁₄H₂₀NO₂ [M+H]⁺: 234.1489; found 234.1490.

(3aR,8aS)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11b)

Compound **11b** was obtained following general procedure **J** from **8b** (2.187 mmol, 0.698g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **11b** was obtained as a white solid (0.155 g, 41%); mp 177.2-178.5 °C;¹H NMR (400 MHz, CDCl₃) δ 7.25-7.16 (m, 4H), 6.99 (br s, 1H), 4.47 (t, *J* = 6.4 Hz, 1H), 3.91 (dd, *J* = 9.0, 6.8 Hz, 1H), 3.19 (dd, *J* = 16.9, 6.3 Hz, 1H), 2.96 (d, *J* = 16.9 Hz, 1H), 2.86 (dd, *J* = 17.1, 9.3 Hz, 1H), 2.48 (dd, *J* = 17.1, 1.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 177.3, 144.0, 140.3, 127.7, 127.3, 125.2, 124.6, 58.0, 44.8, 39.5, 37.1. HRMS-ESI m/z Calcd for C₁₁H₁₁NNaO [M+Na]⁺: 196.0733; found 196.0736.

Ethyl 2-((15,25)-2-amino-2,3-dihydro-1H-inden-1-yl)acetate (10b)

Compound **11b** was obtained following general procedure **J** from **8b** (2.187 mmol, 0.698g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **11b** was obtained as a yellow oil (0.280 g, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.12 (m, 4H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.54–3.46 (m, 1H), 3.37–3.22 (m, 2H), 2.95 (br s, 2H), 2.76 (td, *J* = 16.2, 6.3 Hz, 2H), 2.59 (dd, *J* = 16.0, 8.1 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 143.4, 140.7, 127.2, 126.8, 124.8, 123.8, 60.7, 59.2, 49.9, 40.6, 38.2, 14.2. HRMS-ESI m/z Calcd for C₁₃H₁₇NNaO₂ [M+Na]⁺: 242.1151; found 242.1147.

(3a*R*,8a*S*)-5-phenyl-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1*H*)-one (11c)

Compound **11c** was obtained following general procedure **J** from **8c** (2.199 mmol, 0.871 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **11c** was obtained as a white solid (0.231g, 42%); mp 182.2-183.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.53 (m, 2H), 7.48–7.40 (m, 4H), 7.37–7.31 (m, 1H), 7.30–7.26 (m, 1H), 6.27 (br s, 1H), 4.54 (t, *J* = 6.3 Hz, 1H), 4.00 (t, *J* = 7.9 Hz, 1H), 3.26 (dd, *J* = 17.0, 6.3 Hz, 1H), 3.00 (d, *J* = 17.0 Hz, 1H), 2.91 (dd, *J* = 17.1, 9.3 Hz, 1H), 2.57 (dd, *J* = 17.1, 1.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 144.7, 141.1, 140.9, 139.4, 128.8, 127.2, 127.1, 127.1, 125.5, 123.4, 58.1, 45.0, 39.3, 37.0. HRMS-ESI m/z Calcd for C₁₇H₁₅NNaO [M+Na]⁺: 272.1046; found 272.1086.

Ethyl 2-((15,25)-2-amino-6-phenyl-2,3-dihydro-1H-inden-1-yl)acetate (10c)

Compound **10c** was obtained following general procedure **J** from **8c** (2.199 mmol, 0.871 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **10c** was obtained as a colorless oil (0.378g, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.50 (m, 2H), 7.45–7.39 (m, 3H), 7.38–7.30 (m, 2H), 7.28–7.24 (m, 1H), 4.29 (br s, 2H), 4.25–4.13 (m, 2H), 3.64 (q, *J* = 6.9 Hz, 1H), 3.52–3.44 (m, 1H), 3.34 (dd, *J* = 16.1, 7.5 Hz, 1H), 2.96–2.85 (m, 2H), 2.63 (dd, *J* = 16.4, 8.9 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 143.4, 141.2, 140.4, 139.3, 128.7, 127.1, 127.1, 126.6, 125.1, 122.6, 61.0, 59.0, 48.6, 39.3, 38.3, 14.1. HRMS-ESI m/z Calcd for C₁₉H₂₂NO₂ [M+H]⁺: 296.1645; found 296.1644.

(3aR,8aS)-5-fluoro-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11d)

Compound **11d** was obtained following general procedure **J** from **8d** (1.792 mmol, 0.604 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **11d** was obtained as a white solid (0.140g, 41%); mp 193.8-194.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.17–7.10 (m, 1H), 6.96–6.87 (m, 2H), 6.51 (s, 1H), 4.51 (t, *J* = 6.3 Hz, 1H), 3.91 (t, *J* = 7.8 Hz, 1H), 3.22–3.11 (m, 1H), 2.95–2.80 (m, 2H), 2.45 (dd, *J* = 17.1, 2.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 176.7, 162.7 (d, *J* = 244.1 Hz), 146.2 (d, *J* = 7.6 Hz), 135.6 (d, *J* = 2.4 Hz), 126.3 (d, *J* = 8.6 Hz), 115.0 (d, *J* = 22.4 Hz), 111.5 (d, *J* = 21.9 Hz), 58.4, 45.0 (d, *J* = 2.4 Hz), 38.9, 36.8. ¹⁹F NMR (375 MHz, CDCl₃) δ -115.7. HRMS-ESI m/z Calcd for C₁₁H₁₀FNNaO [M+Na]⁺: 214.0639; found 214.0640.

Ethyl 2-((15,25)-2-amino-6-fluoro-2,3-dihydro-1H-inden-1-yl)acetate (10d)

Compound **10d** was obtained following general procedure **J** from **8d** (1.792 mmol, 0.604 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **10d** was obtained as a colourless oil (0.247 g, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.15–7.07 (m, 1H), 6.91–6.80 (m, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.48 (q, *J* = 6.4 Hz, 1H), 3.28–3.13 (m, 2H), 2.77–2.53 (m, 3H), 1.86 (br s, 2H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 162.2 (d, *J* = 243.2 Hz), 145.9 (d, *J* = 7.6 Hz), 136.2 (d, *J* = 2.4 Hz), 125.7 (d, *J* = 8.6 Hz), 114.0 (d, *J* = 21.9 Hz), 111.1 (d, *J* = 22.4 Hz), 60.7, 59.8, 50.7, 40.5, 37.9, 14.2.¹⁹F NMR (375 MHz, CDCl₃) δ -116.3. HRMS-ESI m/z Calcd for C₁₃H₁₆FNNaO₂ [M+Na]⁺: 238.1238; found 238.1235.

(3a*R*,8a*S*)-5-chloro-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1*H*)-one (11e)

Compound **11e** was obtained following general procedure **J** from **8e** (2.078 mmol, 0.734 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **11e** was obtained as a white solid (0.181g, 42%); mp 192.1-193.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.20–7.18 (m, 2H), 7.15–7.10 (m, 1H), 6.32 (br s, 1H), 4.50 (t, *J* = 6.4 Hz, 1H), 3.92 (t, *J* = 8.0 Hz, 1H), 3.18 (dd, *J* = 17.0, 6.3 Hz, 1H), 2.96–2.80 (m, 2H), 2.46 (dd, *J* = 17.1, 1.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 146.0, 138.7, 133.1, 128.1, 126.4, 124.9, 58.1, 44.9, 39.1, 36.7. HRMS-ESI m/z Calcd for C₁₁H₁₀ClNNaO [M+Na]⁺: 230.0343; found 230.0339.

Ethyl 2-((15,25)-2-amino-5-chloro-2,3-dihydro-1H-inden-1-yl)acetate (10e)

Compound **10e** was obtained following general procedure **J** from **8e** (2.078 mmol, 0.734 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **10e** was obtained as a colorless oil (0.252g, 48%); ¹H NMR (400 MHz, CDCl₃) δ 7.18–7.07 (m, 3H), 4.24–4.14 (m, 2H), 3.50 (q, *J* = 6.6 Hz, 1H), 3.27 (q, *J* = 6.7 Hz, 1H), 3.20 (dd, *J* = 16.0, 7.1 Hz, 1H), 2.77 (br s, 2H), 2.68 (dd, *J* = 15.8, 6.4 Hz, 2H), 2.58 (dd, *J* = 16.1, 7.9 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 145.5, 139.2, 132.4, 127.4, 125.9, 124.3, 60.8, 59.4, 50.1, 40.3, 37.9, 14.2. HRMS-ESI m/z Calcd for C₁₃H₁₇ClNO₂ [M+H]⁺: 254.0942; found 254.0932.

(3aR,8aS)-5-methoxy-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11f)

Compound **11f** was obtained following general procedure **J** from **8f** (1.449 mmol, 0.506 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **11f** was obtained as a white solid (0.106g, 36%); mp 188.9-190.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.12–7.07 (m, 1H), 6.82–6.72 (m, 2H), 6.27 (br s, 1H), 4.49 (t, *J* = 6.3 Hz, 1H), 3.90 (t, *J* = 7.9 Hz, 1H), 3.79 (s, 3H), 3.16 (dd, *J* = 16.5, 6.3 Hz, 1H), 2.92–2.79 (m, 2H), 2.48 (dd, *J* = 17.1, 1.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 159.5, 145.5, 132.0, 125.8, 114.0, 109.7, 58.4, 55.5, 45.1, 38.8, 36.9. HRMS-ESI m/z Calcd for C₁₂H₁₃NNaO₂ [M+Na]⁺: 226.0838; found 226.0829.

Ethyl 2-((15,25)-2-amino-6-methoxy-2,3-dihydro-1H-inden-1-yl)acetate (10f)

Compound **11f** was obtained following general procedure **J** from **8f** (1.449 mmol, 0.506 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **11f** was obtained as a colorless oil (0.169g, 47%); ¹H NMR (400 MHz, CDCl₃) δ 7.13–7.02 (m, 1H), 6.82–6.62 (m, 2H), 6.22 (br s, 2H), 4.25–4.10 (m, 2H), 3.76 (s, 3H), 3.71–3.64 (m, 1H), 3.60–3.47 (m, 1H), 3.28–3.26 (m, 1H), 3.03–2.85 (m, 2H), 2.61–2.52 (m, 1H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 159.3, 143.1, 131.3, 125.4, 113.6, 109.3, 61.3, 58.6, 55.4, 46.8, 38.2, 37.2, 14.1. HRMS-ESI m/z Calcd for C₁₄H₁₉NNaO₃ [M+Na]⁺:272.1257; found 272.1258.

(3a*R*,8a*S*)-5-ethoxy-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1*H*)-one (11g)

Compound **11g** was obtained following general procedure **J** from **8g** (1.826 mmol, 0.663 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **11g** was obtained as a white solid (0.162g, 41%); mp 201.2-201.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.11–7.05 (m, 1H), 6.80–6.72 (m, 2H), 6.34–6.10 (m, 1H), 4.48 (t, *J* = 6.3 Hz, 1H), 4.01 (q, *J* = 7.0 Hz, 2H), 3.89 (t, *J* = 7.9 Hz, 1H), 3.15 (dd, *J* = 16.6, 6.2 Hz, 1H), 2.91–2.78 (m, 2H), 2.47 (dd, *J* = 17.1, 1.9 Hz, 1H), 1.40 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 158.9, 145.5, 131.9, 125.8, 114.6, 110.4, 63.7, 58.4, 45.1, 38.8, 36.8, 14.9. HRMS-ESI m/z Calcd for C₁₃H₁₅NNaO₂ [M+Na]⁺: 240.0995; found 240.0995.

Ethyl 2-((15,25)-2-amino-6-ethoxy-2,3-dihydro-1H-inden-1-yl)acetate (10g)

Compound **10g** was obtained following general procedure **J** from **8g** (1.826 mmol, 0.663 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **10g** was obtained as a colorless oil (0.226g, 48%); ¹H NMR (400 MHz, CDCl₃) δ 7.11–7.03 (m, 1H), 6.77–6.67 (m, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.98 (q, *J* = 7.0 Hz, 2H), 3.48 (q, *J* = 6.5 Hz, 1H), 3.31–3.23 (m, 1H), 3.18 (dd, *J* = 15.6, 7.2 Hz, 1H), 2.91 (br s, 2H), 2.94–2.63 (m, 2H), 2.55 (dd, J = 16.0, 8.3 Hz, 1H), 1.38 (t, J = 7.0 Hz, 3H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 158.4, 144.8, 132.4, 125.4, 113.7, 110.3, 63.6, 60.8, 59.6, 50.2, 39.9, 38.2, 14.9, 14.2. HRMS-ESI m/z Calcd for C₁₅H₂₁NNaO₃ [M+Na]⁺: 286.1414; found 286.1411.

(3a*R*,8a*S*)-5-(benzyloxy)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1*H*)-one (11h)

Compound **11h** was obtained following general procedure **J** from **8h** (1.598 mmol, 0.679 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **11h** was obtained as a white solid (0.169g, 38%); mp 177.4-178.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.29 (m, 5H), 7.10 (d, *J* = 8.2 Hz, 1H), 6.89–6.80 (m, 2H), 6.27 (br s, 1H), 5.04 (s, 2H), 4.48 (t, *J* = 6.4 Hz, 1H), 3.89 (t, *J* = 8.0 Hz, 1H), 3.15 (dd, *J* = 16.6, 6.4 Hz, 1H), 2.92–2.78 (m, 2H), 2.46 (dd, *J* = 17.1, 1.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 158.7, 145.5, 137.0, 132.4, 128.6, 127.9, 127.4, 125.8, 114.9, 110.9, 70.3, 58.4, 45.1, 38.8, 36.8. HRMS-ESI m/z Calcd for C₁₈H₁₇NNaO₂ [M+Na]⁺: 302.1151; found 302.1147.

Ethyl 2-((15,25)-2-amino-6-(benzyloxy)-2,3-dihydro-1H-inden-1-yl)acetate (10h)

Compound **10h** was obtained following general procedure **J** from **8h** (1.598 mmol, 0.679 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **10h** was obtained as a colorless oil (0.249g, 48%); ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.29 (m, 5H), 7.08 (d, J = 8.3 Hz, 1H), 6.89–6.75 (m, 2H), 5.01 (s, 2H), 4.23–4.14 (m, 2H), 4.11 (br s, 2H), 3.57 (q, *J* = 6.8 Hz, 1H), 3.44–3.34 (m, 1H), 3.23 (dd, *J* = 15.7, 7.5 Hz, 1H), 2.87–2.75 (m, 2H), 2.56 (dd, *J* = 16.6, 8.9 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 158.4, 144.1, 137.0, 132.3, 128.5, 127.9, 127.4, 125.4, 114.2, 110.5, 70.2, 61.1, 59.1, 48.6, 38.6, 38.2, 14.1. HRMS-ESI m/z Calcd for C₂₀H₂₃NNaO₃ [M+Na]⁺: 348.1570; found 348.1563.

Table S10. Boc-protection of substrates 11a-h

General Procedure K: To a solution of **11a-h** (1.0 equiv), NEt₃ (3.0 equiv) and DMAP (0.5 equiv) in DCM (10 mL/1 mmol) was added (Boc)₂O (3.0 equiv) at RT, and the resultant mixture was stirred for 16 h. After dilution with EtOAc, the organic phase was washed successively with 1M HCl, saturated NaHCO₃ and brine. After drying over Na₂SO₄, and removing all volatiles, a crude mixture was obtained, which was purified by flash chromatography on silica gel to quantitatively afford **12a-h**.

Tert-butyl (3a*S*,8a*R*)-5-methyl-2-oxo-3,3a,8,8a-tetrahydroindeno[*2*,*1-b*]pyrrole-1(2*H*)carboxylate (12a)

Compound **12a** was obtained following general procedure **K** from **11a** (0.76 mmol, 0.142 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **12a** was obtained as a colorless oil (0.207g,95%). ¹H NMR (400 MHz, CDCl₃) δ 7.10–6.99 (m, 3H), 4.86 (td, *J* = 7.5, 2.6 Hz, 1H), 3.83–3.74 (m, 1H), 3.39 (dd, *J* = 17.5, 7.2 Hz, 1H), 3.12 (dd, *J* = 17.4, 2.6 Hz, 1H), 3.01 (dd, *J* = 17.9, 10.1 Hz, 1H), 2.65 (dd, *J* = 17.9, 3.7 Hz, 1H), 2.33 (s, 3H), 1.56 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 173.7, 150.1, 143.4, 137.3, 137.2, 128.8, 124.9, 124.7, 83.1, 62.3, 39.8, 39.7, 38.9, 28.1, 21.2. HRMS-ESI m/z Calcd for C₁₇H₂₁NNaO₃ [M+Na]⁺: 310.1414; found 310.1418.

Tert-butyl (3a*S*,8a*R*)-2-oxo-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2*H*)-carboxylate (12b)

Compound **12b** was obtained following general procedure **K** from **11b** (0.86 mmol, 0.148 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **12b** was obtained as a colorless oil (0.199g, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.16 (m, 4H), 4.87 (td, *J* = 7.4, 2.6 Hz, 1H), 3.87–3.79 (m, 1H), 3.44 (dd, *J* = 17.7, 7.2 Hz, 1H), 3.18 (dd, *J* = 17.7, 2.6 Hz, 1H), 3.03 (dd, *J* = 17.9, 10.1 Hz, 1H), 2.67 (dd, *J* = 17.9, 3.6 Hz, 1H), 1.56 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 149.8, 143.0, 140.1, 127.7, 127.2, 124.7, 124.1, 82.9, 61.8, 39.7, 39.6, 38.6, 27.8. HRMS-ESI m/z Calcd for C₁₆H₁₉NNaO₃ [M+Na]⁺: 296.1257; found 296.1264.

Tert-butyl (3a*R*,8a*S*)-2-oxo-5-phenyl-3,3a,8,8a-tetrahydroindeno[*2*,*1-b*]pyrrole-1(2*H*)carboxylate (12c)

Compound **12c** was obtained following general procedure **K** from **11c** (0.963 mmol, 0.241 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **12c** was obtained as a colorless oil (0.334 g, 99%). ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.51 (m, 2H), 7.50–7.40 (m, 4H), 7.38–7.32 (m, 1 H), 7.28 (d, *J* = 7.8 Hz,1H), 4.92 (td, *J* = 7.3, 2.6 Hz, 1H), 3.93–3.85 (m, 1H), 3.48 (dd, *J* = 18.6, 7.2 Hz, 1H), 3.22 (dd, *J* = 17.8, 2.8 Hz, 1H), 3.07 (dd, *J* = 17.9, 10.1 Hz, 1H), 2.73 (dd, *J* = 18.0, 3.7 Hz, 1H), 1.58 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 150.1, 144.0, 141.1, 141.1, 139.5, 128.8, 127.3, 127.2, 127.1, 125.3, 123.1, 83.2, 62.3, 40.0, 39.8, 38.9, 28.1. HRMS-ESI m/z Calcd for C₂₂H₂₃NNaO₃ [M+Na]⁺: 372.1570; found 372.1561.

Tert-butyl (3a*R*,8a*S*)-5-fluoro-2-oxo-3,3a,8,8a-tetrahydroindeno[*2*,*1-b*]pyrrole-1(2*H*)carboxylate (12d)

Compound **12d** was obtained following general procedure **K** from **11d** (0.710 mmol, 0.135 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **12d** was obtained as a colorless oil (0.690g, 97%). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (dd, *J* = 8.3, 5.1 Hz, 1H), 6.99–6.85 (m, 2H), 4.90 (td, *J* = 7.3, 2.5 Hz, 1H), 3.82 (ddd, *J* = 11.0, 7.6, 3.7 Hz, 1H), 3.86–3.77 (m, 1H), 3.18–3.08 (m, 1H), 3.03 (dd, *J* = 17.9, 10.2 Hz, 1H), 2.63 (dd, *J* = 17.9, 3.7 Hz, 1H), 1.56 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 162.6 (d, *J* = 244.6 Hz), 145.0, 145.3 (d, J = 8.1 Hz), 135.7 (d, J = 2.9 Hz), 126.1 (d, J = 8.6 Hz), 115.2 (d, J = 22.4 Hz), 111.2 (d, J = 22.4 Hz), 83.3, 62.5, 40.0 (d, J = 2.4 Hz), 39.3, 38.6, 28.1. ¹⁹F NMR (375 MHz, CDCl₃) δ -115.4. HRMS-ESI m/z Calcd for C₁₆H₁₈FNNaO₃ [M+Na]⁺: 314.1163; found 314.1157.

Tert-butyl (3a*R*,8a*S*)-5-chloro-2-oxo-3,3a,8,8a-tetrahydroindeno[*2*,*1-b*]pyrrole-1(2*H*)carboxylate (12e)

Compound **12e** was obtained following general procedure **K** from **11e** (0.804 mmol, 0.166 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **12e** was obtained as a colorless oil (0.244 g, 99%). ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.10 (m, 3H), 4.88 (td, *J* = 7.4, 2.5 Hz, 1H), 3.86–3.77 (m, 1H), 3.40 (dd, *J* = 17.8, 7.1 Hz, 1H), 3.14 (dd, *J* = 17.8, 2.5 Hz, 1H), 3.03 (dd, *J* = 17.9, 10.2 Hz, 1H), 2.63 (dd, *J* = 17.9, 3.6 Hz, 1H), 1.55 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 149.9, 145.2, 138.8, 133.2, 128.2, 126.1, 124.6, 83.4, 62.2, 39.9, 39.5, 38.6, 28.1. HRMS-ESI m/z Calcd for C₁₆H₁₈ClNNaO₃ [M+Na]⁺: 330.0867; found 330.0862.

Tert-butyl (3a*R*,8a*S*)-5-methoxy-2-oxo-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2*H*)carboxylate (12f)

Compound **12f** was obtained following general procedure **K** from **11f** (0.492 mmol, 0.092 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **12f** was obtained as a colorless oil (0.131g, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, *J* = 8.3 Hz, 1H), 6.78 (dd, *J* = 8.3, 2.4 Hz, 1H), 6.72 (d, *J* = 2.4 Hz, 1H), 4.87 (td, *J* = 7.5, 2.6 Hz, 1H), 3.82–3.77 (m, 4H), 3.38 (dd, *J* = 17.2, 7.2 Hz, 1H), 3.09 (dd, *J* = 17.2, 2.7 Hz, 1H), 3.01 (dd, *J* = 17.9, 10.2 Hz, 1H), 2.65 (dd, *J* = 17.9, 3.8 Hz, 1H), 1.56 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 159.6, 150.0, 144.7, 132.2, 125.6, 114.2, 109.4, 83.1, 62.6, 55.5, 40.1, 39.3, 38.8, 28.1. HRMS-ESI m/z Calcd for C₁₇H₂₁NNaO₄ [M+Na]⁺: 326.1363; found 326.1366.

Tert-butyl (3a*S*,8a*R*)-5-ethoxy-2-oxo-3,3a,8,8a-tetrahydroindeno[*2*,*1-b*]pyrrole-1(2*H*)carboxylate (12g)

Compound **12g** was obtained following general procedure **K** from **11g** (0.700 mmol, 0.152 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **12g** was obtained as a colorless oil (0.220g, 99%). ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 8.3 Hz, 1H), 6.77 (dd, *J* = 8.3, 2.5 Hz, 1H), 6.71 (d, *J* = 2.8 Hz, 1H), 4.86 (td, *J* = 7.3, 2.7 Hz, 1H), 4.00 (q, *J* = 7.0 Hz, 2H), 3.83–3.74 (m, 1H), 3.37 (dd, *J* = 17.2, 7.2, 1H), 3.08 (dd, *J* = 17.2, 2.8 Hz, 1H), 3.00 (dd, *J* = 17.9, 10.2 Hz, 1H), 2.64 (dd, *J* = 17.9, 3.8 Hz, 1H), 1.55 (s, 9H), 1.40 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 158.6, 149.8, 144.4, 131.7, 125.3, 114.5, 109.9, 82.8, 63.4, 62.3, 39.8, 39.0, 38.5, 27.8, 14.6. HRMS-ESI m/z Calcd for C₁₈H₂₃NNaO₄ [M+Na]⁺: 340.1519; found 340.1515.

Tert-butyl (3a*R*,8a*S*)-5-(benzyloxy)-2-oxo-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2*H*)-carboxylate (12h)

Compound **12h** was obtained following general procedure **K** from **11h** (0.541 mmol, 0.151 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **12h** was obtained as a colorless oil (0.198g, 97%). ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.28 (m, 5H), 7.10 (d, *J* = 8.3 Hz, 1H), 6.86 (dd, *J* = 8.3, 2.8 Hz, 1H), 6.80 (d, *J* = 2.7 Hz, 1H), 5.04 (s, 2H), 4.87 (td, *J* = 7.5, 2.9 Hz, 1H), 3.79 (ddd, *J* = 11.0, 7.8, 3.9 Hz, 1H), 3.38 (dd, *J* = 17.2, 7.1 Hz, 1H), 3.09 (dd, *J* = 17.2, 2.9 Hz, 1H), 3.00 (dd, *J* = 17.9, 10.2 Hz, 1H), 2.63 (dd, *J* = 17.9, 3.8 Hz, 1H), 1.56 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 158.7, 150.0, 144.7, 136.9, 132.5, 128.6, 128.0, 127.4, 125.6, 115.1, 110.6, 83.1, 70.3, 62.5, 40.1, 39.3, 38.8, 28.1. HRMS-ESI m/z Calcd for C₂₃H₂₅NNaO₄ [M+Na]⁺: 402.1676; found 402.1677.

2.3.2 Synthetic route from compound 9a-c (O-Piv series)

Table S11. C-Ring formation from substrates 9a-c

General Procedure L: To solution of **9a-c** (1.0 equiv) in EtOH (5 mL/1 mmol) was added 10% aqueous KOH (5 equiv). The reaction mixture was stirred at room temperature and was monitored by TLC (typical time was 12 h). After consumption of all starting material, 1 M aqueous HCl solution was used to carefully adjust the pH to ~ 4. Then the mixture was extracted with EtOAc three times, and the organic layer was dried over Na₂SO₄. The crude product was placed under 40°C (neat) over night before purified by silica gel flash column chromatography to afford compound **18a-c** and **17a-c**.

(3a*R*,8a*S*)-3,3a,8,8a-tetrahydro-2*H*-indeno[2,1-b]furan-2-one (18a)

Compound **18a** was obtained following general procedure **L** from **9a** (1.073 mmol, 0.326 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **18a** was obtained as a white solid (0.080g, 43%). mp 67.3-70.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.25 (m, 3H), 7.23–7.21 (m, 1H), 5.30 (dt, *J* = 6.2, 3.2 Hz, 1H), 4.01 (dd, *J* = 9.3, 5.8 Hz, 1H), 3.32 (d, *J* = 3.2 Hz, 2H), 3.04 (dd, *J* = 17.8, 9.3 Hz, 1H), 2.74 (dd, *J* = 17.7, 1.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 176.3, 142.0, 140.0, 128.3, 127.7, 125.3, 124.6, 84.3, 45.4, 38.9, 35.3. HRMS-ESI m/z Calcd for C₁₁H₁₀NaO₂ [M+Na]⁺: 197.0573; found 197.0574.

2-((1R,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)acetic acid (17a)

ноос

Compound **17a** was obtained following general procedure **L** from **9a** (1.073 mmol, 0.326 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **17a** was obtained as a white solid (0.091 g, 44%). mp 128.6-132.4 °C; ¹H NMR (400 MHz, CD₃OD) δ 7.25-7.10 (m, 4H), 4.25 (q, *J* = 5.7 Hz, 1H), 3.39 (q, *J* = 6.9 Hz, 1H), 3.20 (dd, *J* = 15.9, 6.5 Hz, 1H), 2.81 (dd, *J* = 16.0, 5.6 Hz, 1H), 2.60 (m, 2H). ¹³C NMR (125 MHz, CD₃OD) δ 176.5, 144.7, 141.5, 128.2, 127.8, 125.7, 125.0, 79.1, 50.8, 40.9, 38.4. HRMS-ESI m/z Calcd for C₁₁H₁₂NaO₃ [M+Na]⁺: 215.0679; found 215.0684.

(3aR,8aS)-5-methyl-3,3a,8,8a-tetrahydro-2H-indeno[2,1-b]furan-2-one (18b)

Compound **18b** was obtained following general procedure **L** from **9b** (1.198 mmol, 0.381 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **18b** was obtained as a white solid (0.091g, 37%). mp 95.8-97.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 7.7 Hz, 1H), 7.07 (d, *J* = 7.8 Hz, 1H), 7.02 (s, 1H), 5.29 (dt, *J* = 6.0, 3.2 Hz, 1H), 3.96 (dd, *J* = 9.5, 5.6 Hz, 1H), 3.27 (d, *J* = 3.5 Hz, 2H), 3.02 (dd, *J* = 17.7, 9.3 Hz, 1H), 2.73 (dd, *J* = 17.8, 1.5 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.4, 142.1, 137.5, 136.9, 129.2, 125.2, 124.9, 84.6, 45.3, 38.5, 35.3, 21.2. HRMS-ESI m/z Calcd for C₁₂H₁₂NaO₂ [M+Na]⁺: 211.0730; found 211.0735.

2-((1S,2S)-2-hydroxy-6-methyl-2,3-dihydro-1*H*-inden-1-yl)acetic acid (17b)

Compound **17b** was obtained following general procedure **L** from **9b** (1.198 mmol, 0.381 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **17b** was obtained as a white solid (0.110g, 42%). mp $^{\circ}$ C; ¹H NMR (400 MHz, CD₃OD) δ 5.52–5.38 (m, 3H), 2.67 (q, *J* = 5.9 Hz, 1H), 1.59 (dd, *J* = 15.7, 6.7 Hz, 1H), 1.20 (dd, *J* = 15.7, 5.7 Hz, 1H), 1.10–0.94 (m, 2H), 0.73 (s, 3H). ¹³C NMR (125 MHz, CD₃OD) δ 178.8, 145.8, 139.2, 138.2, 129.7, 126.4, 126.3, 80.6, 51.7, 41.3, 40.4, 22.3. HRMS-ESI m/z Calcd for C₁₂H₁₄NaO₃ [M+Na]⁺: 229.0835; found 229.0830.

(3aR,8aS)-5-chloro-3,3a,8,8a-tetrahydro-2H-indeno[2,1-b]furan-2-one (18c)

Compound **18c** was obtained following general procedure **L** from **9c** (1.120 mmol, 0.379 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **18c** was obtained as a yellow solid (0.119 g, 51%). mp 123.1-125.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.26- 7.18 (m, 3H), 5.31-5.28 (m, 1H), 4.00 (dd, *J* = 9.4, 5.8 Hz, 1H), 3.28 (s, 2H), 3.04 (dd, *J* = 17.9, 9.3 Hz, 1H), 2.71 (d, *J* = 17.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 175.7, 144.0, 138.5, 133.4, 128.6, 126.4, 124.9, 84.2, 45.4, 38.4, 35.0. HRMS-ESI m/z Calcd for C₁₁H₉ClO₂ [M+Na]⁺: 231.0183; found 231.0192.

2-((1*S*,2*S*)-6-chloro-2-hydroxy-2,3-dihydro-1*H*-inden-1-yl)acetic acid (17c)

Compound **17c** was obtained following general procedure **L** from **9c** (1.120 mmol, 0.379 g). After purification by column chromatography using DCM:MeOH (1/0 to 40/1 to 20/1) as the eluent, **17c** was obtained as a white solid (0.081 g, 40%). mp 150.1-151.8 °C; ¹H NMR (400 MHz, CD₃OD) δ 7.21 (s, 1H), 7.18 (s, 2H), 4.27 (q, *J* = 5.6 Hz, 1H), 3.4–3.3 (m, 1H), 3.18 (dd, *J* = 16.1, 6.5 Hz, 1H), 2.77 (dd, *J* = 16.1, 5.4 Hz, 1H), 2.67 (dd, *J* = 16.1, 6.5 Hz, 1H), 2.54 (dd, *J* = 16.1, 7.7 Hz, 1H).¹³C NMR (125 MHz, CD₃OD) δ 176.1, 147.1, 140.4, 133.4, 128.2, 127.2, 125.4, 79.0, 50.9, 40.4, 38.0. HRMS-ESI m/z Calcd for C₁₁H₁₁NaClO₃ [M+Na]⁺: 249.0289; found 249.0287.

2.4 Final synthetic route of 2nd generation strigolactams and GR24

2.4.1 Synthesis of (±)-Strigolactams and (±)-Epi-Strigolactams [6]

Table S12. Final synthetic route of 2nd generation strigolactams

General Procedure M: To a solution of **12a-h** (1.0 equiv) in toluene (10 mL/1 mmol) was added Bredereck's reagent (5.0 equiv) at RT and the solution was refluxed and was monitored by TLC (typical time was 8 h). It was then cooled to rt and diluted with EtOAc. The solution was washed with water. After drying over Na₂SO₄, and removing all volatiles, enamine was obtained as a crude product.

The obtained enamine was dissolved in dioxane (20 mL/1 mmol) and 1M HCl (20 mL/1 mmol), and the resultant mixture was stirred at rt for 12 h. The solution was neutralized with saturated NaHCO₃ and then diluted with EtOAc, further washed with water followed by brine, and dried over Na₂SO₄. After removal of volatiles under reduced pressure, the crude product was obtained.

The obtained enamine was then dissolved in dioxane (5 mL/1 mmol) was added KO'Bu (1.5 equiv) at 0 $\,^{\circ}$ C. After 10 min, a solution of chlorobutenolidine (1.5 equiv) in DME was added dropwise. The reaction mixture was then allowed to warm slowly to rt and stirred for 16 h. The reaction mixture was diluted with EtOAc and washed with water and brine, and then dried over Na₂SO₄. After removal of volatiles under reduced pressure, the mixture of **15a-h** and **16a-h** was obtained. These compounds were separated by flash chromatography on silica gel.

(3a*S*,8a*R*,*E*)-5-methyl-3-((((*R*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[*2*,*1-b*]pyrrol-2(1*H*)-one (±15a)

Compound **15a** was obtained following general procedure **M** from **12a** (0.697 mmol, 0.200 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **15a** was obtained as a white solid (43.5 mg, 20%). mp 138.8-140.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 1.8 Hz, 1H), 7.16 (s, 1H), 7.10–6.98 (m, 3H), 6.66 (br s, 1H), 6.26–6.21 (m, 1H), 4.61 (d, *J* = 6.6 Hz, 1H), 4.44 (t, *J* = 6.7 Hz, 1H), 3.22 (dd, *J* = 16.9, 6.8 Hz, 1H), 2.92 (d, *J* = 16.9 Hz, 1H), 2.32 (s, 3H), 2.07–2.03 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 170.6, 145.6, 142.8, 141.2, 136.9, 136.9, 135.8, 128.7, 126,1 124.9, 117.3, 100.7, 56.1, 47.3, 39.0, 21.4, 10.8. HRMS-ESI m/z Calcd for C₁₈H₁₇NNaO₄ [M+Na]⁺: 334.1050; found 334.1059.

(3aS,8aR,E)-5-methyl-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (±16a)

Compound **16a** was obtained following general procedure **M** from **12a** (0.697 mmol, 0.200 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **16a** was obtained as a white solid (54.0 mg, 25%). mp 270.5-271.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 1.8 Hz, 1H), 7.16 (s, 1H), 7.09–6.98 (m, 3H), 6.26 (br s, 1H), 6.24–6.20 (m, 1H), 4.62 (d, *J* = 6.6 Hz, 1H), 4.44 (t, *J* = 6.7 Hz, 1H), 3.23 (dd, *J* = 16.9, 6.8 Hz, 1H), 2.92 (d, *J* = 16.9 Hz, 1H), 2.29 (s, 3H), 2.07–2.03 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 170.5, 145.4, 142.7, 141.4, 137.2, 136.6, 135.8, 128.8, 126.2, 124.8, 117.3, 100.7, 56.1, 47.2, 39.0, 21.3, 10.8. HRMS-ESI m/z Calcd for C₁₈H₁₇NNaO₄ [M+Na]⁺: 334.1050; found 334.1054.

(3aS,8aR,E)-3-(((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-

tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (±15b)

Compound **15b** was obtained following general procedure **M** from **12b** (0.502 mmol, 0.137 g). After purification by column chromatography using Hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **15b** was obtained as a white solid (43.0 mg, 29%). mp 176.5-177.3 °C;¹H NMR (400 MHz, CDCl₃) δ 7.40–7.32 (m,2H), 7.23–7.16 (m, 3H), 7.04 (t, *J* = 1.6 Hz, 1H), 6.64 (br s, 1H), 6.25–6.20 (m, 1H), 4.66 (d, *J* = 6.6 Hz, 1H), 4.46 (t, *J* = 6.7 Hz, 1H), 3.28 (dd, *J* = 17.0, 6.8 Hz, 1H), 2.98 (d, *J* = 17.0 Hz, 1H), 2.05 (t, *J* = 1.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 170.6, 145.9, 142.7, 141.2, 139.9, 135.8, 127.8, 127.3, 125.6, 125.2, 117.1, 100.7, 55.8, 47.4, 39.5, 10.8. HRMS-ESI m/z Calcd for C₁₇H₁₅NNaO₄ [M+Na]⁺: 320.0893; found 320.0898.

(3aS,8aR,E)-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (±16b)

Compound **16b** was obtained following general procedure **M** from **12b** (0.502 mmol, 0.137 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **16b** was obtained as a white solid (43.0 mg, 29%). mp 260.1-262.2 °C;¹H NMR (400 MHz, CDCl₃) δ 7.41–7.31 (m, 2H), 7.27–7.16 (m, 3H), 7.02 (t, *J* = 1.6 Hz, 1H), 6.46 (br s, 1H), 6.27–6.22 (m, 1H), 4.69 (d, *J* = 6.6 Hz, 1H), 4.48 (t, *J* = 6.7 Hz, 1H), 3.30 (dd, *J* = 17.0, 6.8 Hz, 1H), 3.00 (d, *J* = 17.0 Hz, 1H), 2.08 (t, *J* = 1.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 170.5, 145.3, 142.6, 141.4, 139.7, 135.8, 127.8, 127.4, 125.7, 125.1, 117.1, 100.6, 55.8, 47.3, 39.4, 10.8. HRMS-ESI m/z Calcd for C₁₇H₁₅NNaO₄ [M+Na]⁺: 320.0893; found 320.089.

(3a*R*,8a*R*,*E*)-3-((((*R*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-5-phenyl-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1*H*)-one (±15c)

Compound **15c** was obtained following general procedure **M** from **12c** (0.700 mmol, 0.245 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **15c** was obtained as a white solid (55.2 mg, 21%). mp 107.3-108.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.53–7.48 (m, 2H), 7.46–7.37 (m, 4H), 7.37–7.31 (m, 1H), 7.22 (d, *J* = 7.9 Hz, 1H), 6.98–6.80 (m, 2H), 6.20 (br s, 1H), 4.62 (d, *J* = 6.8 Hz, 1H), 4.42 (s, 1H), 3.27 (dd, *J* = 17.2, 6.9 Hz, 1H), 2.99 (d, *J* = 17.1 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 170.4, 146.8, 143.1, 141.1, 141.0, 140.4, 138.9, 135.2, 128.5, 126.9, 126.7, 126.7, 125.2, 124.2, 116.2, 100.7, 56.1, 47.1, 38.8, 10.4. HRMS-ESI m/z Calcd for C_{23H19}NNaO₄ [M+Na]⁺: 396.1206; found 396.1208.

(3a*R*,8a*R*,*E*)-3-((((*S*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-5-phenyl-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1*H*)-one (±16c)

Compound **16c** was obtained following general procedure **M** from **12c** (0.697 mmol, 0.200 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **16c** was obtained as a white solid (52.1 mg, 20%). mp 216.7-217.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.51 (d, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 3H), 7.40–7.36 (m, 1H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 6.97 (s, 1H), 6.55 (br s, 1H), 6.23 (s, 1H), 4.72 (d, *J* = 6.6 Hz, 1H), 4.51 (t, *J* = 6.8 Hz, 1H), 3.32 (dd, *J* = 17.1, 6.8 Hz, 1H), 3.01 (d, *J* = 17.1 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.3, 170.0, 145.8, 143.1, 140.9, 140.7, 140.5, 138.6, 135.5, 128.6, 126.9, 126.7, 126.6, 125.1, 124.2, 116.5, 100.6, 55.7, 47.0, 39.0, 10.5. HRMS-ESI m/z Calcd for C₂₃H₁₉NNaO4 [M+Na]⁺: 396.1206; found 396.1209.

(3aS,8aR,E)-5-fluoro-3-((((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (±15d)

Compound **15d** was obtained following general procedure **M** from **12d** (0.660 mmol, 0.193 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **15d** was obtained as a white solid (60.3 mg, 29%). mp 178.0-179.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 2.0 Hz, 1H), 7.31 (s, 1H), 7.10 (dd, *J* = 8.4, 5.1 Hz, 1H), 7.08–6.97 (m, 2H), 6.89 (td, *J* = 8.6, 2.6 Hz, 1H), 6.25–6.20 (m, 1H), 4.61 (d, *J* = 6.7 Hz, 1H), 4.47 (t, *J* = 6.7 Hz, 1H), 3.21 (dd, *J* = 16.8, 6.8 Hz, 1H), 2.93 (d, *J* = 16.9 Hz, 1H), 2.07–2.01 (m, 3H).¹³C NMR (125 MHz, CDCl₃) δ 170.7, 170.5, 162.4 (d, *J* = 243.7 Hz), 146.2, 144.7, 141.2, 135.7, 135.4 (d, *J* = 2.4 Hz), 126.2 (d, *J* = 8.6 Hz), 116.6, 114.9 (d, *J* = 22.9 Hz), 112.4 (d, *J* = 22.9 Hz), 100.7, 56.5, 47.3 (d, *J* = 2.4 Hz), 38.7, 10.7. ¹⁹F NMR (375 MHz, CDCl₃) δ -115.9. HRMS-ESI m/z Calcd for C₁₇H₁₄FNNaO4 [M+Na]⁺: 338.0799; found 338.0798.

 $(3aS,8aR,E)-5-fluoro-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (\pm 16d)$

Compound **16d** was obtained following general procedure **M** from **12d** (0.660 mmol, 0.193 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **16d** was obtained as a white solid (58.9 mg, 28%). mp 232.7-233.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 2.1 Hz, 1H), 7.12 (dd, *J* = 8.4, 5.1 Hz, 1H), 7.08–6.99 (m, 2H), 6.90 (td, *J* = 8.6, 2.7 Hz, 1H), 6.82 (s, 1H), 6.23 (d, *J* = 1.3 Hz, 1H), 4.63 (d, *J* = 6.5 Hz, 1H), 4.49 (t, *J* = 6.8 Hz, 1H), 3.23 (dd, *J* = 16.2, 7.2 Hz, 1H), 2.94 (d, *J* = 16.9 Hz, 1H), 2.06–2.03(m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.4, 170.2, 162.5 (d, *J* = 244.6 Hz), 145.3, 144.5 (d, *J* = 8.8 Hz), 141.2, 136.2, 135.1, 126.1 (d, *J* = 8.6 Hz), 116.4, 115.1 (d, *J* = 22.9 Hz), 112.6 (d, *J* = 22.9 Hz), 100.3, 56.4, 47.4, 38.8, 10.8. ¹⁹F NMR (375 MHz, CDCl₃) δ -115.4. HRMS-ESI m/z Calcd for C₁₇H₁₄FNNaO₄ [M+Na]⁺: 338.0799; found 338.0799.

(3aS,8aR,E)-5-chloro-3-((((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (±15e)

Compound **15e** was obtained following general procedure **M** from **12e** (0.766 mmol, 0.235 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **15e** was obtained as a white solid (79.9 mg, 31%). mp 190.1-191.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 1.9 Hz, 1H), 7.33–7.30 (m, 1H), 7.18 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.11 (d, *J* = 8.1 Hz, 1H), 7.08–7.04 (m, 1H), 6.78 (br s, 1H), 6.23 (t, *J* = 1.5 Hz, 1H), 4.64 (d, *J* = 6.7 Hz, 1H), 4.50 (t, *J* = 6.8 Hz, 1H), 3.24 (dd, *J* = 17.2, 6.9 Hz, 1H), 2.95 (d, *J* = 17.2 Hz, 1H), 2.08–2.04 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 170.5, 146.7, 144.5, 141.1, 138.4, 135.8, 132.8, 128.1, 126.3, 125.9, 116.2, 100.8, 56.2, 47.3, 39.0, 10.7. HRMS-ESI m/z Calcd for C₁₇H₁₄ClNNaO₄ [M+Na]⁺: 354.0504; found 354.0497.

 $(3aS,8aR,E)-5-chloro-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one~(\pm 16e)$

Compound **16e** was obtained following general procedure **M** from **12e** (0.766 mmol, 0.235 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **16e** was obtained as a white solid (57.4 mg, 23%). mp 257.6-258.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.32 (m, 1H), 7.31 (d, *J* = 1.9, 1H), 7.18 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.10 (d, *J* = 8.1 Hz, 1H), 7.03-7.00 (m, 1H), 6.39 (br s, 1H), 6.27–6.22 (m, 1H), 4.65 (d, *J* = 6.8 Hz, 1H), 4.50 (t, *J* = 6.7 Hz, 1H), 3.25 (dd, *J* = 17.1, 6.8 Hz, 1H), 2.95 (d, *J* = 17.2 Hz, 1H), 2.09–2.04 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 170.2, 145.5, 144.4, 141.1, 138.2, 136.2, 133.1, 128.2, 126.2, 126.0, 116.3, 100.4, 56.2, 47.2, 39.0, 10.9. HRMS-ESI m/z Calcd for C₁₇H₁₄ClNNaO₄ [M+Na]⁺: 354.0504; found 354.0510.

Crystal system	Monoclinic			
Space group	P2(1)/c			
Ζ	8			
a/ Å	11.168(2)			
b/ Å	15.730(2)			
c/ Å	18.350(3)			
α/°	90 deg			
β/°	105.575(13) deg			
$\gamma/^{\circ}$	90 deg			
V/Å^3	3105.2(9)			
Density/ Mg/m^3	1.419			
F(000)	1376			
Absorption coefficient/ mm^{-1}	2.362			
Theta range for data collection/ $^{\circ}$	3.761 to 68.567			
Reflections collected	47550			
Independent reflections	5696			
No. of parameters	417			
Goodness-of-fit on F^2	of-fit on F^2 1.051			
Largest diff. peak and hole/ $e/Å^3$	0.466 and -0.495			
$R_1, wR_2(I > 2\sigma(I))$	$R_1 = 0.0446, wR_2 = 0.1200$			
R ₁ , wR ₂ (all data)	$R_1 = 0.0595, wR_2 = 0.1303$			

 $(3aR,8aR,E)-5-methoxy-3-((((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (\pm 15f)$

Compound **15f** was obtained following general procedure **M** from **12f** (0.405 mmol, 0.123 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the

eluent, **15f** was obtained as a white solid (20.6 mg, 16%). mp 155.6-157.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 1.8 Hz, 1H), 7.08 (d, *J* = 8.3 Hz, 1H), 7.05–6.99 (m, 1H), 6.92 (d, *J* = 2.5 Hz, 1H), 6.77 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.52 (br s, 1H), 6.26–6.20 (m, 1H), 4.63 (d, *J* = 6.6 Hz, 1H), 4.46 (t, *J* = 6.6 Hz, 1H), 3.78 (s, 3H), 3.21 (dd, *J* = 16.7, 6.8 Hz, 1H), 2.90 (d, *J* = 16.7 Hz, 1H), 2.07–2.02 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 170.5, 159.4, 145.7, 144.2, 141.1, 135.9, 131.8, 125.7, 117.0, 113.6, 111.2, 100.6, 56.4, 55.4, 47.5, 38.7,10.8. HRMS-ESI m/z Calcd for C₁₈H₁₇NNaO₅ [M+Na]⁺: 350.0999; found 350.1003.

 $(3aS,8aR,E)-5-methoxy-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (\pm 16f)$

Compound **16f** was obtained following general procedure **M** from **12f** (0.405 mmol, 0.123 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **16f** was obtained as a white solid (16.9 mg, 17%). mp 250.4-251.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 1.8 Hz, 1H), 7.06 (d, *J* = 8.4 Hz, 1H), 7.02–6.98 (m, 1H), 6.94–6.89 (m, 1H), 6.77 (dd, *J* = 8.3, 2.5 Hz, 1H), 6.25–6.20 (m, 1H), 6.17 (br s, 1H), 4.64 (d, *J* = 6.6 Hz, 1H), 4.46 (t, *J* = 6.7 Hz, 1H), 3.73 (s, 3H), 3.22 (dd, *J* = 16.6, 6.7 Hz, 1H), 2.90 (d, *J* = 16.6 Hz, 1H), 2.07–2.02 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 170.4, 159.5, 145.8, 143.9, 141.4 135.7, 131.4, 125.6, 116.9, 115.0, 109.1, 100.9, 56.4, 55.4, 47.5, 38.6, 10.8. HRMS-ESI m/z Calcd for C₁₈H₁₇NNaO₅ [M+Na]⁺: 350.0999; found 350.0992.

(3a*R*,8a*R*,*E*)-5-ethoxy-3-((((*R*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1*H*)-one (±15g)

Compound **15g** was obtained following general procedure **M** from **12g** (0.611 mmol, 0.208 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **15g** was obtained as a white solid (35.3 mg, 17%). mp 144.8-146.2 $^{\circ}$ C; ¹H NMR (400

MHz, CDCl₃) δ 7.32 (d, *J* = 1.8 Hz, 1H), 7.06 (d, *J* = 8.3 Hz, 1H), 7.03–6.99 (m, 1H), 6.90 (d, *J* = 2.7 Hz, 1H), 6.75 (dd, *J* = 8.3, 2.6 Hz, 1H), 6.69 (br s, 1H), 6.26–6.20 (t, *J* = 1.5 Hz, 1H), 4.61 (d, *J* = 6.6 Hz, 1H), 4.45 (t, *J* = 6.6 Hz, 1H), 3.99 (q, *J* = 7.0 Hz, 2H), 3.20 (dd, *J* = 16.7, 6.8 Hz, 1H), 2.89 (d, *J* = 16.6 Hz, 1H), 2.04 (s, 3H), 1.40 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 170.5, 158.7, 145.7, 144.1, 141.2, 135.8, 131.7, 125.7, 117.1, 114.2, 111.8, 100.6, 63.6, 56.5, 47.5, 38.6, 14.9, 10.7. HRMS-ESI m/z Calcd for C₁₉H₁₉NNaO₅ [M+Na]⁺: 364.1155; found 364.1153.

 $(3aS,8aR,E)-5-ethoxy-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (\pm 16g)$

Compound **16g** was obtained following general procedure **M** from **12g** (0.611 mmol, 0.208 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **16g** was obtained as a white solid (24.3 mg, 12%). mp 214.7-215.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 1.8 Hz, 1H), 7.04 (d, *J* = 8.3 Hz, 1H), 7.00 (s, 1H), 6.90 (d, *J* = 2.7 Hz, 1H), 6.75 (dd, *J* = 8.3, 2.6 Hz, 1H), 6.41 (br s, 1H), 6.22 (s, 1H), 4.61 (d, *J* = 6.5 Hz, 1H), 4.45 (t, *J* = 6.7 Hz, 1H), 3.96–3.87 (m, 1H), 3.20 (dd, *J* = 16.6, 6.8 Hz, 1H), 2.88 (d, *J* = 16.8 Hz, 1H), 2.07–2.01 (m, 3H), 1.38 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 170.4, 158.8, 145.8, 143.9, 141.4, 135.6, 131.2, 125.6, 117.0, 115.6, 110.4, 101.0, 63.6, 56.4, 47.4, 38.6, 14.8, 10.7. HRMS-ESI m/z Calcd for C₁₉H₁₉NNaO₅ [M+Na]⁺: 364.1155; found 364.1152.

(3a*R*,8a*R*,*E*)-5-(benzyloxy)-3-((((*R*)-4-methyl-5-oxo-2,5-dihydrofuran-2yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1*H*)-one (±15h)

Compound **15h** was obtained following general procedure **M** from **12h** (0.474 mmol, 0.180 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the

eluent, **15h** was obtained as a white solid (60.1 mg, 32%). mp 107.3-108.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.29 (m, 6H), 7.08 (d, *J* = 8.1 Hz, 1H), 6.99 (s, 1H), 6.95–6.81 (m, 2H), 6.28 (s, 1H), 6.17 (s, 1H), 5.10–5.02 (m, 2H), 4.62 (s, 1H), 4.54–4.39 (m, 1H), 3.30–3.16 (m, 1H), 2.90 (d, *J* = 16.8 Hz, 1H), 2.08–1.97 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 170.4, 158.7, 145.7, 144.2, 141.2, 137.2, 135.8, 132.1, 128.6, 127.9, 127.4, 125.7, 117.0, 114.7, 112.1, 100.6, 70.3, 56.4, 47.6, 38.7, 10.7. HRMS-ESI m/z Calcd for C₂₄H₂₁NNaO₅ [M+Na]⁺: 426.1312; found 426.1307.

(3a*R*,8a*R*,*E*)-5-(benzyloxy)-3-((((*S*)-4-methyl-5-oxo-2,5-dihydrofuran-2yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1*H*)-one (±16h)

Compound **16h** was obtained following general procedure **M** from **12h** (0.474 mmol, 0.180 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **16h** was obtained as a white solid (60.5 mg, 32%). mp 216.7-217.4 °C;¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 7.7 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.35–7.28 (m, 2H), 7.07 (d, *J* = 8.3 Hz, 1H), 7.03–6.99 (m, 1H), 6.97–6.93 (m, 1H), 6.88–6.81 (m, 1H), 6.38 (s, 1H), 6.20 (s, 1H), 4.98 (s, 2H), 4.64 (d, *J* = 7.2 Hz, 1H), 4.47 (t, *J* = 6.6 Hz, 1H), 3.22 (dd, *J* = 16.6, 6.6 Hz, 1H), 2.90 (d, *J* = 16.8 Hz, 1H), 2.01–1.98 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 170.3, 158.7, 145.3, 144.0, 141.4, 137.1, 135.8, 131.8, 128.5, 127.8, 127.5, 125.7, 117.0, 115.6, 111.1, 100.7, 70.0, 56.4, 47.5, 38.7, 10.8. HRMS-ESI m/z Calcd for C₂₄H₂₁NNaO₅ [M+Na]⁺: 426.1312; found 426.1320.

2.4.2 Synthesis of (±)-Strigolactones and (±)-Epi-Strigolactones

Table S13. Final synthetic route of 2nd generation GR24

General Procedure N: To a solution of **18a-c** (1.0 equiv) in toluene (10 mL/1 mmol) was added Bredereck's reagent (5.0 equiv) at rt and the solution was refluxed and was monitored by TLC (typical time was 8 h). It was then cooled to rt and diluted with EtOAc. The solution was washed with water. After drying over Na₂SO₄, and removing all volatiles, enamine was obtained as a crude product.

The obtained enamine was then dissolved in dioxane (20 mL/1 mmol) and 1M HCl (20 mL/1 mmol), and the resultant mixture was stirred at rt for 12 h. The solution was neutralized with saturated NaHCO₃ and then diluted with EtOAc, washed with water and brine, and dried over Na₂SO₄. After removal of volatiles under reduced pressure, the crude product was obtained.

The obtained enamine was then dissolved in dioxane (5 mL/1 mmol) was added KO'Bu ((1.5 equiv) at 0 $^{\circ}$ C. After 10 min, a solution of chlorobutenolidine (1.5 equiv) in DME was added drop wise. The reaction mixture was then allowed to warm slowly to rt and stirred for 16 h. The reaction mixture was diluted with EtOAc and washed with water and brine, and then dried

over Na₂SO₄. After removal of volatiles under reduced pressure, the mixture of **20a-c** and **21a-c** was obtained. These compounds were separated by flash chromatography on silica gel.

(3a*R*,8a*R*,*E*)-3-(((®-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8atetrahydro-2*H*-indeno[2,1-b]furan-2-one (±20a)

Compound **20a** was obtained following general procedure **N** from **18a** (0.382 mmol, 0.066 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **20a** was obtained as a white solid (31.4 mg, 28%). mp 133.6-136.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.33 (d, *J* = 7.1 Hz, 1H), 7.24-7.20 (m, 3H), 7.05 (s, 1H), 6.26 (s, 1H), 5.26 (t, *J* = 6.2 Hz, 1H), 4.71 (d, *J* = 6.3 Hz, 1H), 3.41 (dd, *J* = 18.0, 6.1 Hz, 1H), 3.33 (d, *J* = 17.9 Hz, 1H), 2.07 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 170.2, 150.3, 141.4, 140.7, 139.6, 136.2, 128.3, 127.6, 125.4, 125.2, 112.2, 100.7, 82.0, 47.9, 38.9, 10.8. HRMS-ESI m/z Calcd for C₁₇H₁₄NaO₅ [M+Na]⁺: 321.0733; found 321.0730.

(3a*R*,8a*R*,*E*)-3-((((*S*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8atetrahydro-2*H*-indeno[2,1-*b*]furan-2-one (±21a)

Compound **21a** was obtained following general procedure **N** from **18a** (0.382 mmol, 0.066 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **21a** was obtained as a white solid (21.2 mg, 19%). mp 209.5-212.5 °C;¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.31 (d, *J* = 7.0 Hz, 1H), 7.24-7.18 (m, 3H), 7.01 (s, 1H), 6.25 (s, 1H), 5.25 (t, *J* = 6.1 Hz, 1H), 4.71 (d, *J* = 6.3 Hz, 1H), 3.40 (dd, *J* = 18.0, 5.9 Hz, 1H), 3.32 (d, *J* = 18.0 Hz, 1H), 2.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 170.1, 149.8, 141.3, 140.9, 139.5, 136.2, 128.3, 127.8, 125.5, 125.1, 112.3, 100.6, 82.1, 47.8, 38.9, 10.8. HRMS-ESI m/z Calcd for C₁₇H₁₄NaO₅ [M+Na]⁺: 321.0733; found 321.0736.

 $(3aR,8aR,E)-5-methyl-3-(((\textcircled{B-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy})methylene)-3,3a,8,8a-tetrahydro-2H-indeno[2,1-b]furan-2-one~(\pm 20b)$

Compound **20b** was obtained following general procedure **N** from **18b** (0.397 mmol, 0.075 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **20b** was obtained as a white solid (47.2 mg, 38%). mp116.7-118.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 1.8 Hz, 1H), 7.13–7.11 (m, 2H), 7.08–7.03 (m, 2H), 6.30–6.24 (m, 1H), 5.25 (td, *J* = 6.2, 1.5 Hz, 1H), 4.66 (dd, *J* = 6.3, 1.9 Hz, 1H), 3.42–3.20 (m, 2H), 2.33 (s, 3H), 2.07 (t, *J* = 1.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 170.2, 150.1, 141.5, 140.8, 137.3, 136.6, 136.2, 129.2, 125.9, 124.9, 112.4, 100.7, 82.4, 47.8, 38.5, 21.4, 10.8. HRMS-ESI m/z Calcd for C₁₈H₁₆NaO₅ [M+Na]⁺: 335.0890; found 335.0892.

(3a*R*,8a*R*,*E*)-5-methyl-3-((((*S*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydro-2*H*-indeno[2,1-b]furan-2-one (±21b)

Compound **21b** was obtained following general procedure **N** from **18b** (0.397 mmol, 0.075 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **21b** was obtained as a white solid (54.4 mg, 44%). mp 225.5-227.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 2.0 Hz, 1H), 7.12–7.09 (m, 2H), 7.06–6.98 (m, 2H), 6.27–6.26 (m, 1H), 5.24 (td, *J* = 6.1, 1.5 Hz, 1H), 4.69–4.63 (m, 1H), 3.40–3.18 (m, 2H), 2.29 (s, 3H), 2.08 (t, *J* = 1.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 170.1, 149.8, 141.4, 141.0, 137.5, 136.4, 136.1, 129.2, 126.0, 124.8, 112.6, 100.7, 82.4, 47.7, 38.5, 21.3, 10.8. HRMS-ESI m/z Calcd for C₁₈H₁₆NaO₅ [M+Na]⁺: 335.0890; found 335.0884.

(3a*R*,8a*R*,*E*)-5-chloro-3-(((®-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydro-2*H*-indeno[2,1-b]furan-2-one (±20c)

Compound **20c** was obtained following general procedure **N** from **18c** (0.389 mmol, 0.081 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **20c** was obtained as a white solid (36.1 mg, 28%). mp 165.6-169.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.29 (s, 1H), 7.22 (d, *J* = 6.3 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.07 (s, 1H), 6.26 (s, 1H), 5.27 (t, *J* = 6.3 Hz, 1H), 4.69 (d, *J* = 6.5 Hz, 1H), 3.4 (dd, *J* = 18.1, 6.1 Hz, 1H), 3.3 (d, *J* = 18.1 Hz, 1H), 2.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.4, 170.1, 151.0, 143.3, 140.7, 138.2, 136.2, 133.1, 128.5, 126.3, 125.7, 111.4, 100.8, 82.0, 47.8, 38.5, 10.8. HRMS-ESI m/z Calcd forC₁₇H₁₃NaClO₅ [M+Na]⁺: 355.0344; found 355.0347.

(3a*R*,8a*R*,*E*)-5-chloro-3-((((*S*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydro-2*H*-indeno[2,1-*b*]furan-2-one (±21c)

Compound **21c** was obtained following general procedure **N** from **18c** (0.389 mmol, 0.081 g). After purification by column chromatography using hexane:EtOAc (1/0 to 4/1 to 1/1) as the eluent, **21c** was obtained as a white solid (30.6 mg, 24%). mp 218.3-221.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.28 (s, 1H), 7.21 (d, *J* = 8.1 Hz, 1H), 7.15 (d, *J* = 8.1 Hz, 1H), 7.03 (s, 1H), 6.29 (s, 1H), 5.27 (t, *J* = 6.3 Hz, 1H), 4.69 (d, *J* = 6.5 Hz, 1H), 3.4 (dd, *J* = 18.1, 6.2 Hz, 1H), 3.3 (d, *J* = 18.0 Hz, 1H), 2.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 169.8, 149.8, 143.1, 140.8, 138.0, 136.5, 133.3, 128.5, 126.2, 125.7, 111.6, 100.3, 82.0, 47.6, 38.5, 10.8. HRMS-ESI m/z Calcd for C₁₇H₁₃NaClO₅ [M+Na]⁺: 355.0344; found 355.0351.

Crystal	Data			
Empirical formula	C ₁₇ H ₁₃ ClNO ₅			
Formula weight	332.72			
Crystal system	Monoclinic			
Space group	P2(1)/n			
Z	4			
a/ Å	12.588(3)			
b/ Å	7.415(2)			
c/ Å	16.351(4)			
α/°	90 deg			
β/°	100.998(18) deg			
$\gamma/^{\circ}$	90 deg			
V/Å^3	3105.2(9)			
Density/ Mg/m^3	11.475			
F(000)	688			
Absorption coefficient/ mm^{-1}	Semi-empirical from equivalents			

Theta range for data collection/ $^{\circ}$	4.915 to 68.215 deg			
Reflections collected	10523			
Independent reflections	2735			
No. of parameters	209			
Goodness-of-fit on F^2	1.036 $0.276 \text{ and } \textbf{-}0.235$ $R_1 = 0.0359, \text{ w} R_2 = 0.0950$			
Largest diff. peak and hole/e/Å ³				
$R_1, wR_2(I > 2\sigma(I))$				
R ₁ , wR ₂ (all data)	$R_1 = 0.0422, wR_2 = 0.1000$			

2.5 The germination efficacy assay of strigolactams and strigolactones ^[7]

The Orobanche aegyptiaca seeds used in this study was kindly provided by Prof. Yong-Qing Ma from College of Forestry, Northwest A & F University. The strigolactone analogues was dissolved in DMSO at the concentration of 10 mM and used as a stock solution. First soak the seeds in 1% NaCIO for 3 min. and washed with autoclaved distilled water and then soak in 75% alcohol for 2 min. and then thoroughly washed with autoclaved distilled water and air-dried in clean bench. The seeds conditioned in the dark at room temperature for 1 weeks. The conditioned seeds suspended in milliQ water were aliquoted in 96-well plates at the volume of 100 μ L, to which 1 μ L of the diluted stock solution was added to the final concentration indicated in the text. The number of germinated seeds were counted and divided by the total number of seeds to indicate germination rate. The experiments were repeated three times and averages with standard deviations were presented.

Table S14. Numeric data for the assay

Orobanche aegyptiaca germination								
	10µM	1μΜ	100nM	10nM	1nM	0.1nM	DMSO	
(±)15a	$87.8\%\pm0.0\%$	$85.0\% \pm 2.1\%$	$90\%\pm1.3\%$	58.5% ± 1.1%	$46.7\% \pm 2.3\%$	$22.9\%\pm5.7\%$	$0.0\%\pm0.0\%$	
(±)16a	$78.5\%\pm0.6\%$	85.0% ± 5.5%	85.9% ± 1.1%	70.4% ± 1.5%	46.7% ± 3.3%	21.7% ± 2.8%	$0.0\%\pm0.0\%$	
(±)15b	87.9% ± 1.1%	89.5% ± 2.6%	$89.4\% \pm 1.1\%$	73.4% ± 3.9%	$33.9\%\pm4.3\%$	$20.3\% \pm 2.0\%$	$0.0\%\pm0.0\%$	
(±)16b	$83.9\%\pm0.6\%$	$87.4\% \pm 0.8\%$	$90.5\% \pm 1.1\%$	71.8% ± 4.9%	$53.1\%\pm7.3\%$	34.0% ± 1.5%	$0.0\%\pm0.0\%$	
(±)15c	$90\%\pm0.9\%$	$90.5\% \pm 2.0\%$	86.3% ± 1.3%	$24.0\%\pm0.6\%$	$16.5\% \pm 2.0\%$	13.7% ± 3.0%	$0.0\%\pm0.0\%$	
(±)16c	$78.4\%\pm2.6\%$	84.2% ± 2.9%	$80.1\% \pm 0.5\%$	27.9% ± 2.7%	$17.2\% \pm 8.1\%$	$6.8\%\pm0.8\%$	$0.0\%\pm0.0\%$	
(±)15d	$86.6\% \pm 5.8\%$	$86.0\% \pm 4.6\%$	$75.1\% \pm 13.1\%$	54.5% ± 6.4%	$32.5\% \pm 2.3\%$	17.2% ± 3.2%	$0.0\%\pm0.0\%$	
(±)16d	86.6% ± 3.9%	84.4% ± 2.0%	81.7% ± 4.5%	66.6% ± 5.2%	33.7% ± 10.8%	13.5% ± 1.0%	$0.0\%\pm0.0\%$	
(±)15e	$84.9\% \pm 1.4\%$	81.2% ± 5.3%	$84.3\% \pm 4.4\%$	51.7% ± 3.3%	$24.2\%\pm2.3\%$	18.8% ± 2.2%	$0.0\%\pm0.0\%$	
(±)16e	83.8% ± 5.2%	86.8% ± 1.7%	82.0% ± 5.2%	$49.4\% \pm 7.4\%$	$18.6\% \pm 0.5\%$	8.4% ± 1.2%	$0.0\%\pm0.0\%$	
(±)15f	$83.1\%\pm3.3\%$	88.6% ± 3.2%	$87.8\%\pm1.5\%$	75.5% ± 5.3%	$73.4\%\pm7.8\%$	$28.5\% \pm 1.6\%$	$0.0\%\pm0.0\%$	
(±)16f	$85.2\%\pm4.0\%$	81.7% ± 4.6%	$87.7\% \pm 3.3\%$	73.6% ± 5.0%	$41.6\% \pm 1.6\%$	16.8% ± 1.1%	$0.0\%\pm0.0\%$	
(±)15g	$88.5\%\pm2.7\%$	83.5% ± 1.9%	86.4% ± 1.9%	$76.0\% \pm 3.8\%$	$50.2\%\pm5.2\%$	15.9% ± 1.4%	$0.0\%\pm0.0\%$	
(±)16g	83.7% ± 3.2%	87.3% ± 1.2%	88.6% ± 3.0%	77.7% ± 8.3%	$22.6\%\pm4.4\%$	15.8% ± 3.4%	$0.0\%\pm0.0\%$	
(±)15h	86.6% ± 1.4%	86.9% ± 0.9%	83.7% ± 2.5%	80.9% ± 3.5%	$45.3\% \pm 7.5\%$	$14.7\% \pm 1.0\%$	$0.0\%\pm0.0\%$	
(±)16h	$86.7\% \pm 4.6\%$	84.8% ± 6.8%	84.1% ± 5.9%	55.0% ± 6.3%	$19.6\% \pm 1.7\%$	10.8% ± 2.7%	$0.0\%\pm0.0\%$	
(±)20a	$81.7\% \pm 2.4\%$	81.4% ± 4.9%	$71.7\%\pm0.0\%$	45.4% ± 1.3%	$24.8\%\pm1.9\%$	16.2% ± 3.1%	$0.0\%\pm0.0\%$	
(±)21a	$84.8\% \pm 2.6\%$	83.7% ± 2.9%	81.0% ± 4.5%	63.0% ± 3.3%	$36.0\% \pm 6.5\%$	$18.2\% \pm 0.4\%$	$0.0\%\pm0.0\%$	
(±)20b	85.3% ± 6.1%	$77.2\% \pm 3.1\%$	$75.1\% \pm 2.6\%$	47.6% ± 3.4%	$23.1\%\pm0.4\%$	15.2% ± 4.3%	$0.0\%\pm0.0\%$	
(±)21b	$85.0\%\pm2.4\%$	$84.2\% \pm 4.6\%$	84.9% ± 1.2%	$56.5\% \pm 0.9\%$	$28.2\% \pm 1.6\%$	$14.2\% \pm 2.7\%$	$0.0\%\pm0.0\%$	
(±)20c	$87.9\% \pm 4.9\%$	85.0% ± 2.4%	66.9% ± 1.0%	31.3% ± 4.4%	$19.0\% \pm 0.3\%$	15.3% ± 6.7%	$0.0\%\pm0.0\%$	
(±)21c	$69.6\% \pm 4.7\%$	$77.5\% \pm 8.1\%$	84.8% ± 1.3%	64.9% ± 3.8%	$26.4\% \pm 9.7\%$	11.9% ± 0.4%	$0.0\%\pm0.0\%$	
GR24 ^{5DS}	$82.3\% \pm 9.0\%$	$84.9\% \pm 0.7\%$	82.8% ± 3.9%	63.6% ± 2.1%	$34.7\%\pm5.9\%$	28.3% ± 11.5%	$0.0\%\pm0.0\%$	
GR24 ^{4DO}	83.3% ± 5.2%	$76.5\% \pm 2.1\%$	$85.1\% \pm 1.2\%$	$68.2\% \pm 5.1\%$	52.6% ± 15.5%	$26.9\% \pm 4.8\%$	$0.0\%\pm0.0\%$	

Figure S1. Orobanche aegyptiaca seeds germination

Reference:

(a) E. M. Mangnus, F. J. Dommerholt, R. L. P. d. Jong and B. Zwanenburg, *J. Agric. Food Chem.*, 1992, **40**, 1230; (b) L. Wang, B. Wang, H. Yu, H. Guo, T. Lin, L. Kou, A. Wang, N. Shao, H. Ma, G. Xiong, X. Li, J. Yang, J. Chu and J. Li, *Nature*, 2020, **583**, 277;
(c) H. Malik, F. P. J.T. Rutjes and B. Zwanenburg, *Tetrahedron*, 2010, **66**, 7198; (d) M. Lachia, H. C. Wolf, P. J. M. Jung, C. Screpanti and A. D. Mesmaeker, *Bioorg. Med. Chem. Lett.*, 2015, **25**, 2184; (e) K. Ashida, Y. Hoshimoto, N. Tohnai, D. E. Scott, M. Ohashi, H. Imaizumi, Y. Tsuchiya and S. Ogoshi, *J. Am. Chem. Soc.*, 2020, **142**, 1594; (f) WO. Pat., 145979, 2018; (g) WO. Pat., 175025, 2019.

 For optimization of C-H olefination, see: (a) K. M. Engle, D.-H. Wang and J.-Q. Yu, *Angew. Chem. Int. Ed.*, 2010, **49**, 6169; (b) P. S. Thuy-Boun, G. Villa, D. Dang, P. Richardson, S. Su and J.-Q. Yu, *J. Am. Chem. Soc.*, 2013, **135**, 17508; (c) D. Nandi, D. Ghosh, S.-J. Chen, B.-C. Kuo, N. M. Wang and H. M. Lee, *J. Org. Chem.*, 2013, **78**, 3445.

3. For the introduction of Piv group, see: N. Dastbaravardeh, T. Toba, M. E. Farmer and J.-Q. Yu, *J. Am. Chem. Soc.*, 2015, **137**, 9877.

4. For Ir-catalyzed decarboxylative Giese reaction, see: L. Chu, C. Ohta, Z. Zuo and D. W. C. MacMillan, J. Am. Chem. Soc., 2014, 136, 10886.

For Ni-catalyzed decarboxylative Giese reaction, see: T. Qin, L. R. Malins, J. T. Edwards, R. R. Merchant, A. J. E. Novak, J. Z. Zhong, R. B. Mills, M. Yan, C. Yuan, M. D. Eastgate and P. S. Baran, Angew. Chem. Int. Ed., 2017, 56, 260.

For the synthesis of Strigolactone analogues, see: (a) K. Ashida, Y. Hoshimoto, N. Tohnai, D. E. Scott, M. Ohashi, H. Imaizumi, Y. Tsuchiya and S. Ogoshi, *J. Am. Chem. Soc.*, 2020, **142**, 1594; (b) M. Lachia, H. C. Wolf, P. J. M. Jung, C. Screpanti and A. D. Mesmaeker, *Bioorg. Med. Chem. Lett.*, 2015, **25**, 2184.

7. For the research on bioactivity Strigolactone analogues: M. Lachia, H. C. Wolf, P. J. M. Jung, C. Screpanti and A. D. Mesmaeker, *Bioorg. Med. Chem. Lett.*, 2015, **25**, 2184.

NMR Spectra

f1 (ppm) $\frac{1}{70}$

60 50

110 100
8.182 8.185 7.1722 7.1809 7.1712 7.1809 7.1712 7.1712 7.1712 7.1712 7.1712 7.1712 7.1712 7.1712 7.1712 7.1755 7.1755 7.1755 7.1755 7.1755 7.1755 7.1755 7.1755 7.1755 7.1755 7.1755 7.1755 7.1756 8.495 8.495 8.495 8.495 8.495 8.495 8.445 8.445 8.445 8.445 8.445 8.445 8.445 8.445 8.445 8.445 8.445 8.445 8.445 8.445

8.022
 7.7989
 7.7989
 7.7989
 7.721
 7.721
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.723
 7.724
 7.725
 7.725
 7.725
 7.725
 7.725
 7.725
 7.725
 7.726
 7.726
 7.726
 7.726
 7.726
 7.727
 7.726
 7.726
 7.727
 7.726
 7.726
 7.727
 7.726
 7.727
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.727
 7.727
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.7276
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726
 7.726

10.101 7.327 7.328 7.324 7.3316 7.3316 7.3316 7.3256 7

-- 8.533 - 3.239 - 3.229 - 3.193 - 3.193 - 3.193 - 3.135 - 3.155 - 3.15 7.288 7.268 7.190 7.169 - 5.196 - 5.187 - 5.174 - 5.164 -- 1.163

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 F1 (ppm)

7,216 7,7205 7,718 7,718 7,718 7,718 7,719 7,165 7,165 7,167 7,167 7,167 7,167 7,167 7,167 7,167 7,167 7,167 7,167 7,167 7,167 7,167 7,167 7,167 7,167 7,168 7,167 7,168 7,167 7,168 7,167 7,168 7,167 7,168

7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,447 7,447 7,445 7,445 7,445 7,445 7,445 7,445 7,749 7,445 7,749 7,445 7,749 7,445 7,749 7,445 7,749 7,749 7,445 7,749 7,749 7,445 7,749 7,749 7,445 7,749 7,749 7,749 7,749 7,749 7,445 7,749 7,749 7,749 7,749 7,749 7,445 7,749

-115.76-115.86

4,184 4,184 4,165 4,165 4,145 3,3555 3,3555 3,3555 3,3555 3,3555 3,3555 3,3555 3,3555 3,3555 3,3555 3,3555 3,3555 2,25555 2,25555 2,25555 2,25555 2,25555 2,25555 2,25555 2,25555 2,25555 2,25555 2,25555 2,255555 2 5.265 5.254 5.254 5.247 5.236 5.236 5.235 - 7.211 7.202 - 7.197 - 7.188

7,1095 7,17029 7,17029 7,17029 7,17029 7,17029 7,17029 7,1010 6,5274 4,103 7,2215 4,211 4,211 4,211 4,211 4,211 4,212 4,1354,135 4,

7,1/10 7,2/10 7,

7,181 7,1141 7,1145 7,1165 5,561255555555555555555555555555555555

$\begin{array}{c} 7.105 \\ 7.1085 \\ 7.028 \\ 7.028 \\ 7.028 \\ 7.028 \\ 3.899 \\ 3.899 \\ 3.899 \\ 3.899 \\ 3.899 \\ 3.899 \\ 3.899 \\ 3.899 \\ 3.899 \\ 3.899 \\ 3.899 \\ 2.3919 \\ 2.339 \\ 2$

7.260 7.230 7.236 7.221 7.217 7.213 7.213 7.213 7.216 7.199 6.993

11b ¹H NMR (400 MHz, CDCl₃)

4,556 4,524 4,524 4,524 4,524 3,3996 3,3997 3,3997 3,3975 3,3975 3,30755 3,30755 3,30755 3,30755 3,3075555555555555555555

7,1/32 7,1/25 7,1/16 7,1/16 7,1/19 7,1/19 7,1/19 6,8877 6,8877 6,8877 6,8877 6,8875 6,8877 6,8875 7,1095 6,8875 7,8875 7,2875 7,2875 7,2875 7,2875 7,2875 7,2875 7,2875 7,2875 7,29757 7,29757 7,29757 7,29757 7,2975757 7,29757757 7,2975757757

EtO₂C

10d ¹⁹F NMR (375 MHz, CDCl₃)

— -116.28

7, 7,090 7,010 6,050 6,050 6,050 6,050 6,050 6,050 6,050 6,050 6,050 6,050 6,050 6,050 7,050 6,050 7,0

(7,1096) (7,1076) (6,6783) (6,6783) (6,6783) (6,775) (6,745) (6,745) (6,745) (6,745) (6,745) (4,408) (

7,0105 7,0107 7,017 7,00

I NBoc

12d ¹⁹F NMR (375 MHz, CDCl₃)

7.208 7.193 7.188 7.180 7.176 7.176 7.178

MeO. I NBoc 11f ¹H NMR (400 MHz, CDCl₃) 101 101 101 F 60'I 4.07*J* 4.09*J* 1.09*J* 1.07*J* 1.08*J* 9.02₌ 4.5 f1 (ppm) 5.0 1.5 7.5 2.0 -0.5 -1. 9.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 4.0 3 5 3.0 2.5 1.0 0.5 0.0 — 150.03 — 144.68 — 132.15 — 125.62 — 114.17 — 109.43 - 173.57 --- 159.57 — 62.56 — 55.49 40.08 39.28 38.80 - 83.10 -- 28.07 MeO. I √Boc 12f ¹³C NMR (125 MHz, CDCl₃) 180 170 160 150 110 90 f1 (ppm) 140 130 120 100 80 70 60 50 40 20 10 -1 30 0

7,090 6,770 6,770 6,770 6,770 6,775 6,775 6,775 6,775 6,705 7,705

Me

18b ¹H NMR (400 MHz, CDCl₃)

 $<_{7.78}^{7.209}$

7,331 7,327 7,1261 7,1076 7,1076 7,1075 7,10

(±)**16a** ¹H NMR (400 MHz, CDCl₃)

7.373 7.368 7.347 7.368 7.347 7.260 7.260 7.219 7.209 7.209 7.209 7.209 7.209 7.209 7.209 7.209 7.209 7.209 7.209 7.209 7.209 7.205 7.205 7.209 7.205

7,2381 7,2370 7,7237 7,7237 7,7234 7,7234 7,7234 7,7234 7,7234 7,7234 7,7234 7,7234 7,7234 7,7234 7,7210 7,7210 1,7201 1,

(±)**16c** ¹H NMR (400 MHz, CDCl₃)

7,354 7,313 7,313 7,313 7,313 7,313 7,313 7,313 7,314 7,315 7,316 7,317 7,105 7,105 7,105 7,105 7,105 7,105 7,106 8,107 16,107 16,107 16,108 16,109 17,109 17,109 18,109 18,109 18,109 18,109 19,109 10,109

— -115.38

7.378 7.374 7.374 7.318 7.318 7.192 7.192 7.160 7.170 7.170 7.161 7.161 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.175 7.176 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.165 7.177 7.125 7.176 7.177 7.125 7.176 7.177 7.125 7.176 7.177 7.175 7.175 7.175 7.175 7.177 7.175 7.175 7.175 7.175 7.177 7.175 7.175 7.177 7.175 7.175 7.175 7.177 7.175 7.177 7.175 7.175 7.175 7.177 7.175 7.177 7.175 7.175 7.177 7.175 7.125 7.125 7.125 7.125 7.125 7.125 7.233 7.125 7.233 7.233 7.233 7.233 7.233 7.2337 7.2337 7.2337 7.2337 7.2337 7.2337 7.23737 7.23737 7.237577 7.2375 7.2375 7.2375777 7.237577777777777

7,333 7,326 7,326 7,326 7,326 7,334 7,336 7,437 7,437 7,446 7,446 7,446 7,446 7,446 7,2326 7,2326 7,2326 7,2327 7,2326 7,2327 7,2

7.331 7.326 7.326 7.326 7.30194 7.30194 7.30194 7.3019 6.922 6.922 6.922 6.922 6.922 6.922 6.922 6.922 6.922 6.922 6.5781 6.5782 6.5785

$\begin{array}{c} 7,333\\ 7,005\\ 7,005\\ 7,005\\ 7,005\\ 7,005\\ 7,005\\ 6,091\\ 6,919\\ 6,919\\ 6,919\\ 6,919\\ 6,919\\ 6,919\\ 6,919\\ 6,919\\ 6,919\\ 6,919\\ 6,919\\ 6,919\\ 6,919\\ 6,165\\ 6,$

7,325 7,107 7,017 7,015 7,016 6,575

(±)15g ¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 7.41\\ 7.332\\ 7.332\\ 7.333\\ 7.333\\ 7.333\\ 7.333\\ 7.333\\ 7.333\\ 7.333\\ 7.333\\ 7.333\\ 7.333\\ 7.333\\ 7.333\\ 6.987\\ 7.1035\\ 6.987\\ 6.987\\ 6.047\\ 6.078\\ 6.058\\ 7.205\\ 7.$

(±)**15h** ¹H NMR (400 MHz, CDCl₃)

7.454 7.435 7.435 7.435 7.400 7.330 7.330 7.330 7.078 7.305 7.330 7.0078 6.945 6.945 6.945 6.945 6.945 6.945 6.945 6.945 7.005 7.0078 6.945 7.0078 6.945 7.1078 6.945 7.1078 7.205 7.305 7

$\begin{array}{c} & 7.529 \\ & 7.340 \\ & 7.322 \\ & 7.322 \\ & 7.322 \\ & 7.321 \\ & 7.321 \\ & 7.321 \\ & 7.324 \\ & 5.249 \\ & 5.249 \\ & 5.249 \\ & 5.249 \\ & 5.249 \\ & 5.249 \\ & 5.249 \\ & 3.339 \\ & 5.249 \\ & 3.339 \\ & 5.249 \\ & 3.339 \\ & 5.249 \\ & 3.339 \\ & 5.249 \\$

(±)**20a** ¹H NMR (400 MHz, CDCl₃)

f1 (ppm) -1

-2.017

7,519 7,514 7,118 7,118 7,109 7,109 7,109 6,271 6,272 6,272 6,272 6,272 6,272 6,272 6,272 6,272 7,272

7,492 7,487 7,114 7,114 7,1051 7,1051 7,1051 7,1051 7,1023 7,1024 6,625 6,5254 6,525 6,5254 6,525 6,5254 6,525 6,5254 5,5253 8,525 6,5253 6,525 6,5253 6,525 6,5253 6,525 6,5253 6,525 6,5253 7,1022 7,1023 7,2023 7,2025 7

