Supporting Information

Access to the Benzene-modified 2nd generation Strigolactam and GR24 Analogues

 by Merging of C-H Olefination with Decarboxylative Giese CyclizationYuhua Ge, *a Xingyue Chen, ${ }^{\text {a }}$ Yi Dong, ${ }^{\text {b }}$ Hua-Nan Wang, ${ }^{\text {b }}$ Yangyan Li ${ }^{\text {b,c }}$ and Gang Chen* ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China. Email: geyuhua@seu.edu.cn.
${ }^{\text {b }}$ Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China. Email: gchen2018@sjtu.edu.cn.
${ }^{c}$ College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, People's Republic of China.

Table of Contents

1. General information S4
2. Experimental Procedure and Spectroscopic Data
2.1. C-H Olefination of N-Boc L-phenylalanine and O-Piv L-phenyllactic acid S8
2.2. B-Ring formation via decarboxylative Giese cyclization S23
2.3. C-Ring formation via intramolecular cyclization -S36
2.4. Final synthetic route of $2^{\text {nd }}$ generation strigolactams and GR24 -S50
2.5. The germination efficacy assay of strigolactams and strigolactones -S67
3. Supporting Schemes, Tables and Figures
Scheme S1-1. Previous synthetic route of strigolactone analogues S4
Scheme S1-2. Synthetic strategies of substrates 3 -S6
Scheme S2. Our synthetic route of $2^{\text {nd }}$ generation strigolactam -S7
Scheme S3. Our synthetic route of $2^{\text {nd }}$ generation GR24 S7
Table S1. Optimization of C-H olefination of N -Boc L-phenylalanine -S8
Table S2. Substrate scope of C-H olefination of N-Boc L-phenylalanine S9
Table S3. Optimization of C-H olefination of O-Piv L-phenyllactic acid -S17
Table S4. Substrate scope of C-H olefination of O-Piv L-phenyllactic acid S19
Table S5. Optimization of Ir-catalyzed photo-redox decarboxylative coupling -S23
Table S6. Optimization of Ni-catalyzed decarboxylative coupling via RAEs -S24
Table S7. Decarboxylative cyclization reaction of substrates 3a-h S25
Table S8. Decarboxylative cyclization reactions of substrates 6a-c S31
Table S9. C-Ring formation from substrates 8a-h -S36
Table S10. Boc-protection of substrates 11a-h -S45
Table S11. C-Ring formation from substrates 9a-c -S47
Table S12. Final synthetic route of $2^{\text {nd }}$ generation strigolactam -S51
Table S13. Final synthetic route of $2^{\text {nd }}$ generation GR24 -S61
Table S14. Numeric data for the assay -S68
Figure S1. Orobanche aegyptiaca seeds germination -S69
4. References S71
5. NMR Spectra S72

1. General Information

All the chemicals were purchased commercially and used without further purification. General reagents were obtained from Adamas, Leyan, Innochem and Bidepharm. Anhydrous solvents were obtained from J\&K. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker- 400 MHz and Bruker- 500 MHz instruments. When the ${ }^{1} \mathrm{H}$ NMR solvent was CDCl_{3}, chemical shifts were quoted in parts per million (ppm) referenced to 7.26 ppm for solvent CDCl_{3}; When the ${ }^{1} \mathrm{H}$ NMR solvent was DMSO- $d-6$, chemical shifts were quoted in parts per million (ppm) referenced to 2.50 ppm for solvent DMSO- $d-6$. When the ${ }^{1} \mathrm{H}$ NMR solvent was Methanol- $d-4$, chemical shifts were quoted in parts per million (ppm) referenced to 3.31 ppm for solvent Methanol- $d-4$. The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, q $=$ quartet, $\mathrm{m}=$ multiple, $\mathrm{br}=$ broad. Coupling constants, J, were reported in Hertz unit (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker-400 instrument (100 MHz) and Bruker500 instrument (125 MHz), and were fully decoupled by broad band proton decoupling. When the ${ }^{13} \mathrm{C}$ NMR solvent was CDCl_{3}, chemical shifts were reported in ppm referenced to 77.00 ppm for CDCl_{3}; When the ${ }^{13} \mathrm{C}$ NMR solvent was DMSO- $d-6$, chemical shifts were quoted in parts per million (ppm) referenced to 39.52 ppm for solvent DMSO- $d-6$. When the ${ }^{13} \mathrm{C}$ NMR solvent was Methanol- $d-4$, chemical shifts were quoted in parts per million (ppm) referenced to 49.00 ppm for solvent Methanol- $d-4$. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). Optical rotations were measured on an Anton Paar MCP100 automatic polarimeter using a 100 mm path-length cell at 589 nm . Melting points were measured with microscope WRX-4 (Shanghai Yice).

Scheme S1-1. Previous synthetic route of strigolactone analogues ${ }^{[1]}$
Binne Zwanenburg and coworkers, synthesis of GR24
J. Agrie. Food Chem., 1992, 40, 1230.

Jiayang Li and coworkers, synthesis of GR24 Nature, 2020, 583, 277.

Binne Zwanenburg and coworkers, synthesis of diversified GR-24 analogues Tetrahedron, 2010, 66, 7198.

$\mathrm{R}=\mathrm{H}$ or Me
 reflux

Alain De Mesmaeker and coworkers, synthesis of $\mathbf{2}^{\text {nd }}$ generation GR24
WO 2018/145979

Alain De Mesmaeker and coworkers, synthesis of $1^{\text {st }}$ generation strigolactams
Bioorg. Med. Chem. Lett., 2015, 25, 2184.

4 steps from
commercial meterial 5. Bredereck regeant

Sensuke Ogoshi and coworkers, synthesis of $1^{\text {st }}$ generation strigolactams
J. Am. Chem. Soc., 2020, 142, 1594.

Alain De Mesmaeker and coworkers, synthesis of $2^{\text {nd }}$ generation strigolactams
wo 2019/175025

Scheme S1-2. Synthetic strategies of substrates 3

5-step synthetic route using -NHNs as a directing group (previous strategy):

1-step synthetic route using - $\mathrm{CO}_{2} \mathrm{H}$ as a directing group (this work):

Scheme $\mathbf{S 2}$. Our synthetic route of $\mathbf{2}^{\text {nd }}$ generation strigolactams

Scheme S3. Our synthetic route of $\mathbf{2}^{\text {nd }}$ generation GR24

2. Experimental Procedure and Spectroscopic Data

2.1 C-H Olefination of N-Boc L-phenylalanine and O-Piv L-phenyllactic

 acidAll L-phenylalanine analogues in this work are commercially available.
Table S1. Optimization of C-H olefination of N-Boc L-phenylalanine ${ }^{[2]}$

Solvent screening ${ }^{a}$:

$1 \mathbf{a}$

Entry	Solvent	Yield	mono:di
1	DCE	11%	$10: 1$
2	Toluene	11%	$3: 1$
3	EtOAc	0%	$/$
4	THF	11%	$10: 1$
5	MeCN	5%	$1: 0$
6	t-AmylOH	34%	$16: 1$
7	DMSO	N. D.	$/$

${ }^{a}$ Reaction conditions: Boc-L-4-Me-Phe-OH (0.1 mmol), Ethyl acrylate (0.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol}), \mathrm{AgOAc}$ $(0.2 \mathrm{mmol}), \mathrm{NaOAc}(0.2 \mathrm{mmol})$, Solvent $(0.7 \mathrm{~mL}), 100^{\circ} \mathrm{C}, 12 \mathrm{~h}$; The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-Trimethoxybenzene as an internal standard. DCE = 1,2-Dichloroethane; t AmyIOH $=2$-Methyl-2-butanol; HFIP $=$ 1,1,1,3,3,3-Hexafluoro-2-propanol; THF $=$ Tetrahydrofuran.

Ligand screening using t-AmylOH as solvent ${ }^{a}$:

${ }^{\text {a }}$ Reaction conditions: Boc-L-4-Me-Phe-OH (0.1 mmol), Ethyl acrylate $(0.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, Ligand
$(0.02 \mathrm{mmol})$, AgOAc $(0.2 \mathrm{mmol}), \mathrm{NaOAc}(0.2 \mathrm{mmol})$, AmylOH $(0.7 \mathrm{~mL}), 100{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; The yields were determined
by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5$-Trimethoxybenzene as an internal standard.

Base screening using Ac-L-Ala-OH as a ligand ${ }^{a}$:

Entry	Base	Yield	mono:di	Entry	Base	Yield	mono:di	
1	NaOMe	33%	$11: 1$		8	KHCO_{3}	51%	$7: 1$
2	NaOH	32%	$11: 1$	9	KF	30%	$20: 1$	
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	51%	$10: 1$	10	KOAc	30%	$10: 1$	
4	NaHCO_{3}	30%	$10: 1$		11	KTFA	51%	$7: 1$
5	NaOAc	38%	$7: 1$	12	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	33%	$10: 1$	
6	KOH	25%	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	17%	$>20: 1$			
7	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	38%	$19: 1$	14	$\mathrm{LiOH}^{2} \cdot \mathrm{H}_{2} \mathrm{O}$	10%	$>20: 1$	

[^0]Table S2. Substrate scope of C-H olefination of N-Boc L-phenylalanine

 1		 3	 4
	 3b		
$\begin{gathered} 52 \%(\text { mono:di }=8: 1) \\ \text { Gram scale: } \\ 50 \%(\text { mono:di }=8: 1) \end{gathered}$	52\% (mono:di $=8: 1$) Gram scale: 45% (mono:di $=14: 1$)	$\begin{gathered} 45 \%(\text { mono:di }=8: 1) \\ \text { Gram scale: } \\ 43 \%(\text { mono:di }=8: 1) \end{gathered}$	$\begin{gathered} 32 \% \text { (mono:di }=10: 1) \\ \text { Gram scale: } \\ 35 \%(\text { mono:di }=11: 1) \end{gathered}$
		 $3 g$	
$\begin{gathered} 38 \% \text { (mono:di }=18: 1) \\ \text { Gram scale: } \\ 40 \%(\text { mono: } \mathrm{di}=9: 1) \end{gathered}$	52\% (mono:di $=8: 1$) Gram scale: 47% (mono:di $=15: 1$)	$\begin{gathered} 51 \%(\text { mono:di }=6: 1) \\ \text { Gram scale: } \\ 46 \%(\text { mono:di }=6: 1) \end{gathered}$	48\% (mono:di $=7: 1$) Gram scale: 40% (mono:di $=12: 1$)

Reaction conditions: Substrate (0.1 mmol), Ethyl acrylate (0.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, Ac-L-Ala-OH (0.02 mmol), AgOAc (0.2 mmol), $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol}), t$-AmylOH (0.14 M), $100^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

General procedure A (0.1 mmol scale): Substrate $\mathbf{1 a - h}\left(0.1 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3$ $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv), Ac-L-Ala-OH ($2.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.2$ equiv), AgOAc (33.2 mg , $0.2 \mathrm{mmol}, 2$ equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($21.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv) and Ethyl acrylate ($54 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$, 5.0 equiv) were dissolved in $0.7 \mathrm{~mL} t$-AmylOH. The tube was sealed and the reaction mixture was then placed to a pre-heated oil bath maintaining at $100^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then cooled to room temperature, and was filtered through celite. The filtrate was concentrated under reduced pressure and the residue was purified by PTLC (hexane:EtOAc $=$ $75: 25$ with 0.2% HOAc).) to give the pure products 3a-h.

General procedure B (gram scale): Substrate $1 \mathbf{a}-\mathrm{h}$ (1.0 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.1 equiv), Ac-L-Ala- OH (0.2 equiv), AgOAc (2.0 equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2 equiv) and Ethyl acrylate (5.0 equiv) were dissolved in t-AmylOH (0.14 M). The tube was sealed and then placed to a pre-heated oil bath maintaining at $100^{\circ} \mathrm{C}$ for 12 h . the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ (oil bath) for 12 h . Caution: The tube was carefully capped and covered with safety shield. The reaction mixture was then cooled to room temperature, and was filtered through celite. The filtrate was
concentrated under vacuum and the residue was purified by column chromatography (C18 Spherical silica) using $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ as the eluent to give the products 3a-h.

(S,E)-2-((tert-butoxycarbonyl)amino)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-4methylphenyl)propanoic acid (3a)

Substrate 1a was olefinated following the general procedure A on 0.1 mmol scale (17.3 mg , 46%, mono: $\mathrm{di}=20: 1$) and the general procedure \mathbf{B} on gram scale (6.0 mmol scale; mono: 1.012 $\mathrm{g}, 44 \%$; di: $0.155 \mathrm{~g}, 6 \%$) to provide compound 3a. Yellow solid, mp 120.8-121.4 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}$ $+74.50\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of rotational isomers 1.5:1) δ 8.69 (br s, 1H), 8.10-7.96 (m, 1H), 7.44-7.35 (m, 1H), 7.13 (s, 2H), 6.69 (d, $J=8.4 \mathrm{~Hz}, 0.4 \mathrm{H})$, $6.42-6.30(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.62-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.53-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.18-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 9 \mathrm{H}), 1.13(\mathrm{~s}$, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.4,175.1$ (minor), 167.3, 166.9 (minor), 156.2 (minor), 155.2, 142.1, 141.5 (minor), 137.1, 133.8 (minor), 133.7, 133.6 (minor), 133.0, 131.5, 131.0, 127.3, 127.2 (minor), 119.9 (minor), 119.8, 81.2 (minor), 80.0, 60.7, 60.6 (minor), 55.6 (minor), 54.2, 36.9 (minor), 34.7, 28.2, 27.7 (minor), 21.0, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 400.1731$; found 400.1731.

(S,E)-2-((tert-butoxycarbonyl)amino)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-

yl)phenyl)propanoic acid (3b)

Substrate $\mathbf{1 b}$ was olefinated following the general procedure \mathbf{A} on 0.1 mmol scale (mono: $16.8 \mathrm{mg}, 46 \%$; di: $2.9 \mathrm{mg}, 6 \%$) and the general procedure \mathbf{B} on gram scale (10.0 mmol scale; mono: $1.510 \mathrm{~g}, 42 \%$; di: $0.121 \mathrm{~g}, 3 \%$) to provide compound $\mathbf{3 b}$. Yellow solid, $\mathrm{mp} 61.5-62.8^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+73.00\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of rotational isomers 1.2:1) $\delta 8.14-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.66(\mathrm{~m}$, $0.45 \mathrm{H}), 6.43-6.31(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.55 \mathrm{H}), 4.62-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.53-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.20-2.85(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.22(\mathrm{~m}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,167.3,166.9$ (minor), 156.3 (minor), 155.2, $142.0,141.4$ (minor), 136.9 (minor), 136.1, 134.0, 133.9 (minor), 131.6 (minor), 131.1, 130.1, 127.6, 126.9, 126.8 (minor), 120.3 (minor), 120.2, 81.3 (minor), 80.1, 60.8, 60.7 (minor), 55.6 (minor), 54.2, 37.5 (minor), 35.2, 28.2, 27.8 (minor), 14.3. >99\% ee as determined by HPLC (Chiralpak ADH, 85:15 hexane $/ i-\mathrm{PrOH}, 0.5 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}$), $\operatorname{tr}($ minor $)=16.5 \mathrm{~min}, \operatorname{tr}($ major $)=30.2 \mathrm{~min}$. HRMS-ESI m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 386.1574$; found 386.1573.

Area \% Report (racemic)

<Chromatogram> mV

<Peak Table>
Detector A Channel 1250 nm

Peak\#	Ret. Time	Height	Area
Area $\%$			
1	15.720	93303	4507956
2	29.917	61561	5221030
Total		154863	97.335

Area \% Report (chiral)

<Chromatogram> mV

<Peak Table>
Detector A Channel 1250nm

Peak\# Ret. Time	Height	Area	Area\%	
1	16.552	136	14635	0.422
2	30.198	27002	3453380	99.578
Total		27138	3468015	100.000

(S,E)-2-((tert-butoxycarbonyl)amino)-3-(3-(3-ethoxy-3-oxoprop-1-en-1-yl)-[1,1'-biphenyl]-4-yl)propanoic acid (3c)

Substrate $\mathbf{1 c}$ was olefinated following the general procedure \mathbf{A} on 0.1 mmol scale (mono: 17.6 $\mathrm{mg}, 40 \%$; di: $2.6 \mathrm{mg}, 5 \%$) and the general procedure \mathbf{B} on gram scale (12.0 mmol scale; mono: $2.003 \mathrm{~g}, 38 \%$; di: $0.306 \mathrm{~g}, 5 \%$) to provide compound $\mathbf{3 c}$. Yellow solid, $\mathrm{mp} 81.2-83.7^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}$ $+66.00\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of rotational isomers 1.5:1) δ 8.16-8.07(m, 1H), 7.83-7.74 (m, 1H), 7.59-7.49 (m, 3H), 7.49-7.40 (m, 2H), 7.40-7.27 (m, 2H), 6.86 (s, 0.4H), 6.54-6.42 (m, 1H), $5.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 0.6 \mathrm{H}), 4.76-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.28$ (q, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.02(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.23(\mathrm{~m}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 175.0,166.8,156.3,155.2,142.1,141.4,140.5,140.1,135.8$, $134.9,134.3,132.1,131.6,128.8,128.7,127.6,127.0,125.4,120.4,81.3,80.1,60.9,60.7,55.5$, $54.2,37.3,34.8,28.2,27.7,14.2$. HRMS-ESI m/z Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 462.1887$; found 462.1885.
(S,E)-2-((tert-butoxycarbonyl)amino)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-4fluorophenyl)propanoic acid (3d)

Substrate 1d was olefinated following the general procedure A on 0.1 mmol scale (11.1 mg , 29%; di: $1.2 \mathrm{mg}, 3 \%$) and the general procedure \mathbf{B} on gram scale (16.0 mmol scale; mono: $1.951 \mathrm{~g}, 32 \%$; di: 0.240 g , 3%) to provide compound 3d. Yellow solid, mp $83.6-84.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}$ $+76.50\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of rotational isomers 1.5:1) δ 8.05-7.93 (m, 1H), 7.31-7.18 (m, 2H), 7.07-6.99 (m, 1H), $6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.40-$ $6.29(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.61-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-$ $3.32(\mathrm{~m}, 1 \mathrm{H}), 3.20-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 9 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of rotational isomers) $\delta 174.9,174.7$ (minor), 167.0, 166.5 (minor), 161.9 (d, $J=$ 246.5 Hz), 156.3 (minor), 155.2, 140.9, 140.2 (minor), 135.7, 133.20 (minor), 132.8, 131.9, 121.5 (minor), $121.2,117.0(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 113.2(\mathrm{~d}, J=22.2 \mathrm{~Hz}$), 81.5 (minor), 80.2, 60.9 , 60.8 (minor), 55.5 (minor), 54.1, 36.7 (minor), 34.6, 28.2, 27.8 (minor), 14.2. ${ }^{19}$ F NMR (375 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$-114.7, -115.0. HRMS-ESI m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{FNNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 404.1480$; found 404.1483.

(S,E)-2-((tert-butoxycarbonyl)amino)-3-(4-chloro-2-(3-ethoxy-3-oxoprop-1-en-1-

 yl)phenyl)propanoic acid (3e)

Substrate $\mathbf{1 e}$ was olefinated following the general procedure A on 0.1 mmol scale (mono: 14.4 $\mathrm{mg}, 36 \%$; di: $3.2 \mathrm{mg}, 2 \%$) and the general procedure \mathbf{B} on gram scale (15.0 mmol scale; mono: $2.144 \mathrm{~g}, 36 \%$; di: $0.262 \mathrm{~g}, 4 \%$) to provide compound 3e. Yellow solid, mp $118.5-120.2{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+62.75\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of rotational isomers 1.5:1) $\delta 8.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.03-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}$, $1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.43-6.30(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.63-4.32(\mathrm{~m}$, $1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.18-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.25(\mathrm{~m}, 9 \mathrm{H}), 1.15$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,174.6$ (minor), 166.9, 166.4 (minor), 156.4 (minor), 155.2, 140.7, 140.0 (minor), 135.6, 135.6 (minor), 135.2 (minor), 134.5, 133.4, 132.8 (minor), 132.4, 129.8, 126.7, 126.5 (minor), 121.6 (minor), 121.4, 81.7 (minor), 80.2, 60.9,
60.8 (minor), 55.3 (minor), 53.9, 36.9 (minor), 34.7, 28.2, 27.7 (minor), 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClNNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 420.1184$; found 420.1190.

(S,E)-2-((tert-butoxycarbonyl)amino)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-4methoxyphenyl)propanoic acid (3f)

Substrate $\mathbf{1 f}$ was olefinated following the general procedure \mathbf{A} on 0.1 mmol scale (mono: 18.0 $\mathrm{mg}, 46 \%$; di: $2.7 \mathrm{mg}, 6 \%$) and the general procedure \mathbf{F} on gram scale (10.0 mmol scale; mono: $1.730 \mathrm{~g}, 44 \%$; di: $0.134 \mathrm{~g}, 3 \%$) to provide compound 3f. Yellow solid, mp $90.5-91.9^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}$ $+74.50\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of rotational isomers 2.3:1) δ $8.00(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=15.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.02-5.85(\mathrm{~m}, 0.3 \mathrm{H}), 5.08(\mathrm{~s}, 0.7 \mathrm{H}), 4.49-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 4.34-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.19-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 9 \mathrm{H}), 1.26-1.22(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 174.0, 167.5, 158.6, 155.4, 142.3, 134.7, 132.5, 129.1, 119.8, 116.3, 111.2, 79.7, 60.8, 55.3, 47.6, 34.7, 28.3, 28.0 (minor), 14.3. HRMS-ESI m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NNaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: 416.1680$; found 416.1680.

(S,E)-2-((tert-butoxycarbonyl)amino)-3-(4-ethoxy-2-(3-ethoxy-3-oxoprop-1-en-1yl)phenyl)propanoic acid (3g)

Substrate $\mathbf{1 g}$ was olefinated following the general procedure \mathbf{A} on 0.1 mmol scale (mono: 18.1 $\mathrm{mg}, 44 \%$; di: $3.5 \mathrm{mg}, 7 \%$) and the general procedure \mathbf{B} on gram scale (12.0 mmol scale; mono: $1.905 \mathrm{~g}, 39 \%$; di: $0.391 \mathrm{~g}, 7 \%$) to provide compound $\mathbf{3 g}$. Yellow solid, mp $113.0-116.2^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+76.75\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of rotational isomers 2.3:1) $\delta 8.00(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.05-5.89(\mathrm{~m}, 0.3 \mathrm{H}), 5.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.13-5.07(\mathrm{~m}, 0.7 \mathrm{H}), 4.55-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.07-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.19-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 9 \mathrm{H}), 1.32$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,167.6,158.0$,
$155.2,142.3,134.7,132.5,128.5,119.6,116.8,111.8,79.8,63.5,60.8,54.7,34.5,28.3,14.8$, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NNaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$: 430.1836; found 430.1836.

(S,E)-3-(4-(benzyloxy)-2-(3-ethoxy-3-oxoprop-1-en-1-yl)phenyl)-2-((tert-

 butoxycarbonyl)amino)propanoic acid (3h)

Substrate $\mathbf{1 h}$ was olefinated following the general procedure A on 0.1 mmol scale (mono: 19.7 $\mathrm{mg}, 42 \%$; di: $3.5 \mathrm{mg}, 6 \%$) and the general procedure \mathbf{B} on gram scale (12.0 mmol scale; mono: $2.080 \mathrm{~g}, 37 \%$; di: 0.208 g , 3%) to provide compound $\mathbf{3 h}$. Yellow solid, mp $80.7-86.5^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}$ $+56.750\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, a mixture of rotational isomers 2.3:1) δ $7.08-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 0.3 \mathrm{H}), 6.38-6.29(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.09(\mathrm{~m}, 0.7 \mathrm{H}), 5.09-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.61-4.30(\mathrm{~m}, 1 \mathrm{H})$, $4.26(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.21-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.25(\mathrm{~m}, 9 \mathrm{H}), 1.16(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0,167.2,158.0,155.2,141.8,136.6,135.0,132.3$, $128.6,128.1,127.5,127.4,120.3,117.0,112.5,80.1,70.1,60.8,54.2,34.3,28.2,27.8$ (minor), 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NNaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: 492.1993$; found 492.1993 .

Synthesis of O-Piv-L-phenyllactic acid analogues: ${ }^{[3]}$

General Procedure C

The phenyllactic acid substrate (1 equiv) and pivaloyl chloride (1.5 equiv) were stirred in DCM (1M) at RT for 24 h . The reaction mixture was then concentrated in vacuum and the resulting residue was purified by column chromatography (hexane:EtOAc $=75: 25$ with 0.2% HOAc).

(S)-3-phenyl-2-(pivaloyloxy)propanoic acid (5a)

Substrate 5a was obtained following general procedure \mathbf{C} from L-phenyllactic acid (commercial available, $20.0 \mathrm{mmol}, 3.3 \mathrm{~g}$). After purification by column chromatography, 5a was obtained as a colorless oil ($4.2 \mathrm{~g}, 84 \%$), colorless oil; $[\alpha]_{\mathrm{D}}^{25}-13.50\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.21(\mathrm{dd}, J=9.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=14.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (dd, $J=14.3,9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.16 ($\mathrm{s}, 9 \mathrm{H}$). HRMS-ESI m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 273.1097$; found 273.1086.

(S)-2-(pivaloyloxy)-3-(p-tolyl)propanoic acid (5b)

Substrate $\mathbf{5 b}$ was obtained following general procedure \mathbf{C} from 4-Methyl-L-phenyllactic acid (commercial available, $12.6 \mathrm{mmol}, 2.3 \mathrm{~g}$). After purification by column chromatography, 5b was obtained as a white solid ($2.3 \mathrm{~g}, 70 \%$), white solid, $\mathrm{mp} 86.0-86.6^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-11.25$ (c 0.4, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15-7.08(\mathrm{~m}, 4 \mathrm{H}), 5.18(\mathrm{dd}, J=9.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ (dd, $J=14.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=14.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.17$ ($\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8$, 174.7, 136.6, 132.7, 129.3, 129.1, 72.3, 38.6, 36.8, 26.9, 21.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 287.1254$; found 287.1250.

(S)-3-(4-chlorophenyl)-2-(pivaloyloxy)propanoic acid (5c)

Substrate $\mathbf{5 c}$ was obtained following general procedure \mathbf{C} from 4-chloro-L-phenyllactic acid (commercial available, $16.0 \mathrm{mmol}, 3.2 \mathrm{~g}$). After purification by column chromatography, 5c was obtained as a white solid ($2.7 \mathrm{~g}, 59 \%$), mp 110.6-113.9 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-13.50\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 5.18 (dd, $J=9.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=14.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.4,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7,174.9,134.2,133.1,130.7,128.6,71.8$, 38.6, 36.5, 26.9. HRMS-ESI m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NaClO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 307.0708$; found 307.0716.

Table S3. Optimization of C-H olefination of O-Piv L-phenyllactic acid ${ }^{[2]}$

Ligand screening

${ }^{a}$ Reaction conditions: O-Piv L-phenyllactic acid (0.1 mmol), Ethyl acrylate (0.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, Ligand (0.02 mmol), $\mathrm{AgOAc}(0.2 \mathrm{mmol}), \mathrm{KHCO}_{3}(0.2 \mathrm{mmol})$, HFIP $(0.7 \mathrm{~mL}), 100^{\circ} \mathrm{C}, 12 \mathrm{~h}$; The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-Trimethoxybenzene as an internal standard.

Base screening

${ }^{a}$ Reaction conditions: O-Piv L-phenyllactic acid (0.1 mmol), Ethyl acrylate (0.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.01 mmol), Ac-L-Ala-OH (0.02 mmol), AgOAc (0.2 mmol), Base (0.2 mmol), HFIP (0.7 mL), 100 ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5-$ Trimethoxybenzene as an internal standard.

Solvent screening

${ }^{a}$ Reaction conditions: O-Piv L-phenyllactic acid (0.1 mmol), Ethyl acrylate (0.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol}), \mathrm{Ac}$ -L-Ala- $\mathrm{OH}(0.02 \mathrm{mmol})$, $\mathrm{AgOAc}(0.2 \mathrm{mmol}), \mathrm{KHCO}_{3}(0.2 \mathrm{mmol})$, Solvent $(0.7 \mathrm{~mL}), 100^{\circ} \mathrm{C}, 12 \mathrm{~h}$; The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using $1,3,5$-Trimethoxybenzene as an internal standard. TFE $=2,2,2$-Trifluoroethanol; HFIP $=1,1,1,3,3,3$-Hexafluoro-2-propanol.

Table S4. Substrate scope of C-H olefination of O-Piv L-phenyllactic acid

${ }^{a}$ Reaction conditions: Substrate (0.1 mmol), Ethyl acrylate (0.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol}), \mathrm{Ac}-\mathrm{L}-\mathrm{Ala}-\mathrm{OH}(0.02 \mathrm{mmol}), \mathrm{AgOAc}(0.2$ $\mathrm{mmol}), \mathrm{KHCO}_{3}(0.2 \mathrm{mmol})$, TFE ($2,2,2$-Trifluoroethanol, 0.7 mL), $100^{\circ} \mathrm{C}, 12 \mathrm{~h} ;{ }^{b}$ using HFIP instead of TFE

General procedure \mathbf{D} ($\mathbf{0 . 1} \mathbf{~ m m o l}$ scale): Substrate 5a-c ($0.1 \mathbf{m m o l}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (2.3 $\mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv), Ac-L-Ala-OH ($2.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.2$ equiv), $\mathrm{AgOAc}(33.2 \mathrm{mg}$, 0.2 mmol , 2 equiv), $\mathrm{KHCO}_{3}(21.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) and Ethyl acrylate ($54 \mu \mathrm{~L}, 0.5$ $\mathrm{mmol}, 5.0$ equiv) were dissolved in 0.7 mL TFE. The tube was sealed and the reaction mixture was then placed to a pre-heated oil bath maintaining at $100^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then cooled to room temperature, and was filtered through celite. The filtrate was
concentrated under reduced pressure and the residue was purified by PTLC (hexane: $\mathrm{EtOAc}: \mathrm{HOAc}=75: 25$ with $0.2 \% \mathrm{HOAc}$) to give the pure products $\mathbf{6 a - c}$.

General procedure \mathbf{E} (gram scale): Substrate 5a-c (1.0 equiv), $\operatorname{Pd}(\mathrm{OAc})_{2}$ (0.1 equiv), Ac-L-Ala-OH (0.2 equiv), AgOAc (2.0 equiv), KHCO_{3} (2 equiv) and Ethyl acrylate (5.0 equiv) were dissolved in TFE $(0.14 \mathrm{M})$. The tube was sealed and then placed to a pre-heated oil bath maintaining at $100{ }^{\circ} \mathrm{C}$ for 12 h . (Caution: The tube was carefully capped and covered with safety shield.) The reaction mixture was then cooled to room temperature, and was filtered through celite. The filtrate was concentrated under vacuum and the residue was purified by column chromatography (C 18 Spherical silica) using $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ as the eluent to give the products 6a-c.

(S,E)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)phenyl)-2-(pivaloyloxy)propanoic acid (6a)

Substrate 5a was olefinated following the general procedure \mathbf{D} on 0.1 mmol scale (mono: 18.4 $\mathrm{mg}, 53 \%$; di: $2.8 \mathrm{mg}, 4 \%$) and the general procedure \mathbf{E} on gram scale (using HFIP instead of TFE; 20.0 mmol scale; mono: $3.123 \mathrm{~g}, 46 \%$; di: $0.340 \mathrm{~g}, 4 \%$) to provide compound $\mathbf{6 a}$. Colourless oil; $[\alpha]_{\mathrm{D}}^{25}+56.75\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.15$ (dd, $J=9.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{dd}, J=14.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J$ $=14.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8$, $173.8,166.8,141.6,135.5,133.9,131.0,130.0,127.7,126.7,120.6,72.2,60.7,38.5,33.9,26.8$, 14.3. $>99 \%$ ee as determined by HPLC (Chiralpak ADH, 85:15 hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$, $\left.25^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}\right), \operatorname{tr}($ major $)=9.4 \mathrm{~min}, \operatorname{tr}($ minor $)=18.5 \mathrm{~min}$. HRMS-ESI m / z Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 371.1465$; found 371.1474.

Area \% Report (racemic)

<Chromatogram>
mV

<Peak Table>
Detector A Channel 1 250nm

\left.| Peak\# | Ret. Time | Height | Area |
| ---: | ---: | ---: | ---: |
| 1 | 9.662 | 19525 | 940724 |
| 2 | 19.506 | 11258 | 823679 |$\right)$

Area \% Report (chiral)

<Chromatogram>

mV

<Peak Table>
Detector A Channel 1 250nm

Peak\#	Ret. Time	Height	Area
Area\%			
1	9.358	199776	6626967
2	18.463	296	33355
Total		200072	6660322

(S,E)-3-(2-(3-ethoxy-3-oxoprop-1-en-1-yl)-4-methylphenyl)-2-(pivaloyloxy)propanoic acid (6b)

Substrate $\mathbf{5 b}$ was olefinated following the general procedure \mathbf{D} on 0.1 mmol scale (mono: 18.8 $\mathrm{mg}, 52 \%$; di: $3.0 \mathrm{mg}, 7 \%$) and the general procedure \mathbf{E} on gram scale (8 mmol scale; mono: $1.448 \mathrm{~g}, 50 \% ; \mathrm{di}: 0.284 \mathrm{~g}, 8 \%$) to provide compound $\mathbf{6 b}$. Yellow oil; $[\alpha]_{\mathrm{D}}^{25}+14.75\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.20-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=9.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.38 (dd, $J=14.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=14.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (s, 3H), 1.33 (t, $J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.12$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9,174.3,167.0,141.8,137.2,133.5$, 132.7, 130.9, 130.9, 127.2, 120.0, 72.4, 60.6, 38.5, 33.5, 26.8, 21.0, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 385.1622$; found 385.1614.
(S,E)-3-(4-chloro-2-(3-ethoxy-3-oxoprop-1-en-1-yl)phenyl)-2-(pivaloyloxy)propanoic acid (6c)

Substrate $\mathbf{5 c}$ was olefinated following the general procedure \mathbf{D} on 0.1 mmol scale (mono:12.8 $\mathrm{mg}, 34 \%$;di: $3.3 \mathrm{mg}, 7 \%$) and the general procedure \mathbf{E} on gram scale (9.6 mmolscale;mono: $1.310 \mathrm{~g}, 36 \%$; di: $0.147 \mathrm{~g}, 3 \%$) to provide compound $\mathbf{6 c}$. Yellow oil; $[\alpha]_{D}^{25}$ $+12.25\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H})$, 7.24-7.13 (m, 2H), $6.33(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.07(\mathrm{~m}, 2 \mathrm{H})$, $3.43(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.5,176.0,167.2,141.7,137.2,135.0,132.6,132.5,129.7$, 125.9, 120.2, 60.8, 38.6, 34.1, 29.7, 26.9, 14.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 383.1256$; found 383.1264.

2.2 B-Ring formation via decarboxylative giese cyclization

Table S5. Optimization of Ir-catalyzed photo-redox decarboxylative coupling ${ }^{[4]}$

Screening of bases and solvents ${ }^{a}$:

		$\begin{gathered} \left.1 \mathrm{~mol} \% \operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right]_{2}(\mathrm{dt} \\ \mathrm{N} \text { equiv Base, } 2.0 \text { equiv } \\ \text { solvent }(0.02 \mathrm{M}) \end{gathered}$			$+$ trans-8b	
Entry	Solvent	N equiv	Base	Additive	Yield	cis- : trans $^{\text {c }}$
1	DMSO	2	DBU	1	0\%	1
2	DMSO	2	DIPEA	1	$25 \%{ }^{\text {b }}$	1
3	DMSO	2	DMAP	1	0\%	1
4	DMSO	2	DABCO	1	$19 \%{ }^{\text {b }}$	1
5	DMSO	1	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	1	90\%	1:1
6	DMSO	1	$\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$	1	90\%	1:1
7	DMSO	1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1	90\%	1:1
8	DMSO	1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{MgBr} \mathrm{V}_{2} \bullet \mathrm{OEt}_{2}$	0\%	1
9	DMSO	1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	LiCl	95\% (90\% ${ }^{\text {b }}$)	1:1
10	DMSO	2	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	LiCl	90\%	1:1
11	DMF	1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	LiCl	$65 \%{ }^{\text {b }}$	1:0.9
12	MeCN	1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	LiCl	24\%	1:1
13	THF	1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	LiCl	17\%	1
14	NMP	1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	LiCl	16\%	1

${ }^{\text {a }}$ Conditions: $\left[\operatorname{IrdF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}$ (dtbbpy) PFF_{6} ($0.001 \mathrm{mmol}, 0.01$ equiv), substrate ($0.1 \mathrm{mmol}, 1.0$ equiv), Base ($0.2 \mathrm{mmol}, 2.0$ equiv), and 5 mL of DMSO (0.02 M). The yield was determined by ${ }^{1} \mathrm{H}$ NMR using $1,3,5$-trimethoxybenzene as an internal standard. ${ }^{\mathrm{b}}$ isolated yield. ${ }^{\mathrm{c}}$ The dr value was determined by ${ }^{1} \mathrm{H}$ NMR. DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene.

Table S6. Optimization of Ni-catalyzed decarboxylative coupling via RAEs ${ }^{[5]}$

Entry	Ligand	Solvent	Yield $^{\text {b }}$	cis : trans ${ }^{\text {c }}$
1	$/$	MeCN	73%	$1: 1.7$
2	$/$	DMF	70%	$1: 2.3$
3	$/$	DMA	60%	$1: 1.9$
4	$/$	NMP	77%	$1: 2.3$
5	$/$	DMSO	62%	$1: 2.4$
6	$/$	THF	72%	$1: 1.5$
7	$/$	$1,4-$ Dioxane	53%	$1: 1.1$
8	$/$	THF:DMF $=2: 1$	86%	$1: 1.5$
9	$/$	DMI	80%	$1: 2.5$
$10^{\text {d }}$	$/$	DMI	80%	$1: 2.9$
11	Dtbbpy	DMI	68%	$1: 2.5$
12	Bphen	DMI	74%	$1: 2.9$
13	Tpy	DMI	72%	$1: 3.2$

${ }^{\text {a }}$ Reaction conditions: Substrate $\mathbf{3 b}(0.1 \mathrm{mmol})$, DIC (0.11 mmol), NHPI (0.11 mmol$)$, DCM $(0.5 \mathrm{~mL})$, solvent removed after 2 h , then $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.02 \mathrm{mmol}), \mathrm{Zn}(0.2 \mathrm{mmol})$, $\mathrm{LiCl}(0.3 \mathrm{mmol})$, ligand (0.2 equiv), solvent (0.5 mL), $20^{\circ} \mathrm{C}, 12 \mathrm{~h} .{ }^{b}$ Isolated yields. ${ }^{c} d r$ value determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ The reaction was performed at $0^{\circ} \mathrm{C}$. DMF $=\mathrm{N}, \mathrm{N}$-Dimethylformamide, DMA $=\mathrm{N}, \mathrm{N}$-Dimethylacetamide, NMP $=\mathrm{N}-\mathrm{Methyl}-2$ pyrrolidinone, DMSO $=$ Methyl sulfoxide, THF $=$ Tetrahydrofuran, DMI $=$ 1,3-Dimethyl-2-imidazolidinone . Dtbbpy $=4,4$ '-Di-tert-butyl-2,2'-bipyridine, Bphen $=4,7$-Diphenyl-1,10-phenanthroline, Tpy $=2$ "-Terpyridine

Table S7. Decarboxylative cyclization reaction of substrates 3a-h

[^1]General procedure \mathbf{F} ($\mathbf{0 . 1} \mathbf{~ m m o l}$ scale): An oven-dried 25 mL Schlenck-type tube with a magnetic stir bar was charged with $\left.\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(1.1 \mathrm{mg}, 0.001 \mathrm{mmol}, 0.01$ equiv), substract 3a-h (0.1 mmol , 1.0 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(32.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{equiv}$), LiCl (8.4 $\mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) as additive and DMSO $(5 \mathrm{~mL})$. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ under vacuum for 5 min and then back filled with nitrogen while being allowed to rt . This process was repeated 3 times, then the reaction mixture was irradiated with blue LEDs (2 cm away from two 20W blue LED strips). After 12 h , the reaction mixture was diluted with saturated aqueous 1 M HCl solution, extracted with $\mathrm{EtOAc}(4 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by silica gel flash column chromatography or PTLC (hexane:EtOAc $=90: 10$) to yield pure compound, and the dr value was determined by ${ }^{1} \mathrm{H}$ NMR.

General procedure G (1.0 mmol scale): An oven-dried 100 mL Schlenck-type tube with a magnetic stir bar was charged with $\left.\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}^{2}\right)\right]_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(11 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv), substract 3a-h (1.0 mmol , 1.0 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($325.8 \mathrm{mg}, 1.0 \mathrm{mmol}$, 1.0equiv), LiCl (84 $\mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv.) as additive and DMSO (50 mL). The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ under vacuum for 5 min and then backfilled with nitrogen while being allowed to rt. This process was repeated 3 times, then the reaction mixture was irradiated with blue LEDs (2 cm away from two 20W blue LED strips). After 24 h , the reaction mixture was diluted with saturated aqueous 1 M HCl solution, extracted with $\operatorname{EtOAc}(4 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (eluted with hexane: $\mathrm{EtOAc}=90: 10$) to furnish the desired product.

Ethyl 2-((2S)-2-((tert-butoxycarbonyl)amino)-6-methyl-2,3-dihydro-1H-inden-1-yl)acetate (8a)

Substrate 3a was cyclized following the general procedure \mathbf{F} on 0.1 mmol scale ($29.6 \mathrm{mg}, 89 \%$, 1:1.2 d.r.) and the general procedure \mathbf{G} on 1 mmol scale ($0.307 \mathrm{~g}, 92 \%, 1: 1.2$ d.r.) to provide compound 8a. Yellow oil, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1.2$ d.r.) $\delta 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.03-$ $6.93(\mathrm{~m}, 2 \mathrm{H}), 4.90-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{q}, J=7.0 \mathrm{~Hz}, 0.45 \mathrm{H}), 3.39(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.30(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.15(\mathrm{dd}, J=16.6,6.7 \mathrm{~Hz}, 0.45 \mathrm{H}), 2.78-$ $2.64(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 9 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,155.6,155.5,143.4,143.0,137.4,137.2,136.6,136.5,128.1$,
$127.9,124.7,124.5,124.5,124.3,79.3,79.2,60.6,60.5,58.2,54.6,47.4,44.2,38.4,38.4,37.9$, 34.0, 28.4, 28.3, 21.4, 21.3, 14.2, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 356.1832; found 356.1830 .

Ethyl 2-((2S)-2-((tert-butoxycarbonyl)amino)-2,3-dihydro-1H-inden-1-yl)acetate (8b)

Substrate $\mathbf{3 b}$ was cyclized following the general procedure \mathbf{F} on 0.1 mmol scale ($28.7 \mathrm{mg}, 90 \%$, $1: 1$ d.r.) and the general procedure \mathbf{G} on 1 mmol scale $(0.229 \mathrm{~g}, 72 \%, 1: 1$ d.r.) to provide compound 8b. Colorless oil, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ d.r.) $\delta 7.25-7.10(\mathrm{~m}, 4 \mathrm{H}), 4.91-$ $4.65(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{q}, J=6.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.44(\mathrm{q}, J=7.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.35$ (dd, $J=15.7,7.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.20 (dd, $J=16.0,6.9 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.83-2.67 (m, 2H), 2.66-2.61 $(\mathrm{m}, 1 \mathrm{H}), 1.45-1.43(\mathrm{~m}, 9 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,155.6$, $155.5,143.3,142.9,140.5,140.3,127.3,127.2,126.9,126.9,124.8,124.7,124.1,123.6,79.3$, $60.7,60.6,58.0,54.4,47.5,44.3,38.8,37.8,34.0,31.4,28.4,28.3,14.2,14.1 .<5 \%$ ee as determined by HPLC (Chiralcel OZH, 85:15 hexane $/ i-\mathrm{PrOH}, 0.5 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}$), $\operatorname{tr}=22.0 \mathrm{~min}, \operatorname{tr}=25.2 \mathrm{~min}, \operatorname{tr}=30.7 \mathrm{~min}, \operatorname{tr}=37.3 \mathrm{~min}$. HRMS-ESI m$/ \mathrm{z}$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 342.1676$; found 342.1683.

Area \% Report (racemic)

<Chromatogram>
mV

<Peak Table>

Detector A Channel 1 250nm				
Peak\#	Ret. Time	Height	Area	Area\%
1	21.961	13659	350442	21.481
2	25.230	16037	469326	28.769
3	30.750	9393	347708	21.314
4	37.652	10015	463898	28.436
Total		49103	1631374	100.000

Area \% Report (chiral)

<Chromatogram>
mV

<Peak Table>

Detector A Channel 1 250nm

Peak\#	Ret. Time	Height	Area	Area\%
1	21.952	14039	350759	23.339
2	25.220	13419	380773	25.336
3	30.665	12653	443789	29.529
4	37.272	5337	327590	21.797
Total		45448	1502910	100.000

Ethyl 2-((2S)-2-((tert-butoxycarbonyl)amino)-6-phenyl-2,3-dihydro-1H-inden-1-
yl)acetate (8c)

Substrate $\mathbf{3 c}$ was cyclized following the general procedure \mathbf{F} on 0.1 mmol scale ($37.5 \mathrm{mg}, 95 \%$, 1:1.3 d.r.) and the general procedure \mathbf{G} on 1 mmol scale ($0.336 \mathrm{~g}, 85 \%, 1: 1.3$ d.r.) to provide compound 8c. Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1.3$ d.r.) $\delta 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.38(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.05-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $0.43 \mathrm{H}), 3.50(\mathrm{q}, J=7.0 \mathrm{~Hz}, 0.57 \mathrm{H}), 3.39$ (dd, $J=16.0,7.3 \mathrm{~Hz}, 0.57 \mathrm{H}$), 3.25 (dd, $J=16.1,6.9$ $\mathrm{Hz}, 0.43 \mathrm{H}$), 2.88-2.64 (m, 3H), 1.47-1.44 (m, 9H), 1.30-1.21 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.5,155.6,155.5,144.0,143.6,141.3,141.3,140.3,140.3,139.6,139.5,128.7$, 128.7, 127.1, 127.1, 127.1, 127.1, 126.5, 126.3, 125.1, 125.0, 122.9, 122.5, 79.4, 60.7, 60.6, 58.2, 54.6, 47.6, 44.4, 38.5, 37.9, 34.1, 29.7, 28.4, 28.3, 14.2, 14.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 418.1989$; found 418.1991.

Ethyl 2-((2S)-2-((tert-butoxycarbonyl)amino)-6-fluoro-2,3-dihydro-1H-inden-1yl)acetate (8d)

Substrate 3d was cyclized following the general procedure \mathbf{F} on 0.1 mmol scale ($30.7 \mathrm{mg}, 91 \%$, 1:1.2 d.r.) and the general procedure \mathbf{G} on 1 mmol scale $(0.293 \mathrm{~g}, 87 \%, 1: 1.2$ d.r.) to provide compound 8d. Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1.2$ d.r.) $\delta 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.90-$ $6.83(\mathrm{~m}, 2 \mathrm{H}), 4.97-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{q}, J=6.8 \mathrm{~Hz}, 0.44 \mathrm{H}), 3.41(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 0.56 \mathrm{H}$), 3.29 (dd, $J=15.9,7.6 \mathrm{~Hz}, 0.56 \mathrm{H}$), 3.15 (dd, $J=16.1,7.5 \mathrm{~Hz}, 0.44 \mathrm{H}$), $2.81-$ $2.47(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 9 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3$, 162.2 (d, $J=244.0 \mathrm{~Hz}$), 155.5, 155.4 (minor), 145.5, 145.0 (minor), 135.7 (minor), 135.6, $125.7,114.20(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 110.0(\mathrm{~d}, \mathrm{~J}=22.5 \mathrm{~Hz})$, 79.5, 60.8, 60.7 (minor), 58.3, 54.8 (minor), 47.6, 44.4 (minor), 38.0, 37.9 (minor), 37.6, 33.9 (minor), 28.4, 28.3 (minor), 14.2, 14.1 (minor). ${ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.8, -115.9. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 360.1586$; found 360.1578 .

Ethyl 2-((2S)-2-((tert-butoxycarbonyl)amino)-6-chloro-2,3-dihydro-1H-inden-1yl)acetate (8e)

Substrate $\mathbf{3 e}$ was cyclized following the general procedure \mathbf{F} on 0.1 mmol scale ($30.7 \mathrm{mg}, 87 \%$, 1:1.2 d.r.) and the general procedure \mathbf{G} on 1 mmol scale ($0.253 \mathrm{~g}, 75 \%, 1: 1.2$ d.r.) to provide compound 8e. Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1.2$ d.r.) $\delta 7.20-7.11(\mathrm{~m}, 3 \mathrm{H}), 5.03-$ $4.61(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=6.9 \mathrm{~Hz}, 0.45 \mathrm{H}), 3.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.31$ (dd, $J=15.9,7.4 \mathrm{~Hz}, 0.55 \mathrm{H}$), 3.18 (dd, $J=16.0,6.9 \mathrm{~Hz}, 0.45 \mathrm{H}$), 2.86-2.47 (m, 3H), 1.46-1.44 $(\mathrm{m}, 9 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,155.5,155.4,145.3,144.9$, $138.9,138.7,132.6,132.6,127.5,127.3,125.9,125.8,124.5,124.1,79.5,60.8,60.7,58.1,54.5$, $47.4,44.3,38.2,37.6,33.8,28.4,28.3,14.2,14.1$. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClNNaO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 376.1286$; found 376.1286 .

Ethyl 2-((2S)-2-((tert-butoxycarbonyl)amino)-6-methoxy-2,3-dihydro-1H-inden-1yl)acetate (8f)

Substrate $\mathbf{3 f}$ was cyclized following the general procedure \mathbf{F} on 0.1 mmol scale ($26.3 \mathrm{mg}, 75 \%$, 1:1.2 d.r.) and the general procedure \mathbf{G} on 1 mmol scale ($0.227 \mathrm{~g}, 65 \%, 1: 1.2$ d.r.) to provide compound 8f. Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1.2$ d.r.) $\delta 7.14-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.75-$ $6.70(\mathrm{~m}, 2 \mathrm{H}), 4.98-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{q}, J=7.0,6.5 \mathrm{~Hz}$, 0.45 H), 3.40 (q, $J=7.2 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.27$ (dd, $J=15.5,7.5 \mathrm{~Hz}, 0.55 \mathrm{H}$), 3.13 (dd, $J=15.7,7.0$ $\mathrm{Hz}, 0.45 \mathrm{H}$), 2.72-2.54 (m, 3H), 1.48-1.37 (m, 9H), 1.35-1.23 (m, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.5,159.1,159.1,155.6,155.5,144.9,144.4,132.3,132.2,125.4,125.3,113.0$, $112.9,109.9,109.5,79.3,60.7,60.6,58.3,55.4,55.4,54.8,47.8,44.5,38.0,37.9,34.0,33.7$, 28.4, 28.3, 14.2, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 372.1781$; found 372.1788 .

Ethyl 2-((2S)-2-((tert-butoxycarbonyl)amino)-6-ethoxy-2,3-dihydro-1H-inden-1yl)acetate (8 g)

Substrate $\mathbf{3 g}$ was cyclized following the general procedure \mathbf{F} on 0.1 mmol scale ($29.0 \mathrm{mg}, 80 \%$, 1:1.2 d.r.) and the general procedure \mathbf{G} on 1 mmol scale ($0.309 \mathrm{~g}, 85 \%, 1: 1.2$ d.r.) to provide compound 8g. Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1.2$ d.r.) $\delta 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.74-$ $6.69(\mathrm{~m}, 2 \mathrm{H}), 4.94-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.04(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{q}, J=6.8 \mathrm{~Hz}$, 0.44 H), 3.39 (q, $J=7.1 \mathrm{~Hz}, 0.56 \mathrm{H}$), 3.26 (dd, $J=15.5,7.4 \mathrm{~Hz}, 0.56 \mathrm{H}$), 3.12 (dd, $J=15.2,7.0$ $\mathrm{Hz}, 0.44 \mathrm{H}), 2.74-2.55(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.42(\mathrm{~m}, 9 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,158.4,158.4,155.6,155.5,144.8,144.3,132.1,132.0,125.3$, $125.3,113.6,113.5,110.5,110.1,79.3,63.6,63.6,60.7,60.6,58.3,54.8,47.7,44.5,38.0,37.9$, 34.0, 28.4, 28.3, 14.8, 14.2, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 386.1938$; found 386.1940.

Ethyl 2-((2S)-6-(benzyloxy)-2-((tert-butoxycarbonyl)amino)-2,3-dihydro-1H-inden-1yl)acetate (8 h)

Substrate $\mathbf{3 h}$ was cyclized following the general procedure \mathbf{F} on 0.1 mmol scale ($35.3 \mathrm{mg}, 83 \%$, 1:1.25 d.r.) and the general procedure \mathbf{G} on 1 mmol scale ($0.361 \mathrm{~g}, 85 \%, 1: 1.2$ d.r.) to provide compound $\mathbf{8 h}$. Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1.2$ d.r.) $87.50-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.12-$ $7.07(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.93-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.07(\mathrm{~m}$, $2 \mathrm{H}), 3.72(\mathrm{q}, J=6.9 \mathrm{~Hz}, 0.45 \mathrm{H}), 3.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 0.55 \mathrm{H}), 3.27(\mathrm{dd}, J=15.5,7.4 \mathrm{~Hz}, 0.55 \mathrm{H})$, $3.14(\mathrm{dd}, J=15.6,6.9 \mathrm{~Hz}, 0.45 \mathrm{H}), 2.80-2.50(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 9 \mathrm{H}), 1.30-1.21(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,158.3,158.3,155.6,155.4,144.9,144.4,137.0,132.6$, $132.5,128.5,127.9,127.4,125.4,125.3,113.9,113.7,110.9,110.5,79.3,70.2,60.7,60.6,58.3$, $54.8,47.7,44.5,38.0,37.9,37.8,34.0,28.4,28.3,14.2,14.1$. HRMS-ESI m/z Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 448.2094$; found 448.2090 .

Table S8. Decarboxylative cyclization reactions of substrates 6a-c

${ }^{a}$ Reaction conditions: Substrate 6a-c (0.1 mmol), DIC (0.11 mmol), NHPI $(0.11 \mathrm{mmol})$, DCM $(0.5 \mathrm{~mL})$, solvent removed after 2 h , then $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.02 \mathrm{mmol}), \mathrm{Zn}(0.2 \mathrm{mmol}), \mathrm{LiCl}(0.3 \mathrm{mmol}), \mathrm{THF}(0.5 \mathrm{~mL}), 20^{\circ} \mathrm{C}, 12 \mathrm{~h} .{ }^{b} \mathrm{dr}$ ration refers to cis versus trans.

General procedure \mathbf{H} (Condition B, $\mathbf{0 . 1} \mathbf{~ m m o l ~ s c a l e) : ~ A ~ c u l t u r e ~ t u b e ~ w a s ~ c h a r g e d ~ w i t h ~}$ substrate 6a-c ($0.1 \mathrm{mmol}, 1.0$ equiv) and NHPI (0.11 mmol , 1.1 equiv). DCM (0.5 mL , anhydrous, 0.2 M) was added, and DIC $(0.11 \mathrm{mmol}, 17 \mu \mathrm{~L})$ was added drop wise. The reactions were monitored by TLC (typical time was 1 h). After consumption of all starting material, the solvent was removed on a rotary evaporator at $40^{\circ} \mathrm{C}$ under reduced pressure and dried on a high-vacuum line for at least 5 minutes to remove residue of DCM. Then, the culture tube was charged with LiCl ($12.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0$ equiv), Zn powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv), and $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(7.4 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv), and the culture tube was evacuated and backfilled with argon from a balloon. To the reaction mixture was added THF (0.2 M), and the mixture was stirred overnight at room temperature. After 12 hours, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. The mixture was extracted with EtOAc three times, and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel flash column chromatography or PTLC (hexane: $\mathrm{EtOAc}=90: 10$) to yield pure compound, and the dr value was determined by ${ }^{1} \mathrm{H}$ NMR.

General procedure I (Condition B, $\mathbf{1 . 0} \mathbf{~ m m o l ~ s c a l e) : ~ A ~ c u l t u r e ~ t u b e ~ w a s ~ c h a r g e d ~ w i t h ~}$ substrate 6a-c (1.0 equiv) and NHPI (1.1 equiv). DCM (0.2 M) was added, and DIC (1.1 mmol) was added drop wise. The reactions were monitored by TLC (typical time was 1 h). After consumption of all starting material, the solvent was removed on a rotary evaporator at $40^{\circ} \mathrm{C}$ under reduced pressure and dried on a high-vacuum line for at least 5 minutes to remove residue of DCM. Then, the culture tube was charged with $\mathrm{LiCl}(12.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0$ equiv), Zn powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$, 2.0 equiv), and $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(7.4 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv), and the culture tube was evacuated and backfilled with argon from a balloon. To the reaction mixture was added THF (0.2 M), and the mixture was stirred overnight at room temperature.

After 12 hours, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution were added. The mixture was extracted with EtOAc three times, and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by silica gel flash column chromatography (hexane: $\mathrm{EtOAc}=90: 10$) to yield pure compound, and the dr value was determined by ${ }^{1} \mathrm{H}$ NMR.

(1S,2S)-1-(2-ethoxy-2-oxoethyl)-2,3-dihydro-1H-inden-2-yl pivalate (trans-9a)

Substrate $\mathbf{6 a}$ as cyclized following the general procedure \mathbf{H} on 0.1 mmol scale ($20.3 \mathrm{mg}, 67 \%$, cis:trans $=1: 1.6$) and the general procedure \mathbf{I} on gram scale (gram scale: $4.35 \mathrm{mmol}, 0.404 \mathrm{~g}$, 42%, cis:trans $=1: 1.1$) to provide compound 9 a . The trans isomer trans-9a was separated by PTLC (preparative TLC) (Hexane: $\mathrm{EtOAc}=9: 1$). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.19(\mathrm{~m}, 4 \mathrm{H}), 5.24(\mathrm{dt}, J=6.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{td}, J=7.0,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.43$ (dd, $J=16.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=16.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 2 H), $1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.5,171.8,142.5$, $139.9,127.4,127.0,124.7,123.9,79.5,60.6,47.4,38.6,38.0,38.0,27.1,14.2 .<5 \%$ ee as determined by HPLC (Chiralcel OZH, $95: 5$ hexane $/ i-\mathrm{PrOH}, 0.5 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}$), $\operatorname{tr}=8.7 \mathrm{~min}, \operatorname{tr}=9.4 \mathrm{~min}, \operatorname{tr}=9.8 \mathrm{~min}, \operatorname{tr}=11.0 \mathrm{~min}$. HRMS-ESI m$/ \mathrm{z}$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 327.1567$; found 327.1570.

(1R,2S)-1-(2-ethoxy-2-oxoethyl)-2,3-dihydro-1H-inden-2-yl pivalate (cis-9a)

The cis isomer cis-9a was separated by PTLC (preparative TLC) (Hexane: EtOAc = 9:1). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.15(\mathrm{~m}, 4 \mathrm{H}), 5.61(\mathrm{td}, J=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{dt}, J=8.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=17.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9,172.2$, $142.8,140.2,127.2,126.8,124.7,123.4,75.9,60.6,44.2,38.9,38.7,33.4,27.0,14.2$. HRMSESI m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 327.1567$; found 327.1572.

Area \% Report (racemic)

<Chromatogram>
mV

<Peak Table>
Detector A Channel 1 250nm

Peak\#	Ret. Time	Height	Area
1	8.667	29092	313354
2	9.365	26740	309849
3	9.807	43036	512367
4	10.988	40246	512709
Total		139114	1648279

Area \% Report (chiral)

<Chromatogram>
mV

<Peak Table>
Detector A Channel 1 250nm

Peak\#	Ret. Time	Height	Area
1	8.665	29253	329769
2	9.364	27400	330375
3	9.810	23252	287708
4	10.990	23520	30.390
Total		103425	1249595
23.024			

(1S,2S)-1-(2-ethoxy-2-oxoethyl)-6-methyl-2,3-dihydro-1H-inden-2-yl pivalate (trans-9b)

Substrate $\mathbf{6 b}$ as cyclized following the general procedure \mathbf{H} on 0.1 mmol scale ($16.4 \mathrm{mg}, 52 \%$, cis:trans $=1: 1.2$) and the general procedure \mathbf{I} on gram scale (gram scale: $3.0 \mathrm{mmol}, 0.415 \mathrm{~g}$, 43%, cis:trans $=1: 1.2$) to provide compound $\mathbf{9 b}$. The trans isomer trans-9b was separated by PTLC (preparative TLC) (Hexane: EtOAc $=9: 1$). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{dt}, J=7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.10(\mathrm{~m}, 2 \mathrm{H})$, 3.62 (td, $J=7.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.76$ (m, 1H), 2.64 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.5,171.9$, 142.6, 136.8, 136.6, 128.2, 124.5, 124.4, 79.7, 60.6, 47.3, 38.6, 38.0, 37.6, 27.0, 21.4, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 341.1723; found 341.1727.

(1R,2S)-1-(2-ethoxy-2-oxoethyl)-6-methyl-2,3-dihydro-1H-inden-2-yl pivalate (cis-9b)

The cis isomer cis-9b was separated by PTLC (preparative TLC) (Hexane: EtOAc = 9:1). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.07-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{td}$, $J=6.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.87-$ $2.79(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9,172.3,142.9,137.1,136.5,128.0,124.4,124.1,76.1,60.6,44.1$, 38.9, 38.3, 33.5, 27.0, 21.4, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 341.1723$; found 341.1717.

(1S,2S)-6-chloro-1-(2-ethoxy-2-oxoethyl)-2,3-dihydro-1H-inden-2-yl pivalate (trans-9c)

Substrate $\mathbf{6 c}$ as cyclized following the general procedure \mathbf{H} on 0.1 mmol scale ($23.8 \mathrm{mg}, 59 \%$, cis:trans $=1.7: 1$) and the general procedure \mathbf{I} on gram scale (gram scale: $3.43 \mathrm{mmol}, 0.480 \mathrm{~g}$, 45%, cis:trans $=1.1: 1$) to provide compound $9 \mathbf{c}$. The trans isomer trans-9c was separated by PTLC (preparative TLC) (Hexane: $\mathrm{EtOAc}=9: 1$). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17-7.10(\mathrm{~m}, 3 \mathrm{H}), 5.24-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{td}, J=7.0,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.37 (dd, $J=16.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=17.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J$
$=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.3,171.4,144.6,138.4,132.6$, 127.6, 125.8, 124.4, 79.4, 60.7, 47.4, 38.5, 37.6, 37.4, 27.0, 14.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 339.1358$; found 339.1352.
(1R,2S)-6-chloro-1-(2-ethoxy-2-oxoethyl)-2,3-dihydro-1H-inden-2-yl pivalate (cis-9c)

The cis isomer trans-9c was separated by PTLC (preparative TLC) (Hexane: EtOAc = 9:1). Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.12(\mathrm{~m}, 3 \mathrm{H}), 5.59(\mathrm{td}, J=5.8,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.24-4.12 (m, 2H), 3.79 (q, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22 (dd, $J=17.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=17.1$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,171.9,144.9,138.7,132.6,127.4,125.8,123.8,76.0,60.7,44.2,38.9$, 38.2, 33.1, 27.0, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 339.1358; found 339.1366.

2.3 C-Ring formation via intramolecular cyclization

2.3.1 Synthetic route of compounds 11 from 8a-h (NHBoc series)

Table S9. C-Ring formation from substrates 8a-h

General Procedure J: To a stirred solution of substrate 8a-h (1.0 equiv) in DCM ($10 \mathrm{~mL} /$ mmol) was added TFA (10.0 equiv) at $0^{\circ} \mathrm{C}$. When the addition was complete, the reaction mixture was warmed to room temperature (RT) and stirred for an additional 2 h . The mixture was quenched with saturated aqueous NaHCO_{3} followed by the addition of EtOAc. The organic layer was separated, and the aqueous phase was further extracted with EtOAc (2 times). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was stirred with silica gel (400 mesh, RT, 6 h) in DCM immediately before purified by column chromatography on silica gel to give the products 10a-h and 11a-h.

(3aR,8aS)-5-methyl-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11a)

Compound 11a was obtained following general procedure \mathbf{J} from $\mathbf{8 a}(0.922 \mathrm{mmol}, 0.307 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 11a was obtained as a white solid ($0.072 \mathrm{~g}, 42 \%$); mp 202.3-203. $1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12-7.01(\mathrm{~m}, 3 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=7.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.18$ (dd, $J=16.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{dd}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.0,144.1,137.2,137.1,128.7,125.2,124.9,58.1$, 44.8, 39.2, 36.9, 21.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 210.0889$; found 210.0886 .

Ethyl 2-((1S,2S)-2-amino-6-methyl-2,3-dihydro-1H-inden-1-yl)acetate (10a)

Compound 10a was obtained following general procedure \mathbf{J} from $\mathbf{8 a}(0.922 \mathrm{mmol}, 0.307 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 10a was obtained as a colorless oil($0.107 \mathrm{~g}, 50 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11-$ $6.94(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.24-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.50(\mathrm{~m}, 3 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,144.0,137.9,136.3$, 127.9, 124.6, 124.5, 60.6, 59.8, 50.9, 41.1, 38.3, 21.4, 14.3. HRMS-ESI m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 234.1489$; found 234.1490.
(3aR,8aS)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11b)

Compound 11b was obtained following general procedure \mathbf{J} from $\mathbf{8 b}(2.187 \mathrm{mmol}, 0.698 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 11b was obtained as a white solid ($0.155 \mathrm{~g}, 41 \%$); mp 177.2-178.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=9.0$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, $J=16.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=17.1,9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48$ (dd, $J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.3,144.0,140.3$, 127.7, 127.3, 125.2, 124.6, 58.0, 44.8, 39.5, 37.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NNaO}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 196.0733$; found 196.0736 .

Ethyl 2-((1S,2S)-2-amino-2,3-dihydro-1H-inden-1-yl)acetate (10b)

Compound 11b was obtained following general procedure \mathbf{J} from $\mathbf{8 b}(2.187 \mathrm{mmol}, 0.698 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 11b was obtained as a yellow oil ($0.280 \mathrm{~g}, 58 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-$ $7.12(\mathrm{~m}, 4 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 2.76 (td, $J=16.2,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=16.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,143.4,140.7,127.2,126.8,124.8,123.8,60.7,59.2,49.9$, 40.6, 38.2, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 242.1151$; found 242.1147.

(3aR,8aS)-5-phenyl-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11c)

Compound 11c was obtained following general procedure \mathbf{J} from $\mathbf{8 c}(2.199 \mathrm{mmol}, 0.871 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 11c was obtained as a white solid ($0.231 \mathrm{~g}, 42 \%$) ; mp 182.2-183.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$, 6.27 (br s, 1H), $4.54(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=17.0,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=17.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}{ }^{13}$ NMR (125 MHz, CDCl_{3}) $\delta 176.9$, 144.7, 141.1, 140.9, 139.4, 128.8, 127.2, 127.1, 127.1, $125.5,123.4,58.1,45.0,39.3,37.0$. HRMS-ESI m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NNaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 272.1046; found 272.1086.

Ethyl 2-((1S,2S)-2-amino-6-phenyl-2,3-dihydro-1H-inden-1-yl)acetate (10c)

Compound 10c was obtained following general procedure \mathbf{J} from $\mathbf{8 c}(2.199 \mathrm{mmol}, 0.871 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 10c was obtained as a colorless oil ($0.378 \mathrm{~g}, 58 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-$ 7.50 (m, 2H), 7.45-7.39 (m, 3H), 7.38-7.30 (m, 2H), 7.28-7.24 (m, 1H), 4.29 (br s, 2H), 4.254.13 (m, 2H), $3.64(\mathrm{q}, ~ J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=16.1,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.96-2.85 (m, 2H), $2.63(\mathrm{dd}, J=16.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,143.4,141.2,140.4,139.3,128.7,127.1,127.1,126.6,125.1,122.6$, 61.0, 59.0, 48.6, 39.3, 38.3, 14.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 296.1645$; found 296.1644.

(3aR,8aS)-5-fluoro-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11d)

Compound 11d was obtained following general procedure \mathbf{J} from $\mathbf{8 d}(1.792 \mathrm{mmol}, 0.604 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 11d was obtained as a white solid ($0.140 \mathrm{~g}, 41 \%$); mp 193.8-194.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ § 7.17-7.10(m, 1H), 6.96-6.87 (m, 2H), $6.51(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{dd}, J=17.1,2.1 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7,162.7(\mathrm{~d}, J=244.1 \mathrm{~Hz}), 146.2(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 135.6(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}), 126.3(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 111.5(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 58.4,45.0(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}$), 38.9, 36.8. ${ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.7. HRMS-ESI m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 214.0639$; found 214.0640.

Ethyl 2-((1S,2S)-2-amino-6-fluoro-2,3-dihydro-1H-inden-1-yl)acetate (10d)

Compound 10d was obtained following general procedure \mathbf{J} from $\mathbf{8 d}(1.792 \mathrm{mmol}, 0.604 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, $\mathbf{1 0 d}$ was obtained as a colourless oil $(0.247 \mathrm{~g}, 58 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.15-7.07 (m, 1H), 6.91-6.80 (m, 2H), $4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-$ $3.13(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.53(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 172.6, $162.2(\mathrm{~d}, J=243.2 \mathrm{~Hz}), 145.9(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 136.2(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 125.7(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}), 114.0(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 111.1(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 60.7,59.8,50.7,40.5,37.9,14.2 .{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-116.3. HRMS-ESI m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 238.1238; found 238.1235 .
(3aR,8aS)-5-chloro-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11e)

Compound 11e was obtained following general procedure \mathbf{J} from $\mathbf{8 e}(2.078 \mathrm{mmol}, 0.734 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 11e was obtained as a white solid ($0.181 \mathrm{~g}, 42 \%$) ; mp 192.1-193.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.92 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (dd, $J=17.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.46$ (dd, $J=17.1$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,146.0,138.7,133.1,128.1,126.4,124.9$, 58.1, 44.9, 39.1, 36.7. HRMS-ESI m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNNaO}[\mathrm{M}+\mathrm{Na}]^{+}: 230.0343$; found 230.0339 .

Ethyl 2-((1S,2S)-2-amino-5-chloro-2,3-dihydro-1H-inden-1-yl)acetate (10e)

Compound 10e was obtained following general procedure \mathbf{J} from $\mathbf{8 e}(2.078 \mathrm{mmol}, 0.734 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 10e was obtained as a colorless oil ($0.252 \mathrm{~g}, 48 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-$ 7.07 (m, 3H), 4.24-4.14 (m, 2H), $3.50(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}$, $J=16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=15.8,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=16.1,7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,145.5,139.2$, 132.4, $127.4,125.9,124.3,60.8,59.4,50.1,40.3,37.9,14.2$. HRMS-ESI m/z Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClNO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 254.0942$; found 254.0932.

(3aR,8aS)-5-methoxy-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11f)

Compound 11f was obtained following general procedure \mathbf{J} from $\mathbf{8 f}(1.449 \mathrm{mmol}, 0.506 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 11f was obtained as a white solid ($0.106 \mathrm{~g}, 36 \%$); mp 188.9-190.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{dd}, J=16.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.48$ $(\mathrm{dd}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9,159.5,145.5,132.0,125.8$, 114.0, 109.7, 58.4, 55.5, 45.1, 38.8, 36.9. HRMS-ESI m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 226.0838; found 226.0829.

Ethyl 2-((1S,2S)-2-amino-6-methoxy-2,3-dihydro-1H-inden-1-yl)acetate (10f)

Compound 11f was obtained following general procedure \mathbf{J} from $\mathbf{8 f}$ ($1.449 \mathrm{mmol}, 0.506 \mathrm{~g}$). After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 11f was obtained as a colorless oil ($0.169 \mathrm{~g}, 47 \%$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13-$ $7.02(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.25-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.64$ $(\mathrm{m}, 1 \mathrm{H}), 3.60-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.28$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,159.3,143.1,131.3,125.4,113.6$, 109.3, 61.3, 58.6, 55.4, 46.8, 38.2, 37.2, 14.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 272.1257$; found 272.1258 .

(3aR,8aS)-5-ethoxy-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11g)

Compound $\mathbf{1 1} \mathrm{g}$ was obtained following general procedure \mathbf{J} from $\mathbf{8 g}(1.826 \mathrm{mmol}, 0.663 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, $\mathbf{1 1 g}$ was obtained as a white solid ($0.162 \mathrm{~g}, 41 \%$); mp 201.2-201. $6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.34-6.10(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=16.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-$ $2.78(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{dd}, J=17.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.9,158.9,145.5,131.9,125.8,114.6,110.4,63.7,58.4,45.1,38.8,36.8,14.9$. HRMS-ESI m/z Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 240.0995$; found 240.0995 .

Ethyl 2-((1S,2S)-2-amino-6-ethoxy-2,3-dihydro-1H-inden-1-yl)acetate (10g)

Compound $\mathbf{1 0 g}$ was obtained following general procedure \mathbf{J} from $\mathbf{8 g}(1.826 \mathrm{mmol}, 0.663 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 10 g was obtained as a colorless oil $(0.226 \mathrm{~g}, 48 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11-$ $7.03(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.67(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{q}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.94-2.63$
$(\mathrm{m}, 2 \mathrm{H}), 2.55(\mathrm{dd}, J=16.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.0,158.4,144.8,132.4,125.4,113.7,110.3,63.6,60.8,59.6$, 50.2, 39.9, 38.2, 14.9, 14.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 286.1414$; found 286.1411.

(3aR,8aS)-5-(benzyloxy)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one (11h)

Compound $\mathbf{1 1 h}$ was obtained following general procedure \mathbf{J} from $\mathbf{8 h}(1.598 \mathrm{mmol}, 0.679 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, $\mathbf{1 1 h}$ was obtained as a white solid ($0.169 \mathrm{~g}, 38 \%$); mp 177.4-178.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.04$ (s, 2H), 4.48 (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15 (dd, $J=16.6,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{dd}, J=17.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9$, 158.7, 145.5, 137.0, 132.4, 128.6, 127.9, 127.4, 125.8, 114.9, 110.9, 70.3, 58.4, 45.1, 38.8, 36.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 302.1151$; found 302.1147 .

Ethyl 2-((1S,2S)-2-amino-6-(benzyloxy)-2,3-dihydro-1H-inden-1-yl)acetate (10h)

Compound $\mathbf{1 0 h}$ was obtained following general procedure \mathbf{J} from $\mathbf{8 h}(1.598 \mathrm{mmol}, 0.679 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 10h was obtained as a colorless oil ($0.249 \mathrm{~g}, 48 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.23-4.14(\mathrm{~m}, 2 \mathrm{H})$, 4.11 (br s, 2H), 3.57 (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.87-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{dd}, J=16.6,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,158.4,144.1,137.0,132.3,128.5,127.9,127.4,125.4,114.2,110.5$, 70.2, 61.1, 59.1, 48.6, 38.6, 38.2, 14.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 348.1570; found 348.1563.

Table S10. Boc-protection of substrates 11a-h

11
12

12a, 95%

12e, 99\%

12b, 86%

12c, 99%

12d, 99\%

12f, 93%

12g, 99\%

12h, 97\%

General Procedure K: To a solution of 11a-h (1.0 equiv), NEt_{3} (3.0 equiv) and DMAP (0.5 equiv) in $\mathrm{DCM}(10 \mathrm{~mL} / 1 \mathrm{mmol})$ was added (Boc) $)_{2} \mathrm{O}$ (3.0 equiv) at RT , and the resultant mixture was stirred for 16 h . After dilution with EtOAc, the organic phase was washed successively with 1 M HCl , saturated NaHCO_{3} and brine. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and removing all volatiles, a crude mixture was obtained, which was purified by flash chromatography on silica gel to quantitatively afford 12a-h.

Tert-butyl (3aS,8aR)-5-methyl-2-oxo-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2H)carboxylate (12a)

Compound 12a was obtained following general procedure \mathbf{K} from $11 \mathbf{a}(0.76 \mathrm{mmol}, 0.142 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 12a was obtained as a colorless oil ($0.207 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10-$ 6.99 (m, 3H), 4.86 (td, $J=7.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=17.5,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.12(\mathrm{dd}, J=17.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=17.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=17.9,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,150.1,143.4,137.3$, 137.2, 128.8, 124.9, 124.7, 83.1, 62.3, 39.8, 39.7, 38.9, 28.1, 21.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 310.1414$; found 310.1418.

Tert-butyl (3aS,8aR)-2-oxo-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2H)-carboxylate (12b)

Compound 12b was obtained following general procedure \mathbf{K} from 11b $(0.86 \mathrm{mmol}, 0.148 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to $20 / 1$) as the eluent, 12b was obtained as a colorless oil $(0.199 \mathrm{~g}, 86 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-$ $7.16(\mathrm{~m}, 4 \mathrm{H}), 4.87(\mathrm{td}, J=7.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=17.7,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.18(\mathrm{dd}, J=17.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=17.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=17.9,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,149.8,143.0,140.1,127.7,127.2$, 124.7, 124.1, 82.9, 61.8, 39.7, 39.6, 38.6, 27.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 296.1257$; found 296.1264.

Tert-butyl (3aR,8aS)-2-oxo-5-phenyl-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2H)carboxylate (12c)

$0-V^{0}$

Compound 12c was obtained following general procedure \mathbf{K} from $11 \mathbf{c}(0.963 \mathrm{mmol}, 0.241 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 12c was obtained as a colorless oil $(0.334 \mathrm{~g}, 99 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-$ $7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{td}, J=7.3$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.48$ (dd, $J=18.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (dd, $J=17.8,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07$ (dd, $J=17.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=18.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,150.1,144.0,141.1,141.1,139.5,128.8,127.3,127.2,127.1,125.3$, 123.1, 83.2, 62.3, 40.0, 39.8, 38.9, 28.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 372.1570; found 372.1561 .

Tert-butyl (3aR,8aS)-5-fluoro-2-oxo-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2H)carboxylate (12d)

Compound 12d was obtained following general procedure \mathbf{K} from $11 \mathbf{d}(0.710 \mathrm{mmol}, 0.135 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 12d was obtained as a colorless oil ($0.690 \mathrm{~g}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14$ (dd, $J=8.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{td}, J=7.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (ddd, $J=11.0$, $7.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=17.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ $(\mathrm{dd}, J=17.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,162.6(\mathrm{~d}, J=$
$244.6 \mathrm{~Hz}), 145.0,145.3(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 135.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 126.1(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 115.2(\mathrm{~d}$, $J=22.4 \mathrm{~Hz}), 111.2(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 83.3,62.5,40.0(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 39.3,38.6,28.1 .{ }^{19}$ F NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.4. HRMS-ESI m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 314.1163$; found 314.1157.

Tert-butyl (3aR,8aS)-5-chloro-2-oxo-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2H)carboxylate (12e)

Compound 12e was obtained following general procedure \mathbf{K} from $11 \mathbf{e}(0.804 \mathrm{mmol}, 0.166 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 12e was obtained as a colorless oil ($0.244 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-$ $7.10(\mathrm{~m}, 3 \mathrm{H}), 4.88(\mathrm{td}, J=7.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=17.8,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.14(\mathrm{dd}, J=17.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=17.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=17.9,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,149.9,145.2,138.8,133.2,128.2$, 126.1, 124.6, 83.4, 62.2, 39.9, 39.5, 38.6, 28.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNNaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 330.0867$; found 330.0862 .

Tert-butyl (3aR,8aS)-5-methoxy-2-oxo-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2H)carboxylate (12f)

Compound $\mathbf{1 2 f}$ was obtained following general procedure \mathbf{K} from $11 \mathbf{f}(0.492 \mathrm{mmol}, 0.092 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, $\mathbf{1 2 f}$ was obtained as a colorless oil $(0.131 \mathrm{~g}, 93 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{td}, J=7.5$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.38(\mathrm{dd}, J=17.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (dd, $J=17.2,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.01(\mathrm{dd}, J=17.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=17.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,159.6,150.0,144.7,132.2,125.6,114.2,109.4,83.1,62.6,55.5$, 40.1, 39.3, 38.8, 28.1. HRMS-ESI m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 326.1363$; found 326.1366 .

Tert-butyl (3aS,8aR)-5-ethoxy-2-oxo-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2H)carboxylate (12 g)

Compound $\mathbf{1 2 g}$ was obtained following general procedure \mathbf{K} from $\mathbf{1 1 g}(0.700 \mathrm{mmol}, 0.152 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, $\mathbf{1 2 g}$ was obtained as a colorless oil $(0.220 \mathrm{~g}, 99 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{td}, J=7.3$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.37$ (dd, $J=17.2,7.2,1 \mathrm{H}), 3.08$ (dd, $J=17.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=17.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=17.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55$ (s, 9H), $1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3$, 158.6, 149.8, 144.4, 131.7, 125.3, 114.5, 109.9, 82.8, 63.4, 62.3, 39.8, 39.0, 38.5, 27.8, 14.6. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 340.1519$; found 340.1515.

Tert-butyl (3aR,8aS)-5-(benzyloxy)-2-oxo-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrole-1(2H)-carboxylate (12h)

Compound 12h was obtained following general procedure \mathbf{K} from $\mathbf{1 1 h}(0.541 \mathrm{mmol}, 0.151 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 12h was obtained as a colorless oil ($0.198 \mathrm{~g}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{td}, J=7.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{ddd}, J=11.0,7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=$ $17.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=17.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=17.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}$, $J=17.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,158.7,150.0,144.7$, $136.9,132.5,128.6,128.0,127.4,125.6,115.1,110.6,83.1,70.3,62.5,40.1,39.3,38.8,28.1$. HRMS-ESI m/z Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 402.1676; found 402.1677.

2.3.2 Synthetic route from compound 9a-c (O-Piv series)

Table S11. C-Ring formation from substrates 9a-c

General Procedure L: To solution of 9a-c (1.0 equiv) in $\mathrm{EtOH}(5 \mathrm{~mL} / 1 \mathrm{mmol})$ was added 10% aqueous KOH (5 equiv). The reaction mixture was stirred at room temperature and was monitored by TLC (typical time was 12 h). After consumption of all starting material, 1 M aqueous HCl solution was used to carefully adjust the pH to ~ 4. Then the mixture was extracted with EtOAc three times, and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was placed under $40^{\circ} \mathrm{C}$ (neat) over night before purified by silica gel flash column chromatography to afford compound 18a-c and 17a-c.

(3aR,8aS)-3,3a,8,8a-tetrahydro-2H-indeno[2,1-b]furan-2-one (18a)

Compound 18a was obtained following general procedure \mathbf{L} from $9 \mathbf{9}(1.073 \mathrm{mmol}, 0.326 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 18a was obtained as a white solid $(0.080 \mathrm{~g}, 43 \%)$. mp 67.3-70.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.28-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{dt}, J=6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=$ $9.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{dd}, J=17.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=17.7$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,142.0,140.0,128.3,127.7,125.3,124.6$, 84.3, 45.4, 38.9, 35.3. HRMS-ESI m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 197.0573; found 197.0574.

2-((1R,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)acetic acid (17a)

Compound 17a was obtained following general procedure \mathbf{L} from $9 \mathbf{9}(1.073 \mathrm{mmol}, 0.326 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, $17 \mathbf{a}$ was obtained as a white solid $(0.091 \mathrm{~g}, 44 \%) . \mathrm{mp} 128.6-132.4^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.25-7.10(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{q}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ $(\mathrm{dd}, J=15.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 176.5,144.7,141.5,128.2,127.8,125.7,125.0,79.1,50.8,40.9,38.4$. HRMS-ESI m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 215.0679$; found 215.0684.

(3aR,8aS)-5-methyl-3,3a,8,8a-tetrahydro-2H-indeno[2,1-b]furan-2-one (18b)

Compound $\mathbf{1 8 b}$ was obtained following general procedure \mathbf{L} from $\mathbf{9 b}(1.198 \mathrm{mmol}, 0.381 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 18b was obtained as a white solid ($0.091 \mathrm{~g}, 37 \%$) . mp 95.8-97.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{dt}, J=6.0,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=9.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{dd}, J=17.7,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.73(\mathrm{dd}, J=17.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4$, 142.1, 137.5, 136.9, 129.2, 125.2, 124.9, 84.6, 45.3, 38.5, 35.3, 21.2. HRMS-ESI m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 211.0730$; found 211.0735.

2-((1S,2S)-2-hydroxy-6-methyl-2,3-dihydro-1H-inden-1-yl)acetic acid (17b)

Compound $\mathbf{1 7 b}$ was obtained following general procedure \mathbf{L} from $\mathbf{9 b}(1.198 \mathrm{mmol}, 0.381 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 17b was obtained as a white solid $(0.110 \mathrm{~g}, 42 \%)$. $\mathrm{mp}{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 5.52-5.38(\mathrm{~m}, 3 \mathrm{H}), 2.67(\mathrm{q}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=15.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{dd}, J=$ 15.7, $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.10-0.94 (m, 2H), 0.73 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 178.8$, 145.8, 139.2, 138.2, 129.7, 126.4, 126.3, 80.6, 51.7, 41.3, 40.4, 22.3. HRMS-ESI m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 229.0835$; found 229.0830.

Compound 18c was obtained following general procedure \mathbf{L} from $9 \mathbf{c}(1.120 \mathrm{mmol}, 0.379 \mathrm{~g})$. After purification by column chromatography using DCM: MeOH ($1 / 0$ to $40 / 1$ to $20 / 1$) as the eluent, 18c was obtained as a yellow solid ($0.119 \mathrm{~g}, 51 \%$). mp 123.1-125.2 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.31-5.28(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=9.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}$, $2 \mathrm{H}), 3.04(\mathrm{dd}, J=17.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 175.7, 144.0, 138.5, 133.4, 128.6, 126.4, 124.9, 84.2, 45.4, 38.4, 35.0. HRMS-ESI m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 231.0183$; found 231.0192.

2-((1S,2S)-6-chloro-2-hydroxy-2,3-dihydro-1H-inden-1-yl)acetic acid (17c)

Compound $\mathbf{1 7} \mathbf{c}$ was obtained following general procedure \mathbf{L} from $9 \mathbf{c}(1.120 \mathrm{mmol}, 0.379 \mathrm{~g})$. After purification by column chromatography using DCM:MeOH ($1 / 0$ to $40 / 1$ to 20/1) as the eluent, 17c was obtained as a white solid ($0.081 \mathrm{~g}, 40 \%$). mp 150.1-151.8 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.4-3.3(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}$, $J=16.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=16.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=16.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (dd, $J=16.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 176.1,147.1,140.4,133.4,128.2,127.2$, 125.4, 79.0, 50.9, 40.4, 38.0. HRMS-ESI m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NaClO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 249.0289$; found 249.0287.

2.4 Final synthetic route of $2^{\text {nd }}$ generation strigolactams and GR24

2.4.1 Synthesis of (\pm)-Strigolactams and (\pm)-Epi-Strigolactams ${ }^{[6]}$

Table S12. Final synthetic route of $2^{\text {nd }}$ generation strigolactams

General Procedure M: To a solution of 12a-h (1.0 equiv) in toluene ($10 \mathrm{~mL} / 1 \mathrm{mmol}$) was added Bredereck's reagent (5.0 equiv) at RT and the solution was refluxed and was monitored by TLC (typical time was 8 h). It was then cooled to rt and diluted with EtOAc. The solution was washed with water. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and removing all volatiles, enamine was obtained as a crude product.

The obtained enamine was dissolved in dioxane ($20 \mathrm{~mL} / 1 \mathrm{mmol}$) and $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL} / 1 \mathrm{mmol})$, and the resultant mixture was stirred at rt for 12 h . The solution was neutralized with saturated NaHCO_{3} and then diluted with EtOAc, further washed with water followed by brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of volatiles under reduced pressure, the crude product was obtained.

The obtained enamine was then dissolved in dioxane ($5 \mathrm{~mL} / 1 \mathrm{mmol}$) was added $\mathrm{KO}^{\prime} \mathrm{Bu}(1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 10 min , a solution of chlorobutenolidine (1.5 equiv) in DME was added dropwise. The reaction mixture was then allowed to warm slowly to rt and stirred for 16 h . The reaction mixture was diluted with EtOAc and washed with water and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of volatiles under reduced pressure, the mixture of $\mathbf{1 5 a} \mathbf{- h}$ and 16a-h was obtained. These compounds were separated by flash chromatography on silica gel.
(3aS,8aR, $E)$-5-methyl-3-((($(R)-4-m e t h y l-5-o x o-2,5-d i h y d r o f u r a n-2-y l) o x y) m e t h y l e n e)-$ 3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 15 \mathrm{a}$)

Compound 15a was obtained following general procedure \mathbf{M} from $\mathbf{1 2 a}(0.697 \mathrm{mmol}, 0.200 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 15a was obtained as a white solid ($43.5 \mathrm{mg}, 20 \%$). mp 138.8-140.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.26-$ $6.21(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=16.9,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.92(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 170.7, 170.6, 145.6, 142.8, 141.2, 136.9, 136.9, 135.8, 128.7, 126,1 124.9, 117.3, 100.7, 56.1, 47.3, 39.0, 21.4, 10.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 334.1050$; found 334.1059 .
(3aS,8aR,E)-5-methyl-3-((($(S)-4-m e t h y l-5-o x o-2,5-d i h y d r o f u r a n-2-y l) o x y) m e t h y l e n e)-~$ 3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 16 a$)

Compound 16a was obtained following general procedure \mathbf{M} from $\mathbf{1 2 a}(0.697 \mathrm{mmol}, 0.200 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 16a was obtained as a white solid ($54.0 \mathrm{mg}, 25 \%$). mp 270.5-271.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.24-$ $6.20(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=16.9,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.92(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.5,170.5,145.4,142.7,141.4,137.2,136.6,135.8,128.8,126.2,124.8,117.3,100.7,56.1$, 47.2, 39.0, 21.3, 10.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 334.1050$; found 334.1054.
(3aS,8aR,E)-3-(((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 15 \mathrm{~b}$)

Compound 15b was obtained following general procedure \mathbf{M} from $\mathbf{1 2 b}(0.502 \mathrm{mmol}, 0.137 \mathrm{~g})$. After purification by column chromatography using Hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, $\mathbf{1 5 b}$ was obtained as a white solid ($43.0 \mathrm{mg}, 29 \%$). mp 176.5-177.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 6.25-6.20 (m, 1H), 4.66 (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=17.0,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 170.7, 170.6, 145.9, 142.7, 141.2, 139.9, 135.8, 127.8, 127.3, 125.6, 125.2, 117.1, 100.7, 55.8, $47.4,39.5,10.8$. HRMS-ESI m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 320.0893$; found 320.0898 .
(3aS,8aR,E)-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 16 \mathrm{~b}$)

Compound 16b was obtained following general procedure \mathbf{M} from $\mathbf{1 2 b}(0.502 \mathrm{mmol}, 0.137 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 16b was obtained as a white solid ($43.0 \mathrm{mg}, 29 \%$). mp 260.1-262.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 6.27-6.22 (m, 1H), $4.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=17.0,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.6,170.5,145.3,142.6,141.4,139.7,135.8,127.8,127.4,125.7,125.1,117.1,100.6,55.8$, 47.3, 39.4, 10.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 320.0893$; found 320.089.

(3aR,8aR,E)-3-((((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-5-phenyl-

 3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 15 \mathrm{c}$)

Compound $\mathbf{1 5 c}$ was obtained following general procedure \mathbf{M} from $\mathbf{1 2 c}(0.700 \mathrm{mmol}, 0.245 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, $\mathbf{1 5 c}$ was obtained as a white solid ($55.2 \mathrm{mg}, 21 \%$). mp 107.3-108. $9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.22$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H})$, $3.27(\mathrm{dd}, J=17.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.8,170.4,146.8,143.1,141.1,141.0,140.4,138.9,135.2,128.5,126.9,126.7$, 126.7, 125.2, 124.2, 116.2, 100.7, 56.1, 47.1, 38.8, 10.4. HRMS-ESI m/z Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 396.1206$; found 396.1208.
(3aR,8aR,E)-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-5-phenyl-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 16 \mathrm{c}$)

Compound 16c was obtained following general procedure \mathbf{M} from $\mathbf{1 2 c}(0.697 \mathrm{mmol}, 0.200 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 16c was obtained as a white solid ($52.1 \mathrm{mg}, 20 \%$). mp 216.7-217.4 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.40-7.36(\mathrm{~m}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.23(\mathrm{~s}$, $1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=17.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}$, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,170.0,145.8,143.1$, $140.9,140.7,140.5,138.6,135.5,128.6,126.9,126.7,126.6,125.1,124.2,116.5,100.6,55.7$, $47.0,39.0,10.5$. HRMS-ESI m/z Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 396.1206$; found 396.1209.
(3aS,8aR,E)-5-fluoro-3-((((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 15 \mathrm{~d}$)

Compound $\mathbf{1 5 d}$ was obtained following general procedure \mathbf{M} from $\mathbf{1 2 d}(0.660 \mathrm{mmol}, 0.193 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, $\mathbf{1 5 d}$ was obtained as a white solid ($60.3 \mathrm{mg}, 29 \%$). $\mathrm{mp} 178.0-179.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.97$ $(\mathrm{m}, 2 \mathrm{H}), 6.89(\mathrm{td}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.20(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=16.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,170.5,162.4(\mathrm{~d}, J=243.7 \mathrm{~Hz}), 146.2,144.7,141.2,135.7$, $135.4(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 116.6,114.9(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 112.4(\mathrm{~d}, J=22.9$ $\mathrm{Hz}), 100.7,56.5,47.3(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 38.7,10.7 .{ }^{19}$ FNMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.9. HRMSESI m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 338.0799; found 338.0798.
(3aS,8aR,E)-5-fluoro-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 16 \mathrm{~d}$)

Compound 16d was obtained following general procedure \mathbf{M} from $\mathbf{1 2 d}(0.660 \mathrm{mmol}, 0.193 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, $\mathbf{1 6 d}$ was obtained as a white solid ($58.9 \mathrm{mg}, 28 \%$). mp 232.7-233.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.99(\mathrm{~m}, 2 \mathrm{H})$, $6.90(\mathrm{td}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.03(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,170.2,162.5(\mathrm{~d}, J=244.6 \mathrm{~Hz}), 145.3,144.5(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}), 141.2,136.2,135.1,126.1(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 116.4,115.1(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 112.6(\mathrm{~d}, J$ $=22.9 \mathrm{~Hz}$), 100.3, 56.4, 47.4, 38.8, 10.8. ${ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl} 3$) δ-115.4. HRMS-ESI m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 338.0799$; found 338.0799.
(3aS,8aR,E)-5-chloro-3-((($(R)-4-m e t h y l-5-0 x 0-2,5-d i h y d r o f u r a n-2-y l) o x y) m e t h y l e n e)-~$ 3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 15 \mathrm{e}$)

Compound 15e was obtained following general procedure \mathbf{M} from $\mathbf{1 2 e}(0.766 \mathrm{mmol}, 0.235 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 15e was obtained as a white solid ($79.9 \mathrm{mg}, 31 \%$). mp 190.1-191.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=17.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,170.5,146.7,144.5,141.1$, $138.4,135.8,132.8,128.1,126.3,125.9,116.2,100.8,56.2,47.3,39.0,10.7$. HRMS-ESI m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 354.0504$; found 354.0497.
(3aS,8aR,E)-5-chloro-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 16 e$)

Compound 16e was obtained following general procedure \mathbf{M} from $\mathbf{1 2 e}(0.766 \mathrm{mmol}, 0.235 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 16e was obtained as a white solid ($57.4 \mathrm{mg}, 23 \%$) . mp 257.6-258.1 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=1.9,1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.27-6.22(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.50(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=17.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-$ $2.04(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,170.2,145.5,144.4,141.1,138.2,136.2$, 133.1, 128.2, 126.2, 126.0, 116.3, 100.4, 56.2, 47.2, 39.0, 10.9. HRMS-ESI m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 354.0504$; found 354.0510.

Crystal	Data
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClNO}_{4}$
Formula weight	331.74

Crystal system	Monoclinic
Space group	P2(1)/c
Z	8
a/ \AA	11.168(2)
b/ \AA	15.730(2)
c/ \AA	18.350(3)
$\alpha /{ }^{\circ}$	90 deg
$\beta /{ }^{\circ}$	105.575(13) deg
$\gamma{ }^{\circ}$	90 deg
V/Å^3	3105.2(9)
Density/ $\mathrm{Mg} / \mathrm{m}^{3}$	1.419
$\mathrm{F}(000)$	1376
Absorption coefficient/ mm^{-1}	2.362
Theta range for data collection/ ${ }^{\circ}$	3.761 to 68.567
Reflections collected	47550
Independent reflections	5696
No. of parameters	417
Goodness-of-fit on F^{2}	1.051
Largest diff. peak and hole/e/ \AA^{3}	0.466 and -0.495
$\mathrm{R}_{1}, \mathrm{wR}_{2}(\mathrm{I}>2 \sigma(\mathrm{I})$)	$\mathrm{R}_{1}=0.0446, \mathrm{wR}_{2}=0.1200$
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ (all data)	$\mathrm{R}_{1}=0.0595, \mathrm{wR}_{2}=0.1303$

(3aR,8aR,E)-5-methoxy-3-((((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 15 \mathrm{f}$)

Compound $\mathbf{1 5 f}$ was obtained following general procedure \mathbf{M} from $\mathbf{1 2 f}(0.405 \mathrm{mmol}, 0.123 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the
eluent, $\mathbf{1 5 f}$ was obtained as a white solid ($20.6 \mathrm{mg}, 16 \%$). mp 155.6-157.1 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.26-6.20(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=16.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J$ $=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,170.5,159.4,145.7$, 144.2, 141.1, 135.9, 131.8, 125.7, 117.0, 113.6, 111.2, 100.6, 56.4, 55.4, 47.5, 38.7,10.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 350.0999$; found 350.1003.
(3aS,8aR,E)-5-methoxy-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 16 f$)

Compound $16 f$ was obtained following general procedure \mathbf{M} from $\mathbf{1 2 f}(0.405 \mathrm{mmol}, 0.123 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, $\mathbf{1 6 f}$ was obtained as a white solid ($16.9 \mathrm{mg}, 17 \%$). mp 250.4-251.7 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.94-$ $6.89(\mathrm{~m}, 1 \mathrm{H}), 6.77$ (dd, $J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.20(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dd}, J=16.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=$ $16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,170.4,159.5,145.8$, 143.9, 141.4 135.7, 131.4, 125.6, 116.9, 115.0, 109.1, 100.9, 56.4, 55.4, 47.5, 38.6, 10.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 350.0999$; found 350.0992.
(3aR,8aR,E)-5-ethoxy-3-((($(R)-4-m e t h y l-5-o x 0-2,5-d i h y d r o f u r a n-2-y l) o x y) m e t h y l e n e)-$ 3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 15 \mathrm{~g}$)

Compound $\mathbf{1 5 g}$ was obtained following general procedure \mathbf{M} from $\mathbf{1 2 g}(0.611 \mathrm{mmol}, 0.208 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, $\mathbf{1 5 g}$ was obtained as a white solid ($35.3 \mathrm{mg}, 17 \%$). mp 144.8-146.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.26-6.20(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=16.7$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,170.5,158.7,145.7,144.1,141.2,135.8,131.7,125.7,117.1,114.2$, $111.8,100.6,63.6,56.5,47.5,38.6,14.9,10.7$. HRMS-ESI m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{5}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 364.1155$; found 364.1153 .
(3aS,8aR,E)-5-ethoxy-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 16 \mathrm{~g}$)

Compound $\mathbf{1 6 g}$ was obtained following general procedure \mathbf{M} from $\mathbf{1 2 g}(0.611 \mathrm{mmol}, 0.208 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, $\mathbf{1 6 g}$ was obtained as a white solid ($24.3 \mathrm{mg}, 12 \%$). mp 214.7-215.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=16.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6$, $170.4,158.8,145.8,143.9,141.4,135.6,131.2,125.6,117.0,115.6,110.4,101.0,63.6,56.4$, $47.4,38.6,14.8,10.7$. HRMS-ESI m / z Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 364.1155$; found 364.1152 .
(3aR,8aR,E)-5-(benzyloxy)-3-((((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 15 \mathrm{~h}$)

Compound 15h was obtained following general procedure \mathbf{M} from $\mathbf{1 2 h}(0.474 \mathrm{mmol}, 0.180 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the
eluent, $\mathbf{1 5 h}$ was obtained as a white solid ($60.1 \mathrm{mg}, 32 \%$). mp 107.3-108.9 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.81(\mathrm{~m}, 2 \mathrm{H})$, $6.28(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.54-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.16(\mathrm{~m}$, $1 \mathrm{H}), 2.90(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,170.4$, $158.7,145.7,144.2,141.2,137.2,135.8,132.1,128.6,127.9,127.4,125.7,117.0,114.7,112.1$, 100.6, 70.3, 56.4, 47.6, 38.7, 10.7. HRMS-ESI m/z Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 426.1312; found 426.1307.
(3aR,8aR,E)-5-(benzyloxy)-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydroindeno[2,1-b]pyrrol-2(1H)-one ($\pm 16 \mathrm{~h}$)

Compound 16h was obtained following general procedure \mathbf{M} from $\mathbf{1 2 h}(0.474 \mathrm{mmol}, 0.180 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 16h was obtained as a white solid ($60.5 \mathrm{mg}, 32 \%$). mp 216.7-217.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.20$ ($\mathrm{s}, 1 \mathrm{H}$), $4.98(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=16.6,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.98(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5$, $170.3,158.7,145.3,144.0,141.4,137.1,135.8,131.8,128.5,127.8,127.5,125.7,117.0,115.6$, 111.1, 100.7, 70.0, 56.4, 47.5, 38.7, 10.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NNaO} 5[\mathrm{M}+\mathrm{Na}]^{+}$: 426.1312; found 426.1320 .

2.4.2 Synthesis of (\pm)-Strigolactones and (\pm)-Epi-Strigolactones

Table S13. Final synthetic route of $\mathbf{2}^{\text {nd }}$ generation GR24

General Procedure N: To a solution of 18a-c (1.0 equiv) in toluene ($10 \mathrm{~mL} / 1 \mathrm{mmol}$) was added Bredereck's reagent (5.0 equiv) at rt and the solution was refluxed and was monitored by TLC (typical time was 8 h). It was then cooled to rt and diluted with EtOAc. The solution was washed with water. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and removing all volatiles, enamine was obtained as a crude product.

The obtained enamine was then dissolved in dioxane ($20 \mathrm{~mL} / 1 \mathrm{mmol}$) and $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL} / 1$ mmol), and the resultant mixture was stirred at rt for 12 h . The solution was neutralized with saturated NaHCO_{3} and then diluted with EtOAc, washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of volatiles under reduced pressure, the crude product was obtained.

The obtained enamine was then dissolved in dioxane ($5 \mathrm{~mL} / 1 \mathrm{mmol}$) was added $\mathrm{KO}^{\prime} \mathrm{Bu}((1.5$ equiv) at $0^{\circ} \mathrm{C}$. After 10 min , a solution of chlorobutenolidine (1.5 equiv) in DME was added drop wise. The reaction mixture was then allowed to warm slowly to rt and stirred for 16 h . The reaction mixture was diluted with EtOAc and washed with water and brine, and then dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of volatiles under reduced pressure, the mixture of 20a-c and 21ac was obtained. These compounds were separated by flash chromatography on silica gel.
(3aR,8aR,E)-3-(((®-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydro- $2 H$-indeno[2,1-b]furan-2-one ($\pm 20 a$)

Compound 20a was obtained following general procedure \mathbf{N} from $18 \mathbf{a}(0.382 \mathrm{mmol}, 0.066 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 20a was obtained as a white solid ($31.4 \mathrm{mg}, 28 \%$). mp 133.6-136.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}$, $1 \mathrm{H}), 5.26(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=18.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}$, $J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,170.2,150.3,141.4$, 140.7, 139.6, 136.2, 128.3, 127.6, 125.4, 125.2, 112.2, 100.7, 82.0, 47.9, 38.9, 10.8. HRMSESI m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 321.0733$; found 321.0730.
(3aR,8aR,E)-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydro- $2 H$-indeno[2,1-b]furan-2-one ($\pm 21 \mathrm{a}$)

Compound 21a was obtained following general procedure \mathbf{N} from $18 \mathbf{a}(0.382 \mathrm{mmol}, 0.066 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 21a was obtained as a white solid ($21.2 \mathrm{mg}, 19 \%$). mp 209.5-212.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}$, $1 \mathrm{H}), 5.25(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=18.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}$, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,170.1,149.8,141.3,140.9$, $139.5,136.2,128.3,127.8,125.5,125.1,112.3,100.6,82.1,47.8,38.9,10.8$. HRMS-ESI m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 321.0733$; found 321.0736.

Compound 20b was obtained following general procedure \mathbf{N} from $\mathbf{1 8 b}(0.397 \mathrm{mmol}, 0.075 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 20b was obtained as a white solid ($47.2 \mathrm{mg}, 38 \%$). mp116.7-118.7 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.30-6.24(\mathrm{~m}$, $1 \mathrm{H}), 5.25(\mathrm{td}, J=6.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=6.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 2.07(\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,170.2,150.1,141.5,140.8$, 137.3, 136.6, 136.2, 129.2, 125.9, 124.9, 112.4, 100.7, 82.4, 47.8, 38.5, 21.4, 10.8. HRMS-ESI m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 335.0890$; found 335.0892.

(3aR,8aR,E)-5-methyl-3-((($(S)-4-m e t h y l-5-o x o-2,5-d i h y d r o f u r a n-2-y l) o x y) m e t h y l e n e)-$

 3,3a,8,8a-tetrahydro-2H-indeno[2,1-b]furan-2-one ($\pm 21 \mathrm{~b}$)

Compound 21b was obtained following general procedure \mathbf{N} from $\mathbf{1 8 b}$ ($0.397 \mathrm{mmol}, 0.075 \mathrm{~g}$). After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 21b was obtained as a white solid ($54.4 \mathrm{mg}, 44 \%$). mp 225.5-227.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.27-6.26(\mathrm{~m}$, $1 \mathrm{H}), 5.24(\mathrm{td}, J=6.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.63(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.08$ (t, $J=1.6 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,170.1,149.8,141.4,141.0,137.5$, 136.4, 136.1, 129.2, 126.0, 124.8, 112.6, 100.7, 82.4, 47.7, 38.5, 21.3, 10.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 335.0890$; found 335.0884.
(3aR,8aR,E)-5-chloro-3-(((®-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydro-2H-indeno[2,1-b]furan-2-one ($\mathbf{\pm 2 0}$ c)

Compound 20c was obtained following general procedure \mathbf{N} from $18 \mathbf{c}(0.389 \mathrm{mmol}, 0.081 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 20c was obtained as a white solid ($36.1 \mathrm{mg}, 28 \%$). mp 165.6-169.1 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.4(\mathrm{dd}, J=18.1$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.3(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4,170.1$, $151.0,143.3,140.7,138.2,136.2,133.1,128.5,126.3,125.7,111.4,100.8,82.0,47.8,38.5$, 10.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NaClO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 355.0344$; found 355.0347.
(3aR,8aR,E)-5-chloro-3-((((S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)methylene)-3,3a,8,8a-tetrahydro-2H-indeno[2,1-b]furan-2-one ($\pm 21 \mathrm{c}$)

Compound 21c was obtained following general procedure \mathbf{N} from $18 \mathbf{c}(0.389 \mathrm{mmol}, 0.081 \mathrm{~g})$. After purification by column chromatography using hexane:EtOAc ($1 / 0$ to $4 / 1$ to $1 / 1$) as the eluent, 21c was obtained as a white solid ($30.6 \mathrm{mg}, 24 \%$). mp 218.3-221.4 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.4(\mathrm{dd}, J=18.1$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.3(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,169.8$, $149.8,143.1,140.8,138.0,136.5,133.3,128.5,126.2,125.7,111.6,100.3,82.0,47.6,38.5$, 10.8. HRMS-ESI m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NaClO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 355.0344$; found 355.0351 .

Crystal	Data
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClNO}_{5}$
Formula weight	332.72
Crystal system	Monoclinic
Space group	$\mathrm{P} 2(1) / \mathrm{n}$
Z	4
a / \AA	$12.588(3)$
b / \AA	$7.415(2)$
c / \AA	$16.351(4)$
$\alpha /{ }^{\circ}$	90 deg
$\beta /{ }^{\circ}$	$100.998(18) \mathrm{deg}$
$\gamma /{ }^{\circ}$	90 deg
$\mathrm{V} / \AA^{\circ} 3$	$3105.2(9)$
Density $/ \mathrm{Mg} / \mathrm{m}^{3}$	11.475
$\mathrm{~F}(000)$	688
Absorption coefficient $/ \mathrm{mm}^{-1}$	Semi-empirical from equivalents

Theta range for data collection/ ${ }^{\circ}$
Reflections collected
Independent reflections
No. of parameters
Goodness-of-fit on F^{2}

Largest diff. peak and hole $/ e / \AA^{3}$

$$
\begin{gathered}
\mathrm{R}_{1}, \mathrm{wR}_{2}(\mathrm{I}>2 \sigma(\mathrm{I})) \\
\mathrm{R}_{1}, \mathrm{wR}_{2}(\text { all data })
\end{gathered}
$$

4.915 to 68.215 deg

10523

2735
209
1.036
$\mathrm{R}_{1}=0.0359, \mathrm{wR}_{2}=0.0950$
$\mathrm{R}_{1}=0.0422, \mathrm{wR}_{2}=0.1000$

2.5 The germination efficacy assay of strigolactams and strigolactones ${ }^{[7]}$

The Orobanche aegyptiaca seeds used in this study was kindly provided by Prof. Yong-Qing Ma from College of Forestry, Northwest A \& F University. The strigolactone analogues was dissolved in DMSO at the concentration of 10 mM and used as a stock solution. First soak the seeds in $1 \% \mathrm{NaCIO}$ for 3 min . and washed with autoclaved distilled water and then soak in 75% alcohol for 2 min . and then thoroughly washed with autoclaved distilled water and air-dried in clean bench. The seeds conditioned in the dark at room temperature for 1 weeks. The conditioned seeds suspended in milliQ water were aliquoted in 96 -well plates at the volume of $100 \mu \mathrm{~L}$, to which $1 \mu \mathrm{~L}$ of the diluted stock solution was added to the final concentration indicated in the text. The number of germinated seeds were counted and divided by the total number of seeds to indicate germination rate. The experiments were repeated three times and averages with standard deviations were presented.

($\pm 15 \mathrm{a}$

(\pm) 16 a

($\pm 15 \mathrm{~b}$

($\mathbf{~})^{16 b}$

(\pm) 15 d

(\pm) $\mathbf{1 6 c}$

(\pm) 16 d

($\mathbf{\pm} 15 \mathrm{e}$

($\pm \mathbf{1 6 e}$

($\mathbf{~} \mathbf{1 5 f}$

($\mathbf{(1 6 f}$

($\mathbf{\pm} \mathbf{2 1 i}$

$(\pm \mathbf{2 1 j}$

(\pm 21k

GR24 ${ }^{4 \mathrm{DO}}$

Table S14. Numeric data for the assay

Orobanche aegyptiaca germination							
	$10 \mu \mathrm{M}$	$1 \mu \mathrm{M}$	100 nM	10nM	1nM	0.1nM	DMSO
(\pm)15a	$87.8 \% \pm 0.0 \%$	85.0\% $\pm 2.1 \%$	$90 \% \pm 1.3 \%$	$58.5 \% \pm 1.1 \%$	$46.7 \% \pm 2.3 \%$	$22.9 \% \pm 5.7 \%$	$0.0 \% \pm 0.0 \%$
(\pm 16a	$78.5 \% \pm 0.6 \%$	$85.0 \% \pm 5.5 \%$	$85.9 \% \pm 1.1 \%$	$70.4 \% \pm 1.5 \%$	$46.7 \% \pm 3.3 \%$	$21.7 \% \pm 2.8 \%$	$0.0 \% \pm 0.0 \%$
(\pm)15b	$87.9 \% \pm 1.1 \%$	$89.5 \% \pm 2.6 \%$	$89.4 \% \pm 1.1 \%$	$73.4 \% \pm 3.9 \%$	$33.9 \% \pm 4.3 \%$	$20.3 \% \pm 2.0 \%$	$0.0 \% \pm 0.0 \%$
(\pm)16b	$83.9 \% \pm 0.6 \%$	$87.4 \% \pm 0.8 \%$	$90.5 \% \pm 1.1 \%$	$71.8 \% \pm 4.9 \%$	$53.1 \% \pm 7.3 \%$	$34.0 \% \pm 1.5 \%$	$0.0 \% \pm 0.0 \%$
(\pm)15c	90\% $\pm 0.9 \%$	$90.5 \% \pm 2.0 \%$	$86.3 \% \pm 1.3 \%$	$24.0 \% \pm 0.6 \%$	$16.5 \% \pm 2.0 \%$	$13.7 \% \pm 3.0 \%$	$0.0 \% \pm 0.0 \%$
(\pm 16c	$78.4 \% \pm 2.6 \%$	$84.2 \% \pm 2.9 \%$	$80.1 \% \pm 0.5 \%$	$27.9 \% \pm 2.7 \%$	$17.2 \% \pm 8.1 \%$	$6.8 \% \pm 0.8 \%$	$0.0 \% \pm 0.0 \%$
(\pm 15d	$86.6 \% \pm 5.8 \%$	$86.0 \% \pm 4.6 \%$	$75.1 \% \pm 13.1 \%$	$54.5 \% \pm 6.4 \%$	$32.5 \% \pm 2.3 \%$	$17.2 \% \pm 3.2 \%$	0.0\% $\pm 0.0 \%$
(\pm)16d	$86.6 \% \pm 3.9 \%$	$84.4 \% \pm 2.0 \%$	$81.7 \% \pm 4.5 \%$	$66.6 \% \pm 5.2 \%$	$33.7 \% \pm 10.8 \%$	$13.5 \% \pm 1.0 \%$	$0.0 \% \pm 0.0 \%$
(\pm)15e	$84.9 \% \pm 1.4 \%$	$81.2 \% \pm 5.3 \%$	$84.3 \% \pm 4.4 \%$	$51.7 \% \pm 3.3 \%$	$24.2 \% \pm 2.3 \%$	$18.8 \% \pm 2.2 \%$	$0.0 \% \pm 0.0 \%$
(\pm)16e	$83.8 \% \pm 5.2 \%$	$86.8 \% \pm 1.7 \%$	$82.0 \% \pm 5.2 \%$	$49.4 \% \pm 7.4 \%$	$18.6 \% \pm 0.5 \%$	$8.4 \% \pm 1.2 \%$	$0.0 \% \pm 0.0 \%$
(\pm 15f	$83.1 \% \pm 3.3 \%$	88.6\% $\pm 3.2 \%$	$87.8 \% \pm 1.5 \%$	$75.5 \% \pm 5.3 \%$	$73.4 \% \pm 7.8 \%$	$28.5 \% \pm 1.6 \%$	0.0\% $\pm 0.0 \%$
(\pm 16f	$85.2 \% \pm 4.0 \%$	$81.7 \% \pm 4.6 \%$	$87.7 \% \pm 3.3 \%$	$73.6 \% \pm 5.0 \%$	$41.6 \% \pm 1.6 \%$	$16.8 \% \pm 1.1 \%$	$0.0 \% \pm 0.0 \%$
(\pm 15g	$88.5 \% \pm 2.7 \%$	$83.5 \% \pm 1.9 \%$	$86.4 \% \pm 1.9 \%$	$76.0 \% \pm 3.8 \%$	$50.2 \% \pm 5.2 \%$	$15.9 \% \pm 1.4 \%$	$0.0 \% \pm 0.0 \%$
$(\pm) 16 \mathrm{~g}$	$83.7 \% \pm 3.2 \%$	$87.3 \% \pm 1.2 \%$	$88.6 \% \pm 3.0 \%$	$77.7 \% \pm 8.3 \%$	$22.6 \% \pm 4.4 \%$	$15.8 \% \pm 3.4 \%$	$0.0 \% \pm 0.0 \%$
$(\pm) 15 \mathrm{~h}$	$86.6 \% \pm 1.4 \%$	$86.9 \% \pm 0.9 \%$	$83.7 \% \pm 2.5 \%$	$80.9 \% \pm 3.5 \%$	$45.3 \% \pm 7.5 \%$	$14.7 \% \pm 1.0 \%$	$0.0 \% \pm 0.0 \%$
${ }^{(\pm) 16 h}$	$86.7 \% \pm 4.6 \%$	$84.8 \% \pm 6.8 \%$	$84.1 \% \pm 5.9 \%$	$55.0 \% \pm 6.3 \%$	$19.6 \% \pm 1.7 \%$	$10.8 \% \pm 2.7 \%$	$0.0 \% \pm 0.0 \%$
(\pm 20a	$81.7 \% \pm 2.4 \%$	$81.4 \% \pm 4.9 \%$	$71.7 \% \pm 0.0 \%$	$45.4 \% \pm 1.3 \%$	$24.8 \% \pm 1.9 \%$	$16.2 \% \pm 3.1 \%$	$0.0 \% \pm 0.0 \%$
(\pm 21a	$84.8 \% \pm 2.6 \%$	$83.7 \% \pm 2.9 \%$	$81.0 \% \pm 4.5 \%$	$63.0 \% \pm 3.3 \%$	$36.0 \% \pm 6.5 \%$	$18.2 \% \pm 0.4 \%$	$0.0 \% \pm 0.0 \%$
(\pm)20b	$85.3 \% \pm 6.1 \%$	$77.2 \% \pm 3.1 \%$	$75.1 \% \pm 2.6 \%$	$47.6 \% \pm 3.4 \%$	$23.1 \% \pm 0.4 \%$	$15.2 \% \pm 4.3 \%$	0.0\% $\pm 0.0 \%$
(\pm 21b	$85.0 \% \pm 2.4 \%$	$84.2 \% \pm 4.6 \%$	$84.9 \% \pm 1.2 \%$	$56.5 \% \pm 0.9 \%$	$28.2 \% \pm 1.6 \%$	$14.2 \% \pm 2.7 \%$	$0.0 \% \pm 0.0 \%$
(\pm 20c	$87.9 \% \pm 4.9 \%$	$85.0 \% \pm 2.4 \%$	$66.9 \% \pm 1.0 \%$	$31.3 \% \pm 4.4 \%$	$19.0 \% \pm 0.3 \%$	$15.3 \% \pm 6.7 \%$	0.0\% $\pm 0.0 \%$
$(\pm) 21 \mathrm{c}$	$69.6 \% \pm 4.7 \%$	$77.5 \% \pm 8.1 \%$	$84.8 \% \pm 1.3 \%$	$64.9 \% \pm 3.8 \%$	$26.4 \% \pm 9.7 \%$	$11.9 \% \pm 0.4 \%$	$0.0 \% \pm 0.0 \%$
GR24 ${ }^{\text {5DS }}$	$82.3 \% \pm 9.0 \%$	$84.9 \% \pm 0.7 \%$	$82.8 \% \pm 3.9 \%$	$63.6 \% \pm 2.1 \%$	$34.7 \% \pm 5.9 \%$	28.3\% $\pm 11.5 \%$	$0.0 \% \pm 0.0 \%$
GR24 ${ }^{\text {4DO }}$	$83.3 \% \pm 5.2 \%$	$76.5 \% \pm 2.1 \%$	$85.1 \% \pm 1.2 \%$	$68.2 \% \pm 5.1 \%$	$52.6 \% \pm 15.5 \%$	$26.9 \% \pm 4.8 \%$	$0.0 \% \pm 0.0 \%$

Figure S1. Orobanche aegyptiaca seeds germination

Reference:

1. (a) E. M. Mangnus, F. J. Dommerholt, R. L. P. d. Jong and B. Zwanenburg, J. Agric. Food Chem., 1992, 40, 1230; (b) L. Wang, B. Wang, H. Yu, H. Guo, T. Lin, L. Kou, A. Wang, N. Shao, H. Ma, G. Xiong, X. Li, J. Yang, J. Chu and J. Li, Nature, 2020, 583, 277; (c) H. Malik, F. P. J.T. Rutjes and B. Zwanenburg, Tetrahedron, 2010, 66, 7198; (d) M. Lachia, H. C. Wolf, P. J. M. Jung, C. Screpanti and A. D. Mesmaeker, Bioorg. Med. Chem. Lett., 2015, 25, 2184; (e) K. Ashida, Y. Hoshimoto, N. Tohnai, D. E. Scott, M. Ohashi, H. Imaizumi, Y. Tsuchiya and S. Ogoshi, J. Am. Chem. Soc., 2020, 142, 1594; (f) WO. Pat., 145979, 2018; (g) WO. Pat., 175025, 2019.
2. For optimization of C-H olefination, see: (a) K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem. Int. Ed., 2010, 49, 6169; (b) P. S. Thuy-Boun, G. Villa, D. Dang, P. Richardson, S. Su and J.-Q. Yu, J. Am. Chem. Soc., 2013, 135, 17508; (c) D. Nandi, D. Ghosh, S.-J. Chen, B.-C. Kuo, N. M. Wang and H. M. Lee, J. Org. Chem., 2013, 78, 3445.
3. For the introduction of Piv group, see: N. Dastbaravardeh, T. Toba, M. E. Farmer and J.-Q. Yu, J. Am. Chem. Soc., 2015, 137, 9877.
4. For Ir-catalyzed decarboxylative Giese reaction, see: L. Chu, C. Ohta, Z. Zuo and D. W. C. MacMillan, J. Am. Chem. Soc., 2014, 136, 10886.
5. For Ni-catalyzed decarboxylative Giese reaction, see: T. Qin, L. R. Malins, J. T. Edwards, R. R. Merchant, A. J. E. Novak, J. Z. Zhong, R. B. Mills, M. Yan, C. Yuan, M. D. Eastgate and P. S. Baran, Angew. Chem. Int. Ed., 2017, 56, 260.
6. For the synthesis of Strigolactone analogues, see: (a) K. Ashida, Y. Hoshimoto, N. Tohnai, D. E. Scott, M. Ohashi, H. Imaizumi, Y. Tsuchiya and S. Ogoshi, J. Am. Chem. Soc., 2020, 142, 1594; (b) M. Lachia, H. C. Wolf, P. J. M. Jung, C. Screpanti and A. D. Mesmaeker, Bioorg. Med. Chem. Lett., 2015, 25, 2184.
7. For the research on bioactivity Strigolactone analogues: M. Lachia, H. C. Wolf, P. J. M. Jung, C. Screpanti and A. D. Mesmaeker, Bioorg. Med. Chem. Lett., 2015, 25, 2184.

NMR Spectra

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3a
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

（ $\left.125 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right)$

3c
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

「いや 岁
品

\qquad
\qquad

[^2]

3d
${ }^{19}$ F NMR $\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3e
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^3]

3h
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3h
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { 品岂 }}{\substack{ \pm}}$

$$
\begin{aligned}
& \text { 哥品号品 } \\
& \text { 品 } \\
& \text { 品 }
\end{aligned}
$$

｜릋
品品

5b
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^4]

5c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

		$\stackrel{\stackrel{\rightharpoonup}{\underset{\sim}{c}}}{\substack{2}}$	

5c
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6b

[^5]

6c
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^6]

8a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8a
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

脗嵒

8b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8b
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8c
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8c
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8d
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Nur

- Mmandy

品岂

8d
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8e
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8 e
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\mathrm{MHz}, \mathrm{CDCl}_{3}$)

$8 f$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$8 f$
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8 g
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8 g
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

8h
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{aligned}
& \stackrel{\frac{\infty}{5}}{\stackrel{n}{5}}
\end{aligned}
$$

8h

[^7]
trans-9a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

trans-9a
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

cis-9a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\underset{1}{\text { 品 둘 }}$

cis-9a
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

trans－9b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underset{\mid}{\text { 品 }}$
品品品品㞧导导
吴

trans－9b
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

cis-9a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

品 嵒

cis-9b
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

trans-9c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

68ILI-
$878 \mathrm{Cl}-$

㖞

trans-9c
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

cis-9c
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
突

cis-9c
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11a

11a
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{aligned} & \text { 罳 } \\ & \stackrel{1}{1} \end{aligned}$	筫号品品缶～手品		合発

10a
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^8]

11c
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11c
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10c
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11d
${ }^{19} \mathrm{~F}$ NMR $\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10d
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{1}{190}$	180	170	160	${ }_{150}^{15}$	${ }_{140}^{1}$	${ }_{130}$	${ }_{120}$	${ }_{110}^{10}$	${ }_{100}^{10}$	${ }_{90}$	${ }_{80}$	${ }_{70}$	60	${ }_{50}$	${ }_{40}$	${ }_{30}$	${ }_{20}^{10}$	10	1	${ }_{-10}$
								110	100	9										

10d
${ }^{19}$ F NMR $\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11e
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^9]

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10e
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

11f
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11f
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^10]

10f
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

品品品品品品
$\stackrel{\text { 喿 }}{+}$

10f
${ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

11g
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^11]

10 g
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10g
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

品	$\stackrel{\sim}{\sim}$	
邑	鬲	
＝	$\underset{\sim}{n}$	－$m=\simeq \simeq \simeq \simeq$

号	$\stackrel{\square}{\circ}$
只	品
｜	｜

11h
${ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

10h

10h
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12a
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{ll}\text { 둥 } & \text { 号品哭品品品品品 } \\ \text { 品 }\end{array}$

12a
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

~

12c

12d
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12d
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12d
${ }^{19} \mathrm{~F}$ NMR $\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12e
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
品

CNBOC

12e
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11f
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$12 f$
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11g
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12g
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11h
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^12]

18a
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

18b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

18c

萣势 苻孚品品

18c
${ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

[^13]

17c
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

17c
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

($\mathbf{\pm}$ 15a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^14]

($\pm \mathbf{1 6 a}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(\pm) $\mathbf{1 6 a}$
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^15]

[^16]

[^17]

[^18]
霊

$(\pm) 15 \mathrm{c}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^19]

(土) 16 c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($\mathbf{(1 6 c}$
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^20]
(\pm) 15 d
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

($\mathbf{(1 5 d}$
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($\pm 15 \mathrm{~d}$
${ }^{19} \mathrm{~F} \operatorname{NMR}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(\pm) 16 d
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(\pm) 15 e
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($\pm 15 \mathrm{e}$
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^21]
(\pm) 16 e

[^22]

($\pm 15 \mathrm{~g}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^23]
($\mathbf{~} \mathbf{1}^{16} \mathbf{g}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($\mathbf{\pm} \mathbf{1 6} \mathbf{g}$
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$(\pm) 15 h$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(\pm) 16 h
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^24]
(\pm 20a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(\pm 21 a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($\pm \mathbf{2 1 a}$
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^25]

	品可守感品品品运	$\stackrel{\text { 品 }}{\stackrel{\text { N }}{1}}$	$\begin{aligned} & \text { 品 } \\ & \text { 豆 } \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { n } \end{aligned}$	$\stackrel{\text { ® }}{\text { ¢ }}$	$\begin{gathered} \text { Wi } \\ \text { 品 } \\ i \end{gathered}$	$\stackrel{\text { 岢 }}{\stackrel{\text { a }}{\text { a }}}$

（ $\pm \mathbf{2 0 b}$
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(\pm 21b

[^26]

[^27]

(\pm)21c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^28]
[^0]: ${ }^{a}$ Reaction conditions: Boc-L-4-Me-Phe-OH (0.1 mmol), Ethyl acrylate (0.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$, Ac-L-Ala-OH (0.02 mmol), AgOAc $(0.2 \mathrm{mmol})$, Base $(0.2 \mathrm{mmol}), t$-AmylOH $(0.7 \mathrm{~mL}), 100^{\circ} \mathrm{C}, 12 \mathrm{~h}$; The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,3,5-Trimethoxybenzene as an internal standard.

[^1]: ${ }^{a}$ Reaction conditions: Substract (0.1 mmol), $\mathrm{Ir}(1 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.1 \mathrm{mmol})$, LiCl (0.2 mmol), DMSO (0.02 M), Blue LED, RT. ${ }^{b}$ Isolated yields. ${ }^{c}$ dr value determined by ${ }^{1} \mathrm{H}$ NMR; dr ration refers to cis versus trans.

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

[^7]:

[^8]:

[^9]:

[^10]:

[^11]:

[^12]:

[^13]:

[^14]:

[^15]:

[^16]: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^17]:

[^18]:

[^19]:

[^20]:

[^21]:

[^22]:

[^23]:

[^24]:

[^25]:

[^26]:

[^27]:

[^28]:

