Supporting Information

Box-Copper Catalyzed Cascade Asymmetric Amidation for Chiral exo-Methylene Aminoindoline Derivatives

Xiao-Peng Yang, Hao-Peng Lv, Hao-Di Yang, Bai-Lin Wang and Xing-Wang Wang*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, the People's Republic of China

Fax: +86-512-65882916

E-mail: wangxw@suda.edu.cn

Contents

1. General methods and materials	1
2. Preparation of ethynyl benzoxazinanones and α-halohydroxamates	2
3. Optimization of reaction conditions	2
4. General procedure for preparation of 3	7
5. Characterization data of products 3	8
6. Scale-up synthesis and further transformations of the adducts	17
7. X-Ray data of 3g	19
8. NMR spectra	21
9. HPLC analysis	43
10. References	58

1. General methods and materials

Unless otherwise stated, all reactions were carried out under an atmosphere of nitrogen in oven-dried glasswares with magnetic stirring. All reagents obtained from commercial suppliers were used without further purification. Some commonly used solvents for asymmetric catalysis were dried with different drying agents through stardand methods reported, including of toluene, methylene chloride (DCM), tetrahdrofuran (THF) as well as fluorobenzene. All other reaction media were used as obtained unless otherwise noted. Flash Chromatography was performed with silica gel (300-400 mesh) from Yantai Chemical Industry Research Institute, P. R. China. Analytical thin-layer chromatography (TLC) was performed with 0.2 ± 0.03 mm coated commercial silica gel plates (GF-254, particle size 0.04–0.05 mm). The ¹H and ¹³C NMR spectra were recorded in CDCl₃ on Varian Inova (400 MHz and 100 MHz, respectively) spectrometer. Chemical shifts (δ ppm) are relative to the resonance of the deuterated solvent as the internal standard (CDCl₃, δ 7.26 ppm for proton NMR, δ 77.10 ppm for carbon NMR). The ¹H NMR data were reported as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, q = quartet, m = multiplet, td = triplet of doublets, dt = doublet of triplets, dd = doublet of doublets), coupling constants (J) and assignment. The data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). The IR spectra were recorded on a Varian 1000 FT-IR spectrometer. High-resolution mass spectra (HRMS) for all the compounds were determined on Micromass GCT-TOF mass spectrometer with ESI resource. High performance liquid chromatography (HPLC) was performed on an Agilent 1200 Series chromatographs using CHIRALCEL IA-H column. The X-ray data were recorded on a Rigaku Mercury CCD/AFC diffractometer. Optical rotations were reported as follows: $[\alpha]_{D}^{20}$ (c in g per 100 mL, solvent).

2. Preparation of ethynyl benzoxazinanones and α-halohydroxamates

The substrates 1 were prepared according to the reported procedures¹. The substrates 2 were synthesized according to the literatures ².

3. Optimization of reaction conditions

Table S1 Screening of amine and amide substrates ^a

entry	R ¹ R ² NH	t (h)	yield (%) ^b	ee (%) ^c
1	Ι	14	69	0
2	II	14	73	0
3	Ш	14	72	0
4	IV	14	60	0
5	V	14	70	4
6	VI	14	58	23
7	VII	14		
8	VIII	14	56	0
9	IX	14	60	0
10	X	14		

11	21	14	38	45
12	2a	14	52	50

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mol, 2.0 equiv), CuI (0.01 mmol, 10 mol %), **L1** (0.012 mmol, 12 mol %), Na₂CO₃ (0.2 mmol, 2.0 equiv) , toluene (2 mL), 25 °C, 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC.

 Table S2 Screening of chiral ligands ^a

entry	ligand	yield $(\%)^b$	$ee~(\%)^c$
1	L2	43	29
2	L3	47	46
3	L4	38	30
4	L5	29	20
5	L6	trace	N.D.
6	L7	31	14
7	L8	44	42
8	L9	52	ent-60
9	L10	62	77
10	L11	54	50
11	L12	31	14
12	L13	43	20
13	L14	trace	N.D.
14	L15	30	37
15	L16	trace	N.D.
16	L17	trace	N.D.
17	L18	32	37
18	L19	trace	N.D.
19	L20	51	ent-42

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mol, 2.0 equiv), CuI (0.01 mmol, 10 mol %), **L** (0.012 mmol, 12 mol %), Na₂CO₃ (0.2 mmol, 2.0 equiv), toluene (2 mL), 25 °C, 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC.

 Table S3 Screening of metal salts ^a

entry	metal	yield (%) ^b	<i>ee</i> (%) ^{<i>c</i>}
1	CuCl	50	72
2	CuBr	52	76
3	CuCN	41	66
4	CuSCN	45	70
5	Cu(CH ₃ CN) ₄ PF ₆	51	72
6	Cu(CH ₃ CN) ₄ BF ₄	52	76
7	Cu(CH ₃ COO) ₂	30	71
8	Cu(OTf) ₂	40	36
9	Cu(acac) ₂	45	74
10	$Zn(OTf)_2$	-	-

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mol, 2.0 equiv), metal (0.01 mmol, 10 mol %), **L10** (0.012 mmol, 12 mol %), Na₂CO₃ (0.2 mmol, 2.0 equiv) in toluene (2 mL) at 25 °C for 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC.

 Table S4 Screening of bases ^a

entry	base	yield (%) b	ee (%) ^c
1	K_2CO_3	43	62
2	Cs_2CO_3	32	78
3	NaHCO ₃	45	80
4	KHCO ₃	63	90
5	Na ₂ HPO ₄	45	76
6	DIPEA	48	76
7	Et ₃ N	28	50

8	DBU	-	-
9	DMAP	-	-
10^{d}	KHCO ₃	54	90
11 ^e	KHCO ₃	38	90

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mol, 2.0 equiv), CuI (0.01 mmol, 10 mol %), **L10** (0.012 mmol, 12 mol %), base (2 equiv) in toluene (2 mL) at 25°C for 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis. ^{*d*} 3.0 equiv of KHCO₃ was used. ^{*e*} 1.0 equiv of KHCO₃ was used.

 Table S5 Screening of solvents and reaction temperature ^a

	$ \begin{array}{c} $	Cul (10 mol%) L10 (12 mol%) KHCO ₃ (2 equiv) solvent	o o o o o o o o o o o o o o o o o o o	Br
entry	solvent	T (°C)	yield (%) ^b	ee (%) ^c
1	DCM	25	-	-
2	THF	25	-	-
3	CH ₃ CN	25	47	54
4	Acetone	25	57	36
5	m-Xylene	25	55	77
6	p-Xylene	25	59	82
7	Fluorobenzene	25	49	72
8	Toluene	40	63	82
9	Toluene	10	33	90

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mol, 2.0 equiv), CuI (0.01 mmol, 10 mol %), **L10** (0.012 mmol, 12 mol %), KHCO₃ (2 equiv) in solvent (2 mL) at 25°C for 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis.

Table S6 Screening of additives ^a

	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Cul (10 mol%) L10 (12 mol%) additive (0.5 equiv) KHCO ₃ (2 equiv) toluene	
entry	additive	vield (%) ^b	ee (%) ^c
1	TBAB	trace	
2	$AgSbF_6$	trace	
3	KBF_4	trace	
4	KOAc	45	80
5	NaHPO ₄	39	75
6	3 Å MS	trace	
7	4 Å MS	43	78
8	5 Å MS	trace	
9 ^d		62	80
10 ^e		70	90
11^{f}		47	88

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mol, 2.0 equiv), CuI (0.01 mmol, 10 mol %), **L10** (0.012 mmol, 12 mol %), KHCO₃ (2 equiv), additive (0.5 equiv) in toluene (2 mL) at 25°C for 14 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis. ^{*d*} 24h. ^{*e*} CuI (5 mol%), **L10** (6 mol%) was added. ^{*f*} CuI (2.5 mol%), **L10** (3 mol%) was added.

4. General procedure for preparation of 3

To an oven-dried schlenk tube, CuI (1.0 mg, 0.005 mmol, 5 mol%) and L10 (2.4 mg, 0.006 mmol, 6 mol%) in dry toluene (2.0 mL) were added under a nitrogen atmosphere. The resulting

mixture was stirred at room temperature for 0.5 hours. Then the substrates 1 (0.1 mmol, 1.0 equiv) and 2 (0.2 mmol, 2.0 equiv) was introduced into the vessel. The mixture was stirred for 12 - 20 hours at 25 °C (monitored by TLC analysis) and then it was subjected to silica gel column to afford the desired products 3.

5. Characterization data of products 3

(S)-N-(Benzyloxy)-2-bromo-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)propanamide (3a)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 70% yield (38.8 mg), 90% *ee*, [Daicel Chiralcel IA-H, hexanes/*i*-propanol = 90/10, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 8.105, t (minor) = 10.382]; [α]_D²⁰ = +42.4 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.41 (t, *J* = 8.4 Hz,

1H), 7.21 (td, J = 8.6, 8.0, 6.4 Hz, 4H), 7.16 – 7.10 (m, 1H), 7.06 (d, J = 8.0 Hz, 2H), 6.83 – 6.75 (m, 2H), 6.37 (s, 1H), 5.83 (t, J = 2.4 Hz, 1H), 5.05 (t, J = 2.4 Hz, 1H), 4.60 (d, J = 9.2 Hz, 1H), 4.29 (s, 1H), 2.18 (s, 3H), 1.94 (d, J = 8.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 144.9, 144.6, 142.3, 133.9, 133.6, 130.0, 129.6, 129.1, 128.6, 128.3, 127.2, 125.9, 125.5, 124.6, 115.8, 98.4, 62.0, 55.7, 32.0, 31.0, 21.5; IR (KBr) ν_{max} : 3054, 2854, 1653, 1475, 1359, 1170, 1030, 752, 658, 571. HRMS (ESI): m/z =577.0769 (calcd for C₂₇H₂₇BrN₂O₄S+Na⁺ = 577.0767).

(S)-2-Bromo-2-methyl-N-((2-methylbenzyl)oxy)-N-(2-methylene-1-tosylindolin-3-yl)propana mide (3b)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; white oil; 59% yield (33.5 mg), 95% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 9.74 min, t (minor) = 12.93 min]; $[\alpha]_{D}^{20}$ = +38.5 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.37 (t, *J* = 8.0 Hz,

1H), 7.23 (d, J = 7.6 Hz, 1H), 7.13 (q, J = 7.2 Hz, 2H), 7.04 (dd, J = 16.0, 7.6 Hz, 5H), 6.44 (s, 1H), 5.85 (d, J = 2.8 Hz, 1H), 5.05 (q, J = 2.0 Hz, 1H), 4.54 (d, J = 52.8 Hz, 2H), 2.16 (s, 3H), 1.94 (s, 6H), 1.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 144.9, 144.7, 142.3, 137.9, 134.0, 133.5, 130., 129.9, 129.5, 129.4, 128.1, 127.2, 126.1, 124.6, 115.8, 98.3, 55.7, 53.5, 32.0, 31.0, 21.4, 21.2; IR (KBr) v_{max} : 2965, 2858, 1652, 1492, 1360, 1261, 1171, 1033, 946, 870, 748, 658,

570. HRMS (ESI): m/z = 591.0924 (calcd for $C_{28}H_{29}BrN_2O_4S + Na^+ = 591.0924$).

(S)-2-Bromo-2-methyl-N-((3-methylbenzyl)oxy)-N-(2-methylene-1-tosylindolin-3-yl)propana mide (3c)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 66% yield (37.4 mg). 96% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 9.42 min, t (minor) = 12.37 min]; $[\alpha]_{D}^{20}$ = +67.3 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.18 – 7.02 (m, 5H), 6.63 (d, *J* = 7.2 Hz,

1H), 6.51 (s, 1H), 6.36 (s, 1H), 5.83 (d, J = 2.4 Hz, 1H), 5.06 (d, J = 2.4 Hz, 1H), 4.59 (d, J = 9.2 Hz, 1H), 4.28 (s, 1H), 2.24 (s, 3H), 2.19 (s, 3H), 1.95 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 144.9, 144.7, 142.4, 137.9, 134.0, 133.5, 130.0, 129.9, 129.5, 129.4, 128.1, 127.2, 126.1, 126.0, 125.6, 124.6, 115.8, 98.3, 77.0, 62.1, 55.7, 32.0, 31.1, 21.5, 21.3; IR (KBr) v_{max} : 2951, 2837, 1653, 1599, 1476, 1361, 1260, 1172, 1032, 803, 749, 659, 571. HRMS (ESI): m/z = 591.0964 (calcd for C₂₈H₂₉BrN₂O₄S+Na⁺ = 591.0924).

(S)-2-Bromo-2-methyl-N-((4-methylbenzyl)oxy)-N-(2-methylene-1-tosylindolin-3-yl)propana mide (3d)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 70% yield (39.8 mg), 93% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 10.26 min, t (minor) = 13.11 min]; $[\alpha]_{D}^{20}$ = +56.3 (c 0.1, CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.73 – 7.62 (m, 2H), 7.43 (ddt, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.23 (dt, *J* = 7.6, 1.6 Hz, 1H), 7.15 (td, *J* = 7.6, 1.0 Hz, 1H),

7.06 (dd, J = 23.2, 8.0 Hz, 4H), 6.71 (d, J = 7.6Hz, 2H), 6.37 (s, 1H), 5.85 (t, J = 2.4 Hz, 1H), 5.07 (t, J = 2.0 Hz, 1H), 4.60 (d, J = 8.8 Hz, 1H), 4.28 (s, 1H), 2.32 (s, 3H), 2.22 (s, 3H), 1.96 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 144.9, 144.7, 142.3, 138.5, 134.0, 130.6, 130.0, 129.5, 129.2, 129.0, 127.2, 125.9, 125.6, 124.6, 115.8, 77.3, 76.8, 55.7, 53.5, 32.0, 31.0, 21.5, 21.2; IR (KBr) v_{max} : 2926, 2855, 1653, 1599, 1463, 1362, 1242, 1172, 985, 809, 705, 659, 571. HRMS (ESI): m/z = 591.0956 (calcd for C₂₈H₂₉BrN₂O₄S+Na⁺ = 591.0924).

(S)-2-Bromo-N-((2-bromobenzyl)oxy)-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)propana mide (3e)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; white oil; 59% yield (37.3 mg), 74% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL •min-1, λ = 254 nm, t (major) = 12.15 min, t (minor) = 15.04 min]; $[\alpha]_{D}^{20}$ = +98.5 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 1H), 7.72 – 7.63 (m, 2H), 7.47 (d, *J* = 8.0 Hz,

1H), 7.41 – 7.33 (m, 1H), 7.27 – 7.06 (m, 6H), 6.33 (s, 1H), 5.84 (t, J = 2.4 Hz, 1H), 5.06 (t, J = 2.4 Hz, 1H), 4.83 (s, 1H), 4.68 (s, 1H), 2.24 (s, 3H), 1.93 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 144.8, 144.1, 142.2, 134.2, 133.8, 132.7, 130.6, 129.9, 129.9, 129.5, 127.4, 127.3, 126.2, 125.1, 124.7, 123.3, 115.8, 97.8, 76.2, 55.5, 31.8, 31.1, 21.5; IR (KBr) v_{max} : 3054, 2854, 1653, 1475, 1359, 1170, 1030, 752, 658, 571. HRMS (ESI): m/z = 654.9868 (calcd for $C_{27}H_{26}Br_2N_2O_4S+Na^+ = 654.9872$).

(S)-2-Bromo-N-((3-bromobenzyl)oxy)-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)propana mide (3f)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; white oil; 62% yield (39.4 mg), 83% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL • min-1, λ =

Br $254 \text{ nm}, \text{ t} (\text{major}) = 11.50 \text{ min}, \text{ t} (\text{minor}) = 14.87 \text{ min}]; [\alpha]_D^{20} = +70.0 (c 0.1, CHCl_3); ^1H NMR (400 MHz, CDCl_3) \delta 8.00 (d, J = 8.4 Hz, 1H), 7.75 - 7.62 (m, 2H), 7.54 - 7.34 (m, 2H), 7.26 - 7.02 (m, 5H), 6.76 (d, J = 7.6 Hz, 2H), 6.43 (s, 1H), 5.87 (t, J = 2.4 Hz, 1H), 5.08 (t, J = 2.4 Hz, 1H), 4.57 (d, J = 9.2 Hz, 1H), 4.22 (d, J = 9.2 Hz, 1H), 2.21 (s, 3H), 1.97 (s, 6H). ¹³C NMR (101)$

MHz, CDCl₃) δ 172.2, 145.0, 144.6, 142.3, 135.8, 133.0, 131.9, 131.7, 130.3, 129.9, 129.6, 127.4, 127.2, 126.0, 125.1, 124.7, 122.2, 115.8, 98.5, 76.0, 55.0, 32.1, 31.0, 21.5; IR (KBr) v_{max} : 2937, 2833, 2041, 1916, 1652, 1572, 1463, 1361, 1237, 1032, 754, 658, 571. HRMS (ESI): m/z = 654.9878 (calcd for C₂₇H₂₆Br₂N₂O₄S+Na⁺ = 654.9872).

(S)-2-Bromo-N-((4-bromobenzyl)oxy)-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)propana mide (3g)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; white oil; 64% yield

(40.7 mg), 83% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 11.87 min, t (minor) = 15.72 min]; $[\alpha]_{D}^{20}$ = +63.5 (c 0.1, CHCl₃); ¹H NMR (400

654.9875 (calcd for $C_{27}H_{26}Br_2N_2O_4S+Na^+ = 654.9872$).

(S)-2-Bromo-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)-N-((2-nitrobenzyl)oxy)propanami de (3h)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 48% yield (28.1 mg), 70% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254

CDCl₃) δ 172.5, 146.5, 144.7, 143.3, 142.1, 134.3, 133.8, 131.3, 130.1, 129.5, 128.7, 128.5, 127.2, 126.0, 124.9, 124.8, 124.7, 115.7, 98.3, 74.5, 62.8, 55.1, 31.5, 21.5; IR (KBr) v_{max} : 2928, 2856, 1675, 1528, 1361, 1172, 1090, 912, 811, 739, 660, 572. HRMS (ESI): m/z = 622.0664 (calcd for $C_{27}H_{26}BrN_3O_6S+Na^+ = 622.0618$).

(S)-2-Bromo-N-((4-(*tert*-butyl)benzyl)oxy)-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)prop anamide (3i)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 66% yield (39.9 mg), 78% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 8.24 min, t (minor) = 11.09 min]; [α]_D²⁰ = +21.5 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 8.1 Hz, 2H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.24 (dd, *J* =

8.1, 2.7 Hz, 3H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 2H), 6.38 (s, 1H), 5.84 (t, *J* = 2.4 Hz, 1H), 5.07 (d, *J* = 2.3 Hz, 1H), 4.60 (d, *J* = 8.9 Hz, 1H), 4.27 (s, 1H),

2.19 (s, 3H), 1.97 (s, 6H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 151.7, 144.9, 144.7, 142.3, 133.9, 130.6, 130.0, 129.5, 129.0, 127.2, 125.9, 125.6, 125.2, 124.6, 115.8, 98.3, 77.2, 55.7, 34.6, 32.0, 31.3, 31.1, 21.4; IR (KBr) v_{max} : 2963, 2855, 1673, 1598, 1492, 1367, 1261, 1188, 1089, 989, 862, 746, 661, 571. HRMS (ESI): m/z = 633.1449 (calcd for C₃₁H₃₅BrN₂O₄S+Na⁺ =

633.1393).

(S)-2-Bromo-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)-N-(thiophen-2-ylmethoxy)propan amide (3j)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; white oil; 64% yield (36.3 mg), 86% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 12.83 min, t (minor) = 18.17 min]; $[\alpha]_{D}^{20}$ = +42.3 (c 0.1, CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 1H), 7.76 – 7.56 (m, 2H), 7.44 – 7.34 (m, 1H),

7.23 (dd, J = 5.2, 1.2 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.15 – 7.07 (m, 3H), 6.86 (dd, J = 5.2, 3.6 Hz, 1H), 6.64 – 6.48 (m, 1H), 6.32 (s, 1H), 5.81 (t, J = 2.4 Hz, 1H), 5.03 (t, J = 2.4 Hz, 1H), 4.78 (d, J = 10.0 Hz, 1H), 4.49 (d, J = 10.0 Hz, 1H), 2.24 (s, 3H), 1.95 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 144.9, 144.6, 142.3, 135.1, 134.0, 130.1, 129.5, 129.0, 127.4, 127.3, 126.6, 125.8, 125.4, 124.7, 115.8, 98.5, 70.8, 55.6, 32.0, 31.0, 21.5; IR (KBr) ν_{max} : 2977, 2933, 1668, 1468, 1369, 1226, 1175, 1036, 954, 855, 706, 572. HRMS (ESI): m/z = 583.0347 (calcd for C₂₅H₂₅BrN₂O₄S₂+Na⁺ = 583.0331).

(S)-2-Bromo-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)-N-(naphthalen-2-ylmethoxy)prop anamide (3k)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 62% yield (37.0 mg), 82% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 14.19 min, t (minor) = 17.01 min]; $[\alpha]_{p}^{20}$ = +44.7 (c 0.1, CHCl₃); ¹H NMR (400 MHz,

CDCl₃) δ 8.01 (d, J = 8.4 Hz, 1H), 7.83 – 7.76 (m, 1H), 7.73 – 7.69 (m, 1H), 7.66 (d, J = 8.0 Hz,

3H),7.52 – 7.39 (m, 3H), 7.24 (s, 2H), 7.16 (t, J = 7.2 Hz, 1H), 6.99 (d, J = 8.0 Hz, 2H), 6.82 (d, J = 8.4 Hz, 1H), 6.44 (s, 1H), 5.87 (t, J = 2.4 Hz, 1H), 5.10 (t, J = 2.0 Hz, 1H), 4.76 (d, J = 9.2 Hz, 1H), 4.44 (s, 1H), 2.05 (s, 3H), 1.96 (d, J = 14.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 144.9, 144.7, 142.4, 133.9, 133.2, 132.9, 131.1, 130.1, 129.5, 128.6, 128.0, 128.0, 127.6, 127.2, 126.5, 126.4, 126.2, 126.1, 125.5, 124.6, 115.8, 98.4, 62.1, 55.7, 32.1, 31.0, 21.3; IR (KBr) v_{max} : 2925, 1653, 1599, 1476, 1361, 1261, 1171, 1090, 987, 858, 752, 659, 571. HRMS (ESI): m/z = 627.0848 (calcd for C₃₁H₂₉BrN₂O₄S+Na⁺ = 627.0924).

(S)-N-(Benzyloxy)-N-(2-methylene-1-tosylindolin-3-yl)pivalamide (3l)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 55% yield (27.4 mg), 62% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 10.12 min, t (minor) = 12.17 min]; $[\alpha]_{D}^{20}$ = +42.4 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 1H), 7.74 – 7.60 (m, 2H), 7.50 – 7.36 (m, 3H), 7.22 – 7.12

(m, 2H), 7.13 – 7.04 (m, 3H), 6.67 (d, J = 8.4 Hz, 2H), 6.48 (s, 1H), 5.83 (t, J = 2.4 Hz, 1H), 5.02 (t, J = 2.0 Hz, 1H), 4.32 – 4.06 (m, 2H), 2.22 (s, 3H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 179.8, 145.4, 144.9, 142.3, 136.0, 134.0, 131.6, 131.5, 130.0, 129.9, 129.5, 127.2, 126.9, 124.6, 122.3, 115.8, 98.1, 76.5, 61.4, 39.7, 27.1, 21.5. IR (KBr) ν_{max} : 2966, 2930, 2872, 1735, 1663, 1454, 1364, 1174,1089, 988, 812, 747, 661, 577. HRMS (ESI): m/z = 513.1819 (calcd for C₂₈H₃₀N₂O₄S+Na⁺ = 513.1818).

(S)-N-(Benzyloxy)-2-bromo-2-methyl-N-(4-methyl-2-methylene-1-tosylindolin-3-yl)propana mide (3m)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 63% yield (35.8 mg), 85% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 9.61 min, t (minor) = 13.96 min]; $[\alpha]_{D}^{20}$ = +45.2 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.69 – 7.62 (m, 2H), 7.27 – 7.17 (m, 3H), 7.08 (t, *J* = 7.2 Hz, 3H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.85 (d, *J* = 7.2 Hz, 2H), 6.30 (s, 1H),

5.80 (t, J = 2.4 Hz, 1H), 5.03 (t, J = 2.4 Hz, 1H), 4.61 (d, J = 9.2 Hz, 1H), 4.35 (d, J = 9.2 Hz, 1H), 2.45 (s, 3H), 2.21 (s, 3H), 1.93 (d, J = 5.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 144.9,

144.8, 142.5, 140.4, 134.1, 133.8, 129.5, 129.1, 128.6, 128.3, 127.2, 125.5, 125.4, 122.7, 116.3, 98.4, 61.9, 55.7, 31.9, 31.1, 22.1, 21.5. IR (KBr) v_{max} : 2963, 2872, 1649, 1481, 1367, 1260, 1174, 1090, 802, 747, 661, 568. HRMS (ESI): m/z = 591.0922 (calcd for C₂₈H₂₉BrN₂O₄S+Na⁺ = 591.0924).

(S)-N-(Benzyloxy)-2-bromo-N-(5-methoxy-2-methylene-1-tosylindolin-3-yl)-2-methylpropan amide (3n)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 52% yield (30.2 mg), 90% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 14.12 min, t (minor) = 21.26 min]; $[\alpha]_{D}^{20}$ = +62.2 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 9.2 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.47 –

7.38 (m, 2H), 7.29 – 7.21 (m, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.97 – 6.89 (m, 2H), 6.76 (d, J = 2.8 Hz, 1H), 6.28 (s, 1H), 5.85 (s, 1H), 5.06 (d, J = 2.4 Hz, 1H), 4.65 (s, 1H), 4.45 (s, 1H), 3.78 (s, 3H), 2.24 (s, 3H), 1.96 (s, 6H); ¹³C NMR (101 MHz, CDCl3) δ 171.1, 145.6, 137.6, 135.4, 133.8, 133.6, 130.2, 129.2, 128.8, 128.5, 127.2, 126.5, 125.1, 118.7, 118.0, 115.8, 74.9, 56.0, 31.6, 22.7, 21.6, 14.2, 12.9. IR (KBr) v_{max} : 2963, 2929, 1652, 1597, 1486, 1388,1286, 1171, 1089, 960, 856, 749, 677, 581. HRMS (ESI): m/z = 607.0873 (calcd for C₂₈H₂₉BrN₂O₅S+Na⁺ = 607.0850).

(S)-N-(Benzyloxy)-2-bromo-2-methyl-N-(5-methyl-2-methylene-1-tosylindolin-3-yl)propana mide (30)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 56% yield (31.7 mg), 98% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254 nm, t (major) = 9.98 min, t (minor) = 14.42 min]; $[\alpha]_{D}^{20}$ = +76.3 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.27 –

7.16 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 6.99 (s, 1H), 6.85 (d, J = 7.2 Hz, 2H), 6.29 (s, 1H), 5.81 (t, J = 2.4 Hz, 1H), 5.02 (t, J = 2.4 Hz, 1H), 4.61 (d, J = 8.8 Hz, 1H), 4.35 (s, 1H), 2.31 (s, 3H), 2.20 (s, 3H), 1.94 (d, J = 4.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl3) δ 172.2, 145.0, 144.3, 142.2, 137.4, 133.9, 132.2, 130.2, 130.0, 129.5, 128.8, 127.2, 126.7, 125.7, 124.8, 115.9, 98.1, 61.9, 55.7, 32.0, 31.2, 21.4, 18.4. IR (KBr) v_{max} : 2970, 2927, 2863, 1683, 1506, 1457, 1372, 1245, 1175, 1089, 913,

808, 744, 662, 599. HRMS (ESI): m/z = 591.0918 (calcd for $C_{28}H_{29}BrN_2O_4S+Na^+ = 591.0924$).

(S)-N-(Benzyloxy)-2-bromo-N-(5-chloro-2-methylene-1-tosylindolin-3-yl)-2-methylpropanam ide (3p)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 60% yield

2H), 6.23 (s, 1H), 5.85 (t, J = 2.4 Hz, 1H), 5.07 (t, J = 2.4 Hz, 1H), 4.75 (d, J = 9.2 Hz, 1H), 4.48 (s, 1H), 2.26 (s, 3H), 1.94 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 145.2, 144.1, 140.8, 133.8, 133.6, 130.1, 130.0, 129.63, 129.0, 128.8, 128.5, 127.8, 127.3, 125.5, 116.8, 98.5, 77.1, 55.4, 31.8, 30.9, 21.5; IR (KBr) v_{max} : 2929, 1655, 1597, 1493, 1362, 1247, 1117, 1020, 950, 858, 739, 665, 585, 499. HRMS (ESI): m/z = 611.0375 (calcd for C₂₇H₂₆BrClN₂O₄S+Na⁺ = 611.0377). (*S*)-*N*-(**Benzyloxy**)-2-bromo-*N*-(5-bromo-2-methylene-1-tosylindolin-3-yl)-2-methylpropanam ide (3q)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 52% yield (33.2 mg), 77% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254

nm, t (major) = 10.23 min, t (minor) = 13.31 min]; $[\alpha]_{D}^{20}$ = +57.4 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.52 (d, *J* = 8.8 Hz, 1H), 7.31 (d, *J* = 8.8 Hz, 4H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.97 (s, 2H), 6.22 (s, 1H), 5.84 (s, 1H), 5.06 (s, 1H), 4.74 (s, 1H), 4.47 (s, 1H), 2.26 (s, 3H), 1.94 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ

172.2, 145.2, 144.0, 141.3, 133.8, 133.6, 132.90, 129.6, 128.9, 128.8, 128.5, 128.4, 128.2, 127.3, 117.5, 117.1, 98.4, 55.4, 31.8, 30.9, 29.7, 21.5; IR (KBr) ν_{max} : 2962, 2926, 2854, 1655, 1596, 1452, 1363, 1248, 1174, 1090, 1019, 912, 809, 736, 664, 581. HRMS (ESI): m/z = 654.9816 (calcd for $C_{27}H_{26}Br_2N_2O_4S+Na^+ = 654.9872$).

(S)-N-(Benzyloxy)-2-bromo-N-(6-fluoro-2-methylene-1-tosylindolin-3-yl)-2-methylpropanam ide (3r)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 56% yield (31.9 mg), 90% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254

 $\begin{array}{l} \text{nm, t (major)} = 9.38 \text{ min, t (minor)} = 11.93 \text{ min}]; \ [\alpha]_{\text{D}}^{20} = +36.0 \ (\text{c } 0.1, \text{ CHCl}_3); \\ ^{1}\text{H NMR (400 MHz, \text{CDCl}_3) } \delta \ 7.69 - 7.58 \ (\text{m}, 3\text{H}), 7.25 - 7.17 \ (\text{m}, 1\text{H}), 7.19 \\ ^{-7.12 \ (\text{m}, 2\text{H}), 7.08 \ (\text{ddd}, J = 8.4, 5.6, 1.2 \text{ Hz}, 1\text{H}), 7.02 \ (\text{d}, J = 8.0 \text{ Hz}, 2\text{H}), \\ 6.83 - 6.71 \ (\text{m}, 3\text{H}), 6.21 \ (\text{s}, 1\text{H}), 5.74 \ (\text{t}, J = 2.4 \text{ Hz}, 1\text{H}), 4.97 \ (\text{t}, J = 2.4 \text{ Hz}, 1\text{H}), \\ 3r \ 1\text{H}), 4.56 \ (\text{d}, J = 9.2 \text{ Hz}, 1\text{H}), 4.31 - 4.18 \ (\text{m}, 1\text{H}), 2.13 \ (\text{s}, 3\text{H}), 1.85 \ (\text{d}, J = 6.0 \text{ Hz}, 6\text{H}). \\ ^{19}\text{F} \text{ NMR (376 \text{ MHz, CDCl}_3) } \delta \ -116.00 \ (\text{s}). \\ ^{13}\text{C} \text{ NMR (101 MHz, CDCl}_3) \\ \delta \ 171.2, \\ 162.81 \ (\text{d}, J_{\text{C-F}} = 246.6 \text{ Hz}), 144.2, 143.8, 142.6, 142.5, 132.8, 132.6, 128.6, 127.9, 127.7, 127.4, \\ 126.2, 120.0, 110.45 \ (\text{d}, J_{\text{C-F}} = 23.1 \text{ Hz}), 102.82 \ (\text{d}, J_{\text{C-F}} = 29.5 \text{ Hz}) \ 97.3, 60.5, 54.5, 30.8, 30.0, \\ 20.5; \text{ IR (KBr) } v_{\text{max}}: 2964, 2923, 2847, 1667, 1485, 1366, 1262, 1172, 1089, 802, 706, 586. \\ \\ \text{HRMS (ESI): m/z = 595.0677 \ (\text{calcd for } C_{27}\text{H}_{26}\text{BrFN}_2\text{O}_4\text{S}+\text{Na}^+ = 595.0673). \\ \end{array}$

(S)-N-(Benzyloxy)-2-bromo-N-(6-chloro-2-methylene-1-tosylindolin-3-yl)-2-methylpropanam ide (3s)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 47% yield (27.3 mg), 75% ee [Daicel Chiralpak IA-H, hexanes/*i*-propanol = 95/5, flow: 1.0 mL/min, λ = 254

nm, t (major) = 9.68 min, t (minor) = 12.58 min]; $[\alpha]_{D}^{20}$ = +55.7 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.31 (s, ^{*}Br 1H), 7.29 (s, 2H), 7.14 (d, *J* = 6.8 Hz, 4H), 6.93 (s, 2H), 6.26 (s, 1H), 5.84 (s, 1H), 5.06 (s, 1H), 4.71 (s, 1H), 4.42 (s, 1H), 2.25 (s, 3H), 1.94 (d, *J* = 4.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 182.9, 172.3, 145.2, 144.4, 143.2, 135.9,

133.82, 133.6, 130.2, 129.7, 128.9, 128.7, 128.4, 127.3, 124.7, 115.9, 98.3, 61.8, 55.5, 31.8, 31.0, 21.5; IR (KBr) v_{max} : 2960, 2851, 1721, 1687, 1511, 1468, 1360, 1261, 1172, 1090, 966, 866, 764, 660, 545. HRMS (ESI): m/z = 611.0375 (calcd for C₂₇H₂₆BrClN₂O₄S+Na⁺ = 611.0377).

(S)-N-((3-Methylbenzyl)oxy)-N-(2-methylene-1-tosylindolin-3-yl)pivalamide (3u)

3s

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 52% yield (26.3 mg), 76% ee, [Daicel Chiralcel IA-H, hexanes/*i*-propanol = 95/5, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 8.833, t (minor) = 10.551]; $[\alpha]_{D}^{20}$ = +43.2 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.42 (tt, *J* = 7.2, 2.4 Hz, 1H),

7.20 - 7.00 (m, 7H), 6.56 (d, J = 7.2 Hz, 1H), 6.43 (s, 1H), 5.82 (t, J = 2.4 Hz, 1H), 5.04 (t, J = 2.4

 $C_{29}H_{32}N_2O_4S = 504.2083$).

N-(Benzyloxy)-2-bromo-*N*-((*S*)-2-methylene-1-tosylindolin-3-yl)propenamide (3v)

Flash column chromatography eluent petroleum ether/ethyl acetate = 20/1; yellow oil; 81% yield (43.2 mg), 1:1 dr, 50% ee, [Daicel Chiralcel IC-H, hexanes/*i*-propanol = 95/5, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 58.160, t (minor) = 68.143]; $[a]_{D}^{20}$ = +31.3 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.33 (dd, *J* = 7.6, 1.2

Hz, 1H), 7.26 – 7.21 (m, 4H), 7.05 (tt, J = 7.6, 1.2 Hz, 3H), 6.88 (d, J = 1.6 Hz, 1H), 6.77 (d, J = 1.6 Hz, 1H), 6.35 (s, 1H), 5.80 (t, J = 2.4 Hz, 1H), 5.03 (t, J = 2.4 Hz, 1H), 4.51 (d, J = 10.4 Hz, 1H), 4.23 (d, J = 5.6 Hz, 1H), 4.03 (dd, J = 8.4, 5.2 Hz, 1H), 2.17 (s, 3H), 1.58 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 144.9, 144.0, 142.9, 134.3, 133.7, 130.4, 129.6, 129.1, 128.7, 127.40 126.0, 125.5, 124.7, 115.8, 99.6, 79.3, 60.7, 37.2, 31.9, 21.6, 21.0.; IR (KBr) ν_{max} : 3033, 2975, 2253, 1674, 1477, 1362, 1172, 1090, 945, 754, 659, 573. HRMS (EI): m/z =540.0715 (calcd for C₂₆H₂₅BrN₂O₄S = 540.0718).

6. Scale-up synthesis and further transformations of the adducts

6.1 Scale-up synthesis of 3a

To an oven-dried three-necked flask, CuI (19.0 mg, 0.1 mmol, 5 mol%) and **L10** (47.2 mg, 0.12 mmol, 6 mol%) in dry toluene (40.0 mL) were added under a nitrogen atmosphere. The resulting

mixture was stirred at room temperature for 0.5 hours. Then the substrates **1a** (654.1 mg, 2.0 mmol, 1.0 equiv) and **2a** (813.1 mg, 3.0 mmol, 1.5 equiv) was introduced into the vessel. The mixture was stirred for 14 hours at 25 $^{\circ}$ C and then it was subjected to silica gel column (petroleum ether/EtOAc 10:1 v/v) to afford the desired products **3a** as yellow oil in 52% yield (576.3 mg) with 88% ee.

6.2 Procedure for the preparation of 4a

To an oven-dried schlenk tube, LiAlH₄ (4.6 mg, 0.12 mmol, 1.2 equiv) in dry tetrahydrofuran (1.0 mL) was added under a nitrogen atmosphere. The mixture was cool to -30 °C and stirred for 20 minutes. Then, **3a** (55.4 mg, 0.1 mmol, 1 equiv) in dry tetrahydrofuran (1.0 mL) was added. After stirring for 15 minutes at -30 °C. The crude reaction mixture was directly purified by flash column chromatography on silica gel column (petroleum ether/EtOAc 10:1 v/v) to afford the corresponding **4a** in 67% yield, 6:1 dr and 86% ee.

2-Bromo-2-methyl-N-(2-methyl-1-tosylindolin-3-yl)propenamide (4a)

Flash column chromatography eluent petroleum ether/ethyl acetate = 10/1; yellow oil; 67% yield (30.2 mg), 6:1 dr, 86% ee, [Daicel Chiralcel IA-H, hexanes/*i*-propanol = 95/5, flow rate = 1.0 mL/min, λ = 254.4 nm, t (major) = 11.888, t (minor) = 13.036]; $[\alpha]_{D}^{20}$ = +24.9 (c 0.1, CHCl₃); ¹H NMR (400 MHz,

CDCl₃) δ 8.15 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.27 – 7.13 (m, 6H), 6.82 (s, 1H), 2.61 (p, *J* = 6.8 Hz, 1H), 2.44 (s, 3H), 2.31 (s, 3H), 1.30 – 1.26 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 144.9, 135.9, 135.0, 132.2, 130.0, 127.0, 126.4, 124.4, 123.6, 117.6, 117.5, 114.5, 35.8, 21.5, 19.8, 12.6.; IR (KBr) v_{max}: 3676, 2920, 1655, 1463, 1358, 1186, 1090, 945, 754, 659, 551. HRMS (EI): m/z =450.0613 (calcd for C₂₀H₂₃BrN₂O₃S = 450.0619).

7. X-Ray data of 3g

Table S7 Crystal data and structure refinement for 3g

Empirical formula	CarHarO BraSNa
Empirical formula	624 28
Tomporaturo/K	222(2)
Crystal system	orthorhombic
Space group	$P2_12_12_1$
a/Å	8.9489(3)
b/Å	10.2140(2)
c/Å	29.3155(6)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2679.54(11)
Z	4
$\rho_{calc}g/cm^3$	1.573
μ/mm^{-1}	4.863
F(000)	1280.0
Crystal size/mm ³	$0.500 \times 0.300 \times 0.200$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/	° 9.168 to 155.228
Index ranges	$-10 \le h \le 11, -12 \le k \le 12, -28 \le l \le 37$
Reflections collected	11354
Independent reflections	5357 [$R_{int} = 0.0442$, $R_{sigma} = 0.0483$]
Data/restraints/parameters	5357/0/328
Goodness-of-fit on F ²	1.125
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0614, wR_2 = 0.1504$
Final R indexes [all data]	$R_1 = 0.0638$, $wR_2 = 0.1540$
Largest diff. peak/hole / e Å	³ 0.98/-0.78
Flack parameter	-0.02(2)

Figure S1. ORTEP drawing of 3g (50% thermal ellipsoids)

In order to determine the structure and absolute configuration of the product, we dissolved the product **3g** in 0.4 mL ethyl acetate and placed the solution in the NMR tube. Then n-hexane was absorbed with a syrringe and slowly added into the NMR tube until it was filled. After that, the NMR tube was sealed and put in the refrigerator, and the product **3g** single crystal was obtained by slow penetration of n-hexane. **CCDC 2040799** (**3g**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

8. NMR spectra

(S)-N-(Benzyloxy)-2-bromo-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)propanamide (3a)

 $(S) \hbox{-} 2-methyl-N-((2-methylbenzyl)oxy)-N-(2-methylene-1-tosylindolin-3-yl) propanal (S) \hbox{-} 2-methyl-N-((2-methylene-1-tosylindolin-3-yl) propanal (S) \hbox{-} 2-methyl-N-((2-methylene-1-tosylindolin-3-yl) propanal (S) \hbox{-} 2-methyl-N-((2-methylene-1-tosylindolin-3-yl) propanal (S) \hbox{-} 2-methyl-N-((2-methylene-1-tosylindolin-3-yl) propanal (S) \hbox{-} 2-methylene-1-tosylindolin-3-yl) propanal (S) \hbox{-} 2-methyl-N-((2-methylene-1-tosylindolin-3-yl) propanal (S) \hbox{-} 2-methylene-1-tosylindolin-3-yl) propanal (S) (S) \hbox{-} 2-methylene-1-tosylindolin-3-yl) propanal (S) (S) \hbox{$

mide (3b)

(S) -2-Bromo-2-methyl- N-((3-methylbenzyl) oxy) - N-(2-methylene-1-tosylindolin-3-yl) propana

mide (3c)

 $(S) \hbox{-} 2-methyl-N-((4-methylbenzyl)oxy)-N-(2-methylene-1-tosylindolin-3-yl) propana$

mide (3d)

 $(S) \hbox{-} 2-Bromo-N-((2-bromobenzyl)oxy) \hbox{-} 2-methyl-N-(2-methylene-1-tosylindolin-3-yl) propana$

mide (3e)

 $(S) \hbox{-} 2-Bromo-N-((3-bromobenzyl) oxy)-2-methyl-N-(2-methylene-1-tosylindolin-3-yl) propana$

mide (3f)

 $(S) \hbox{-} 2-Bromo-N-((4-bromobenzyl) oxy) \hbox{-} 2-methyl-N-(2-methylene-1-tosylindolin-3-yl) propana$

mide (3g)

(S) -2-Bromo-2-methyl- N-((2-methylene-1-tosylindolin-3-yl) - N-((2-mitrobenzyl)oxy) propanamiant (S) - N-((2-methylene-1-tosylindolin-3-yl) -

de (3h)

(S) -2-Bromo- N-((4-(tert-butyl) benzyl) oxy) -2-methyl- N-(2-methylene-1-tosylindolin-3-yl) property of the second se

anamide (3i)

 $(S) \hbox{-} 2-methyl-N-(2-methylene-1-tosylindolin-3-yl)-N-(thiophen-2-ylmethoxy) propanition of the second structure of the se$

amide (3j)

(S)-2-Bromo-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)-N-(naphthalen-2-ylmethoxy)prop anamide (3k)

(S)-N-(Benzyloxy)-N-(2-methylene-1-tosylindolin-3-yl)pivalamide (3l)

 $\begin{array}{c} 7.794\\ -7.7665\\ -7.76666\\ -7.76666\\ -7.76666\\ -7.72666\\ -7.72666\\ -7.7266\\ -7.7266\\ -7.7276\\ -7$ 1500 1400 -1300 -1200 1 of J 1100 0 ĊН3 N-1000 Br -900 800 Τs 3m -700 -600 500 400 300 -200 100 0 3.01 = 3.02 = 6.01 = 1.01 2.02 ≠ 3.00 1.03 2.00 00 00 1 00 1 00 100 8 -100 4.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 40 3.5 3.0 2.5 2.0 1.5 1. 0 0.5 -61.922 -55.694 31.930 31.054 22.072 21.481 5.0×10⁸ -4.5×10⁸ -4.0×10^{8} -3.5×10⁸ CH₃ N -3.0×10⁸ `Br -2.5×10⁸ τs 3m -2.0×10^{8} -1.5×10⁸ -1.0×10⁸ -5.0×10⁷ 0.0 -5. 0×10⁷ ò 190 120 110 100 90 f1 (ppm) so 70 60 50 40 а 20 10 150 170 160 150 140 130

(S) - N - (Benzy loxy) - 2 - bromo - 2 - methyl - N - (4 - methyl - 2 - methylene - 1 - tosylindolin - 3 - yl) propana

(S) - N - (Benzy loxy) - 2 - bromo - N - (5 - methoxy - 2 - methylene - 1 - tosylindolin - 3 - yl) - 2 - methylpropanal (S) - N - (S)

amide (3n)

(S) - N - (Benzy loxy) - 2 - bromo - 2 - methyl - N - (5 - methyl - 2 - methylene - 1 - tosylindolin - 3 - yl) propana

mide (30)

(S)-N-(Benzyloxy)-2-bromo-N-(5-chloro-2-methylene-1-tosylindolin-3-yl)-2-methylpropanam ide (3p)

(S) - N - (Benzy loxy) - 2 - bromo - N - (5 - bromo - 2 - methylene - 1 - tosylindolin - 3 - yl) - 2 - methylpropanam - 2 - methylpro

ide (3q)

(S)-N-(Benzyloxy)-2-bromo-N-(6-fluoro-2-methylene-1-tosylindolin-3-yl)-2-methylpropanam ide (3r)

(S)-N-(Benzyloxy)-2-bromo-N-(6-chloro-2-methylene-1-tosylindolin-3-yl)-2-methylpropanam ide (3s)

(S) - N - ((3 - Methylbenzyl) oxy) - N - (2 - methylene - 1 - tosylindolin - 3 - yl) pivalamide (3u)

N-(Benzyloxy)-2-bromo-N-((S)-2-methylene-1-tosylindolin-3-yl)propanamide (3v)

2-Bromo-2-methyl-N-(2-methyl-1-tosylindolin-3-yl)propenamide (4a)

9. HPLC analysis

(S)-N-(Benzyloxy)-2-bromo-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)propanamide (3a)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	8.105	VB	0.2061	7099.11035	537.44067	95.3038
2	10.382	MM R	0.2362	349.81824	24.68545	4.6962

 $(S) \hbox{-} 2-Bromo-2-methyl-N-((2-methylbenzyl)oxy)-N-(2-methylene-1-tosylindolin-3-yl) propanal (S) \hbox{-} 2-Bromo-2-methyl-N-((2-methylbenzyl)oxy)-N-((2-methylene-1-tosylindolin-3-yl) propanal (S) \hbox{-} 2-Bromo-2-methyl-N-((2-methylene-1-tosylindolin-3-yl) propanal (S) \hbox{-} 2-Bromo-2-methylene-1-tosylindolin-3-yl) propanal (S) (S) \hbox{-} 2-Bromo-2-methylene-1-tosylindolin-3-yl) propanal (S) (S) \hbox{-} 2-Bromo-2-methylene-1-tosylindolin-3-methylene-3-methylene-3-methylene-3-methylene-3-methylen$

 $(S) \hbox{-} 2-Bromo-N-((2-bromobenzyl)oxy) \hbox{-} 2-methyl-N-(2-methylene-1-tosylindolin-3-yl) propana$

(S)-2-Bromo-N-((3-bromobenzyl)oxy)-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)propana

 $(S) \hbox{-} 2-Bromo-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)-N-((2-nitrobenzyl)oxy) propanami$

(S) -2-Bromo-N- ((4-(tert-butyl) benzyl) oxy) -2-methyl-N- (2-methylene-1-tosylindolin-3-yl) property of the second se

anamide (3i)

 $(S) \hbox{-} 2-Bromo-2-methyl-N-(2-methylene-1-tosylindolin-3-yl)-N-(naphthalen-2-ylmethoxy) property of the second structure of$

 $(S) \hbox{-} N \hbox{-} (Benzyloxy) \hbox{-} N \hbox{-} (2 \hbox{-} methylene \hbox{-} 1 \hbox{-} tosylindolin \hbox{-} 3 \hbox{-} yl) pivalamide (3l)$

 $(S) \text{-} N \text{-} (Benzy loxy) \text{-} 2 \text{-} bromo \text{-} N \text{-} (5 \text{-} methoxy \text{-} 2 \text{-} methylene \text{-} 1 \text{-} tosylindolin \text{-} 3 \text{-} yl) \text{-} 2 \text{-} methylpropanal (S) \text{-} N \text{-} N \text{-} (S) \text{-} N \text{-} (S) \text{-} N \text{-} (S) \text{-} N \text{-} (S) \text{-} N \text{-} N \text{-} (S) \text{-} N \text{-} (S) \text{-} N \text{-} N \text{-} (S) \text{-} N \text{-} N \text{-} (S) \text{-} N \text{-} N \text{-} N \text{-} N \text{-} N \text{-} (S) \text{-} N \text{$

(S)-N-(Benzyloxy)-2-bromo-2-methyl-N-(5-methyl-2-methylene-1-tosylindolin-3-yl)propana

(S) - N - (Benzy loxy) - 2 - bromo - N - (5 - chloro - 2 - methylene - 1 - tosylindolin - 3 - yl) - 2 - methylpropanam

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	10.233	BB	0.2459	1415.69299	89.81912	88.4761
2	13.308	BV	0.4736	184.39308	6.26146	11.5239

(S)-N-(Benzyloxy)-2-bromo-N-(6-fluoro-2-methylene-1-tosylindolin-3-yl)-2-methylpropanam

(S)-N-(Benzyloxy)-2-bromo-N-(6-chloro-2-methylene-1-tosylindolin-3-yl)-2-methylpropanam ide (3s)

(S)-N-((3-Methylbenzyl)oxy)-N-(2-methylene-1-tosylindolin-3-yl)pivalamide (3u)

N-(Benzyloxy)-2-bromo-*N*-((*S*)-2-methylene-1-tosylindolin-3-yl)propenamide (3v)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	49.585	BV	1.4793	5441.13623	54.94875	26.1031
2	53.073	VB	1.5901	6501.86377	62.07016	31.1918
3	58.160	BB	1.6703	6488.75488	57.25082	31.1289
4	68.143	BB	1.4678	2413.05347	19.49924	11.5763

2-Bromo-2-methyl-N-(2-methyl-1-tosylindolin-3-yl)propenamide (4a)

10. References

1. (a) Wang, Q.; Li, T.-R.; Lu, L.-Q.; Li, M.-M.; Zhang, K.; Xiao, W.-J. J. Am. Chem. Soc., 2016, 138,

8360–8363; (b) Li, T.-R.; Cheng, B.-Y.; Wang, Y.-N.; Zhang, M.-M.; Lu, L.-Q.; Xiao, W.-J., Angew. Chem. Int. Ed., 2016, 55, 12422–12426.

2. (a) Shen, J.; Woodward, R.; Kedenburg, J. P.; Liu, X.; Chen, M.; Fang, L.; Sun, D.; Wang, P. G.; J.

Med. Chem., 2008, 51, 7417-7427; (b) Jeffrey, C. S.; Barnes, K. L.; Eickhoff, J. A.; Carson, C. R., J.

Am. Chem. Soc., 2011, 133, 7688–7691; (c) Kang, D.; Zhang, H.; Zhou, Z.; Huang, B.; Naesens, L.;

Zhan, P.; Liu, X., Bioorg. Med. Chem. Let., t 2016, 26, 5182–5186.