Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Access to fused π -extended acridone derivatives through a regioselective oxidative

demethylation

Weiwei Ding, Gang Zhang*

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, P. R. China

Table of Contents

1. General remarks	
2. Experimental section	S2
3. Reaction mechanism	S5
4. NMR spectra	S6
5. Fluorescence decay curves	
6. CV and DPV curves	S11
7. X-ray crystallographic structure determination	
8. Theoretical calculations	
9. References	S22

1. General remarks

All reagents and solvents were commercially available and were used without further purification unless otherwise noted. For thin layer chromatography Silica gel 60 F254 plates from Merck were used and examined under UV-light irradiation (254 nm and 365 nm). Flash column chromatography was performed on silica gel (particle size: 200-300 mesh). Melting points were measured with a MPA100 OptiMelt. IR-Spectra were recorded as KBr-pellets on a Bruker VERTEX 80V spectrometer. NMR spectra were taken on Bruker AVANCE III HD (600 MHz). Chemical shifts (δ) are reported in parts per million (ppm) relative to traces of CHCl₃ and DMSO in the corresponding deuterated solvents. HRMS experiments were carried out on a ThermoFisher LTQ Orbitrap XL. Absorption spectra were recorded on a Shimadzu UV2600. Emission spectra, absolute quantum yields, as well as fluorescence lifetimes were measured on FluoroMax-4 spectrometer equipped with an integral sphere and a time-correlated single photon counting system with a NanoLED laser. Crystal structure analysis was accomplished with a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. Cyclic voltammagrams were obtained using a glassy carbon working electrode, a platinum counter electrode, and a Ag reference electrode tested on CHI660E station. 2,3-dimethoxyacridone was synthesized according to the reported method. ^[S1]

2. Experimental section

N-(4-tert-butylphenyl)-2,3-dimethoxyacridone 2

A 120 mL screw capped glass vial was charged with 2,3-dimethoxyacridone (1.13 g, 4.43 mmol), 4-*tert*-butyl-1-bromobenzene (1.22 g, 5,76 mmol), CuI (83 mg, 0.44 mmol), 2,2,6,6-tetramethylheptane-3,5-dione (170 mg, 0.89 mmol), K₂CO₃ (0.92 g, 6.65 mmol) and dry DMF (9 mL). The mixture was heated in an oil bath at 160 °C for 48 hours. After cooling down to room temperature, the mixture was diluted with dichloromethane (200 mL) and washed with water (6×200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate 10:1) to give the product as light yellow solid (1.10 g, 64%). m. p. : 262-264 °C.¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.59 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.96 (s, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.47 (ddd, *J* = 8.5, 7.1, 1.5 Hz, 1H), 7.33 - 7.22 (m, 3H), 6.78 (d, *J* = 8.6 Hz, 1H), 6.13 (s, 1H), 4.02 (s, 3H), 3.65 (s, 3H), 1.45 (s, 9H).¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 176.7, 154.5, 153.1, 145.7, 142.9, 139.7, 136.4, 132.5, 129.5, 128.0, 127.1, 121.5, 121.4, 116.9, 115.8, 106.5, 98.6, 56.4, 55.8, 35.2, 31.5. IR (KBr) \tilde{v} (cm⁻¹) = 2955, 1632, 1598, 1510, 1490, 1472, 1430, 1364, 1305, 1278, 1247, 1213, 1157, 1131, 1110, 1020, 899, 860, 824, 782, 755, 611.HRMS(ESI) (*m/z*): [M+H]⁺calcd. for C₂₅H₂₆NO₃, 388.1913, found, 388.1902.

N-(4-tert-butylphenyl)-3-methoxyacridine-1,2,9-trione 3

Compound **2** (1.10 g, 2.84 mmol) was dissolved in dichloromethane (14 mL), acetonitrile (70 mL) and water (14 mL). Ceric ammonium nitrate (6.03 g, 11 mmol) was added to the above solution and the reaction was stirred at room temperature for 15 minutes. The reaction solution was diluted with dichloromethane (200 mL) and washed with water (3×200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate 4:1) to give the product as red solid (0.70 g, 64%). m.p.: 318-320 °C (dec.). ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm) = 8.26 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.65 - 7.60 (m, 1H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 6.71 (d, *J* = 8.5 Hz, 1H), 3.41 (s, 3H), 1.40 (s, 9H).¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm) = 174.6, 173.6, 172.3, 154.8, 154.0, 153.5, 141.2, 134.6, 133.0, 128.7, 127.6 (2C), 126.0, 125.9, 119.4, 110.0, 103.5, 55.4, 34.9, 31.0. IR (KBr) \tilde{v} (cm⁻¹) = 3059, 2960, 2868, 2360, 2341, 1703, 1676, 1630, 1605, 1509, 1476, 1459, 1446, 1426, 1367, 1334, 1299, 1252, 1198, 1118, 1092, 765. HRMS(ESI) (*m*/*z*): [M+H]⁺calcd. for C₂₄H₂₂NO₄, 388.1549, found, 388.1551.

5-(4-tert-butylphenyl)-7-methoxyquinonelino[3,2-a]phenazin-14-one 5

A 120 mL screw capped glass vial was charged with compound **3** (190 mg, 0.5 mmol), chloroform (10 mL), acetic acid (5 mL) and phenylene-1,2-diamine (72 mg, 0.66 mmol). The vial was screw-capped and the vial was heated in an oil bath at 80 °C for 40 hours. After cooling down to room temperature, the mixture was diluted with dichloromethane (100 mL) and washed with water (3×200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was suspended in methanol (10 mL) and filtered off to give the product as pale brown solid (160 mg, 70%). m.p.: 360-361 °C (dec.). ¹H NMR (600 MHz, CDCl₃) δ (ppm) = 8.78 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.56 (d, *J* = 8.5 Hz, 1H), 8.33 (d, *J* = 8.4 Hz, 1H), 7.90 (ddd, *J* = 8.4, 6.6, 1.4 Hz, 1H), 7.82 (ddd, *J* = 8.3, 6.6, 1.4 Hz, 1H), 7.78 (dt, *J* = 8.4, 2.1 Hz, 2H), 7.50 (ddd, *J* = 8.6, 6.9, 1.7 Hz, 1H), 7.45-7.38 (m, 3H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.43 (s, 1H), 3.85 (s, 3H), 1.49 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) = 175.7, 157.7, 153.6, 147.7, 144.5, 144.0, 141.4, 140.2, 136.1, 133.9, 132.0, 130.9, 130.4, 129.8, 129.5, 129.2, 128.1, 127.4, 126.0, 123.5, 117.4, 108.8, 99.4, 56.1, 35.1, 31.4. IR (KBr) \tilde{v} (cm⁻¹)

= 2947, 1642, 1601, 1548, 1511, 1477, 1446, 1425, 1363, 1399, 1309, 1259, 1227, 1198, 1156, 1118, 1054, 1025, 864, 827, 752, 616, 578. HRMS(ESI) (*m*/*z*): [M+H]⁺calcd. for C₃₀H₂₆N₃O₂, 460.2025, found, 460.2017.

5-(4-tert-butylphenyl)-7-methoxybenzo[i]quinonelino[3,2-a]phenazin-16-one 6

A 120 mL screw capped glass vial was charged with compound **3** (180 mg, 0.46 mmol), chloroform (14 mL), acetic acid (7 mL) and naphthalene-2,3-diamine (95 mg, 0.60 mmol). The vial was screw-capped and the vial was heated in an oil bath at 80 °C for 40 hours. After cooling down to room temperature, the mixture was diluted with dichloromethane (100 mL) and washed with water (3×200 mL) and dried over Na₂SO₄. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate 10:1) to give the product as red solid (90 mg, 38%). m.p.: 364-366 °C (dec.).¹H NMR (600 MHz, CDCl₃) δ (ppm) = 9.20 (s, 1H), 8.98 (s, 1H), 8.81 (dd, *J* = 8.0, 1.6 Hz, 1H), 8.20 (d, *J* = 8.3 Hz, 1H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.59-7.53 (m, 2H), 7.53-7.50 (m, 1H), 7.45-7.43 (m, 3H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.38 (s, 1H), 3.87 (s, 3H), 1.50 (s, 9H). Record of ¹³C NMR spectrum was not successful due to the poor solubility. IR (KBr) \tilde{v} (cm⁻¹) = 2963, 2284, 1638, 1610, 1508, 1482, 1444, 1430, 1399, 1311, 1249, 1226, 1154, 1119, 1056, 877, 828, 749, 616, 562, 485.HRMS(ESI) (*m*/*z*): [M+H]⁺calcd. for C₃₄H₂₈N₃O₂, 510.2182, found, 510.2184.

3. Reaction mechanism

Scheme S1. The resonance structures of 2 and its bond lengths in the crystal.

Scheme S2. Proposed mechanism for the oxidative demethylation

Figure S2. ¹³C NMR spectrum (CDCl₃, 150 MHz) of 2

Figure S4. ¹³C NMR spectrum (DMSO-*d*₆, 150 MHz) of 4

Figure S6. ¹³C NMR spectrum (CDCl₃, 150 MHz) of 5

Figure S7. ¹H NMR spectrum (CDCl₃, 600 MHz) of 6

5. Fluorescence decay curves

Figure S8. Fluorescence decay curve of 5 in dichloromethane at room temperature.

Figure S9. Fluorescence decay curve of 6 in solid state at room temperature.

Figure S10. CV and DPV curves of 5

Figure S11. CV and DPV curves of 6

7. X-ray crystallographic structure determination

Empirical formula	C25H25NO3
Formula weight	387.46
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	8.6227(10)
b/Å	11.3588(12)
c/Å	11.8411(17)
α/°	117.309(13)
β/°	91.977(11)
$\gamma/^{\circ}$	96.236(10)
Volume/Å ³	1019.7(2)
Z	2
$\rho_{calc}g/cm^3$	1.262
μ/mm^{-1}	0.657
F(000)	412.0
Radiation	Cu K α (λ = 1.54184)
2Θ range for data collection/°	8.442 to 133.194
Index ranges	$-10 \le h \le 6, -13 \le k \le 13, -14 \le l \le 13$
Reflections collected	6322
Independent reflections	3591 [$R_{int} = 0.0587$, $R_{sigma} = 0.0541$]
Data/restraints/parameters	3591/0/267
Goodness-of-fit on F ²	1.089
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0936, wR_2 = 0.2981$
Final R indexes [all data]	$R_1 = 0.1154, wR_2 = 0.3188$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.41

 Table S1. Crystal data and structure refinement for 2

Figure S12. Crystal structure of 2 with an ellipsoid contour at the 50% probability level.

Empirical formula	C32H27Cl6N3O2
Formula weight	698.26
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	11.7193(8)
b/Å	25.313(2)
c/Å	11.1041(10)
$\alpha/^{\circ}$	90
β/°	105.097(9)
$\gamma^{/\circ}$	90
Volume/Å ³	3180.4(5)
Z	4
$ ho_{calc}g/cm^3$	1.458
μ/mm^{-1}	0.576
F(000)	1432.0
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	3.942 to 49.998
Index ranges	$-13 \le h \le 11, -30 \le k \le 23, -13 \le l \le 13$
Reflections collected	13938
Independent reflections	5599 [$R_{int} = 0.0412$, $R_{sigma} = 0.0598$]
Data/restraints/parameters	5599/0/392
Goodness-of-fit on F ²	1.038
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0668, wR_2 = 0.1583$
Final R indexes [all data]	$R_1 = 0.0916, wR_2 = 0.1756$
Largest diff. peak/hole / e Å ⁻³	0.74/-0.66
	\circ

 Table S2. Crystal data and structure refinement for 5

Figure S13. Crystal structure of 5 with an ellipsoid contour at the 50% probability level.

Formula weight 748.32 Temperature/K 149.99(10) Crystal system triclinic Space group P-1 $a/Å$ 11.5804(4) $b/Å$ 12.1813(6) $c/Å$ 12.9925(5) $a/°$ 101.203(4) $\beta/°$ 101.376(3) γ'° 103.039(3) Volume/Å3 1694.85(13) Z 2 ρ_{categ/cm^3} 1.466 μ/mm^{-1} 4.935 F(000) 768.0 Radiation Cu Ka ($\lambda = 1.54184$) 2Ø range for data collection/° 7.168 to 147.926 Index ranges -14 ≤ h ≤ 11, -14 ≤ k ≤ 15, -16 ≤ 1 ≤ 14 Reflections collected 11542 Independent reflections 6648 [Rint = 0.0314, R _{sigma} = 0.0450] Data/restraints/parameters 6648/0/428 Goodness-of-fit on F ² 1.038 Final R indexes [I>=2 σ (I)] R ₁ = 0.0465, wR ₂ = 0.1186 Final R indexes [all data] R ₁ = 0.0564, wR ₂ = 0.1267 Largest diff. peak/hole / e Å ⁻³ 0.59/-0.68	Empirical formula	C36H29Cl6N3O2
Temperature/K 149.99(10) Crystal system triclinic Space group P-1 $a/Å$ 11.5804(4) $b/Å$ 12.1813(6) $c/Å$ 12.9925(5) a'° 101.203(4) $\beta/^\circ$ 101.376(3) γ'° 103.039(3) Volume/ų 1694.85(13) Z 2 ρ_{calcg/cm^3} 1.466 μ/mm^{-1} 4.935 F(000) 768.0 Radiation Cu Ka ($\lambda = 1.54184$) 2Θ range for data collection/° 7.168 to 147.926 Index ranges -14 ≤ h ≤ 11, -14 ≤ k ≤ 15, -16 ≤ 1 ≤ 14 Reflections collected 11542 Independent reflections 6648 [Rint = 0.0314, Rsigma = 0.0450] Data/restraints/parameters 6648/0/428 Goodness-of-fit on F² 1.038 Final R indexes [I>=2 σ (I)] R ₁ = 0.0465, wR ₂ = 0.1186 Final R indexes [all data] R ₁ = 0.0564, wR ₂ = 0.1267 Largest diff. peak/hole / e Å ⁻³ 0.59/-0.68	Formula weight	748.32
Crystal system triclinic Space group P-1 $a/Å$ 11.5804(4) $b/Å$ 12.1813(6) $c/Å$ 12.9925(5) $a/°$ 101.203(4) $\beta/°$ 101.376(3) $\gamma/°$ 103.039(3) Volume/Å ³ 1694.85(13) Z 2 ρ_{calcg}/cm^3 1.466 μ/mm^{-1} 4.935 F(000) 768.0 Radiation Cu Ka ($\lambda = 1.54184$) 2 Θ range for data collection/° 7.168 to 147.926 Index ranges $-14 \le h \le 11, -14 \le k \le 15, -16 \le 1 \le 14$ Reflections collected 11542 Independent reflections 6648 [Rint = 0.0314, Rsigma = 0.0450] Data/restraints/parameters 66488/0/428 Goodness-of-fit on F ² 1.038 Final R indexes [I>=2 σ (I)] $R_1 = 0.0465, wR_2 = 0.1186$ Final R indexes [all data] $R_1 = 0.0564, wR_2 = 0.1267$ Largest diff. peak/hole / e Å ⁻³ 0.59/-0.68	Temperature/K	149.99(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Crystal system	triclinic
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Space group	P-1
	a/Å	11.5804(4)
$c/Å$ 12.9925(5) α'° 101.203(4) β'° 101.376(3) γ'° 103.039(3) Volume/Å ³ 1694.85(13) Z 2 $\rho_{cate}g/cm^3$ 1.466 μ/mm^{-1} 4.935 F(000) 768.0 Radiation Cu K α ($\lambda = 1.54184$) 2 Θ range for data collection/° 7.168 to 147.926 Index ranges -14 ≤ h ≤ 11, -14 ≤ k ≤ 15, -16 ≤ 1 ≤ 14 Reflections collected 11542 Independent reflections 6648 [R_int = 0.0314, R_{sigma} = 0.0450] Data/restraints/parameters 6648/0/428 Goodness-of-fit on F ² 1.038 Final R indexes [I>=2 σ (I)] R ₁ = 0.0465, wR ₂ = 0.1186 Final R indexes [all data] R ₁ = 0.0564, wR ₂ = 0.1267 Largest diff. peak/hole / e Å ⁻³ 0.59/-0.68	b/Å	12.1813(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c/Å	12.9925(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a/°	101.203(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β/°	101.376(3)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\gamma/^{\circ}$	103.039(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Volume/Å ³	1694.85(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Z	2
$\label{eq:product} \begin{array}{cccc} \mu/mm^{-1} & 4.935 \\ F(000) & 768.0 \\ Radiation & Cu K\alpha (\lambda = 1.54184) \\ 2\Theta \mbox{ range for data collection/}^{\circ} & 7.168 \mbox{ to } 147.926 \\ Index \mbox{ ranges } & -14 \le h \le 11, -14 \le k \le 15, -16 \le l \le 14 \\ Reflections \mbox{ collected } & 11542 \\ Independent \mbox{ reflections } & 6648 \mbox{ [R}_{int} = 0.0314, R_{sigma} = 0.0450] \\ Data/restraints/parameters & 6648/0/428 \\ Goodness-of-fit \mbox{ or } F^2 & 1.038 \\ Final \mbox{ R indexes [I>=2\sigma (I)] } & R_1 = 0.0465, \mbox{ wR}_2 = 0.1186 \\ Final \mbox{ R indexes [all data] } & R_1 = 0.0564, \mbox{ wR}_2 = 0.1267 \\ Largest \mbox{ diff. peak/hole / e \mbox{ A^{-3} } & 0.59/-0.68 \\ \end{array}$	$ ho_{calc}g/cm^3$	1.466
F(000) 768.0 Radiation Cu Ka ($\lambda = 1.54184$) 2 Θ range for data collection/° 7.168 to 147.926 Index ranges -14 ≤ h ≤ 11, -14 ≤ k ≤ 15, -16 ≤ 1 ≤ 14 Reflections collected 11542 Independent reflections 6648 [R _{int} = 0.0314, R _{sigma} = 0.0450] Data/restraints/parameters 6648/0/428 Goodness-of-fit on F ² 1.038 Final R indexes [I>=2 σ (I)] R ₁ = 0.0465, wR ₂ = 0.1186 Final R indexes [all data] R ₁ = 0.0564, wR ₂ = 0.1267 Largest diff. peak/hole / e Å ⁻³ 0.59/-0.68	μ/mm^{-1}	4.935
RadiationCu Ka ($\lambda = 1.54184$) 2Θ range for data collection/°7.168 to 147.926Index ranges $-14 \le h \le 11, -14 \le k \le 15, -16 \le 1 \le 14$ Reflections collected11542Independent reflections6648 [R _{int} = 0.0314, R _{sigma} = 0.0450]Data/restraints/parameters6648/0/428Goodness-of-fit on F ² 1.038Final R indexes [I>= 2σ (I)]R ₁ = 0.0465, wR ₂ = 0.1186Final R indexes [all data]R ₁ = 0.0564, wR ₂ = 0.1267Largest diff. peak/hole / e Å ⁻³ 0.59/-0.68	F(000)	768.0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Radiation	Cu Ka ($\lambda = 1.54184$)
Index ranges $-14 \le h \le 11, -14 \le k \le 15, -16 \le l \le 14$ Reflections collected11542Independent reflections6648 [R _{int} = 0.0314, R _{sigma} = 0.0450]Data/restraints/parameters6648/0/428Goodness-of-fit on F ² 1.038Final R indexes [I>=2 σ (I)]R ₁ = 0.0465, wR ₂ = 0.1186Final R indexes [all data]R ₁ = 0.0564, wR ₂ = 0.1267Largest diff. peak/hole / e Å ⁻³ 0.59/-0.68	2Θ range for data collection/°	7.168 to 147.926
Reflections collected11542Independent reflections $6648 [R_{int} = 0.0314, R_{sigma} = 0.0450]$ Data/restraints/parameters $6648/0/428$ Goodness-of-fit on F ² 1.038 Final R indexes [I>=2 σ (I)] $R_1 = 0.0465, wR_2 = 0.1186$ Final R indexes [all data] $R_1 = 0.0564, wR_2 = 0.1267$ Largest diff. peak/hole / e Å ⁻³ $0.59/-0.68$	Index ranges	$-14 \le h \le 11, -14 \le k \le 15, -16 \le l \le 14$
Independent reflections $6648 \ [R_{int} = 0.0314, R_{sigma} = 0.0450]$ Data/restraints/parameters $6648/0/428$ Goodness-of-fit on F ² 1.038 Final R indexes [I>= 2σ (I)] $R_1 = 0.0465, wR_2 = 0.1186$ Final R indexes [all data] $R_1 = 0.0564, wR_2 = 0.1267$ Largest diff. peak/hole / e Å ⁻³ $0.59/-0.68$	Reflections collected	11542
	Independent reflections	6648 [$R_{int} = 0.0314$, $R_{sigma} = 0.0450$]
Goodness-of-fit on F^2 1.038 Final R indexes [I>=2 σ (I)] R ₁ = 0.0465, wR ₂ = 0.1186 Final R indexes [all data] R ₁ = 0.0564, wR ₂ = 0.1267 Largest diff. peak/hole / e Å ⁻³ 0.59/-0.68	Data/restraints/parameters	6648/0/428
Final R indexes [I>= 2σ (I)] R ₁ = 0.0465, wR ₂ = 0.1186 Final R indexes [all data] R ₁ = 0.0564, wR ₂ = 0.1267 Largest diff. peak/hole / e Å ⁻³ 0.59/-0.68	Goodness-of-fit on F ²	1.038
Final R indexes [all data] $R_1 = 0.0564$, $wR_2 = 0.1267$ Largest diff. peak/hole / e Å ⁻³ $0.59/-0.68$	Final R indexes [I>= 2σ (I)]	$R_1 = 0.0465, wR_2 = 0.1186$
Largest diff. peak/hole / e Å-3 $0.59/-0.68$	Final R indexes [all data]	$R_1 = 0.0564, wR_2 = 0.1267$
	Largest diff. peak/hole / e Å ⁻³	0.59/-0.68

Figure S14. Crystal structure of 6 with an ellipsoid contour at the 50% probability level.

8. Theoretical calculations

All the theoretical calculations were carried out using a Gaussian 16 software.^[S2] All the calculations were based on the optimized geometries at B3LYP/6-31G(d,p) level of theory. The frontier molecular orbitals are calculated at the B3LYP/6-311+G(d,p) level of theory. The calculation of excited state properties was performed using time-depended DFT methods at B3LYP/6-311G+(d,p) level of theory in the solvent dichloromethane. The nucleus-independent chemical shift (NICS) calculation was done at GIAO-B3LYP/6-311+G(d,p) level of theory. Bq atoms were inserted at the calculated positions and the Bq positions that are at the 1 Å away above the molecule were fixed with the assistant of Multiwfn 3.8 software, as well as the generation of isotropic chemical shielding surfaces (ICSS) and related quantities.^[S3] The hole transfer integral was calculated by $t_h = 1/2$ (*EHOMO – EHOMO-1*) and the electron transfer integral was calculated by $t_e = 1/2(E_{LUMO+1} - E_{LUMO})$. To calculate the reorganization energy λ , the geometry of the molecule was first optimized at the ground state and the single point energy was then calculated with the charge of 0, +1 and -1. The energies were denoted as E_{G0} , E_{G+1} and E_{G-1} , respectively. Then the geometry of the molecule was optimized with the charge of +1 (Cation) and -1 (Anion) and the single point energy was calculated with the charge of 0, +1 and 0, -1, respectively. The energies were denoted as E_{C0} , E_{C+1} , E_{A0} and E_{A-1} , respectively. The hole reorganization energy was calculated by $\lambda_h = (E_{C0} - E_{G0}) + (E_{G+1} - E_{C+1})$ and the electron reorganization energy was calculated by $\lambda_e = (E_{A0} - E_{G0}) + (E_{G-1} - E_{A-1})$.

Figure S15. UV/Vis absorption spectrum of compound **5** and TD-DFT calculated oscillator strength (blue column) in dichloromethane solvent at B3LYP/6-311G+(d,p) level.

Figure S16. UV/Vis absorption spectrum of compound **6** and TD-DFT calculated oscillator strength (blue column) in dichloromethane solvent at B3LYP/6-311G+(d,p) level.

Table S4. TD-DFT calculated first-ten electron transitions of **5** in dichloromethane at B3LYP / 6-311+G(d,p) level

Excited State	1:	Singlet-A	2.6698 eV	464.39 nm	f=0.0025	<s**2>=0.000</s**2>
114 ->122		0.12233				
120 ->122		0.68178				
121 ->122		-0.12800				
Excited State	2:	Singlet-A	2.8065 eV	441.78 nm	f=0.1708	<s**2>=0.000</s**2>
120 ->122		0.12488				
121 ->122		0.68419				
Excited State	3:	Singlet-A	3.2090 eV	386.37 nm	f=0.2761	<s**2>=0.000</s**2>
119 ->122		0.68222				
121 ->123		-0.12388				
Excited State	4:	Singlet-A	3.3912 eV	365.61 nm	f=0.0005	<s**2>=0.000</s**2>
114 ->122		0.11155				
114 ->123		-0.10102				
120 ->123		0.67492				
Excited State	5:	Singlet-A	3.7516 eV	330.48 nm	f=0.0035	<s**2>=0.000</s**2>
114 ->122		0.66957				

$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120 ->122	-0.1	11964				
Excited State 6: Singlet-A 3.7704 eV 328.84 nm f=0.0961 $<$ S**2>=0.000 115 ->122 -0.16335 118 ->122 0.54960 121 ->123 -0.37074 Excited State 7: Singlet-A 3.7976 eV 326.48 nm f=0.1712 $<$ S**2>=0.000 116 ->122 0.11441 118 ->122 0.36713 119 ->123 0.10258 121 ->123 0.55264 Excited State 8: Singlet-A 3.9426 eV 314.47 nm f=0.0187 $<$ S**2>=0.000 115 ->122 0.41163 116 ->122 0.23631 118 ->122 0.20234 119 ->123 -0.25402 119 ->124 0.11472 121 ->124 0.11472 121 ->124 -0.13923 Excited State 9: Singlet-A 3.9617 eV 312.96 nm f=0.0070 $<$ S**2>=0.000 115 ->122 0.65833 Excited State 10: Singlet-A 4.0271 eV 307.87 nm f=0.0599 $<$ S**2>=0.000 115 ->122 0.53827 121 ->123 -0.10553 Excited State 10: Singlet-A 4.0271 eV 307.87 nm f=0.0599 $<$ S**2>=0.000	120 ->123	-0.1	10516				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited State	6: Si	nglet-A	3.7704 eV	328.84 nm	f=0.0961	<s**2>=0.000</s**2>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115 ->122	-0.1	16335				
$121 ->123$ -0.37074 Excited State7:Singlet-A 3.7976 eV 326.48 nm $f=0.1712 < S^{**2} >= 0.000$ $116 ->122$ 0.11441 $118 ->122$ 0.36713 $119 ->123$ 0.10258 $121 ->123$ 0.55264 Excited State8:Singlet-A 3.9426 eV 314.47 nm $f=0.0187 < S^{**2} >= 0.000$ $115 ->122$ 0.41163 $116 ->122$ 0.23631 $118 ->122$ 0.20234 $119 ->123$ -0.25402 $119 ->124$ 0.11472 $121 ->124$ 0.0187 $115 ->122$ 0.16054 $116 ->122$ 0.14213 $117 ->122$ 0.65833 Excited State9:Singlet-A 3.9617 eV 312.96 nm $f=0.0070 < S^{**2} >= 0.000$ $115 ->122$ 0.16054 $116 ->122$ 0.14213 $117 ->122$ 0.65833 Excited State10:Singlet-A 4.0271 eV 307.87 nm $f=0.0599 < S^{**2} >= 0.000$ $115 ->122$ 0.39637 $116 ->122$ 0.53827 $121 ->123$ -0.10553	118 ->122	0.:	54960				
Excited State7:Singlet-A 3.7976 eV 326.48 nm $f=0.1712$ $<8**2>=0.000$ $116 \rightarrow 122$ 0.11441 $118 \rightarrow 122$ 0.36713 $119 \rightarrow 123$ 0.10258 $121 \rightarrow 123$ 0.55264 Excited State8:Singlet-A 3.9426 eV 314.47 nm $f=0.0187$ $< 8**2>=0.000$ $115 \rightarrow 122$ 0.41163 $116 \rightarrow 122$ 0.23631 $117 \rightarrow 122$ 0.2234 $119 \rightarrow 123$ -0.25402 $119 \rightarrow 124$ 0.11472 $121 \rightarrow 124$ 0.11472 $121 \rightarrow 124$ 0.11472 $121 \rightarrow 122$ 0.65833 Excited State9:Singlet-A 3.9617 eV 312.96 nm $f=0.0070$ $< 8**2>=0.000$ $115 \rightarrow 122$ 0.14213 $117 \rightarrow 122$ 0.65833 Excited State10:Singlet-A 4.0271 eV 307.87 nm $f=0.0599$ $< 8**2>=0.000$ $115 \rightarrow 122$ 0.39637 $116 \rightarrow 122$ 0.53827 $121 \rightarrow 123$ -0.10553	121 ->123	-0.3	37074				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited State	7: Si	nglet-A	3.7976 eV	326.48 nm	f=0.1712	<s**2>=0.000</s**2>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116 ->122	0.	11441				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118 ->122	0	36713				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119 ->123	0.	10258				
Excited State8:Singlet-A 3.9426 eV 314.47 nm $f=0.0187$ $<8**2>=0.000$ $115 ->122$ 0.41163 $116 ->122$ -0.33650 $117 ->122$ 0.23631 $118 ->122$ 0.20234 $119 ->123$ -0.25402 $119 ->124$ 0.11472 $121 ->124$ 0.11472 $121 ->124$ -0.13923 Excited State9:Singlet-A 3.9617 eV 312.96 nm $f=0.0070$ $8**2>=0.000$ $115 ->122$ 0.16054 $116 ->122$ 0.14213 $117 ->122$ 0.65833 Excited State10:Singlet-A 4.0271 eV 307.87 nm $f=0.0599$ $<5**2>=0.000$ $115 ->122$ 0.39637 $116 ->122$ 0.53827 $121 ->123$ -0.10553	121 ->123	0.	55264				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited State	8: Si	nglet-A	3.9426 eV	314.47 nm	f=0.0187	<s**2>=0.000</s**2>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115 ->122	0.4	41163				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116 ->122	-0.3	33650				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117 ->122	0.2	23631				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118 ->122	0.2	20234				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119 ->123	-0.2	25402				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119 ->124	0.	11472				
Excited State9:Singlet-A 3.9617 eV 312.96 nm $f=0.0070$ $S^{**2} >= 0.000$ $115 ->122$ -0.16054 $116 ->122$ 0.14213 $117 ->122$ 0.65833 Excited State10:Singlet-A 4.0271 eV 307.87 nm $f=0.0599$ $S^{**2} >= 0.000$ $115 ->122$ 0.39637 $116 ->122$ 0.53827 $121 ->123$ -0.10553	121 ->124	-0.1	13923				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Excited State	9: Si	nglet-A	3.9617 eV	312.96 nm	f=0.0070	<s**2>=0.000</s**2>
116 ->122 0.14213 117 ->122 0.65833 Excited State 10: Singlet-A 4.0271 eV 307.87 nm f=0.0599 <s**2>=0.000 115 ->122 0.39637 0.10553 -0.10553 -0.10553</s**2>	115 ->122	-0.1	6054				
117 ->122 0.65833 Excited State 10: Singlet-A 4.0271 eV 307.87 nm f=0.0599 <s**2>=0.000 115 ->122 0.39637 0.53827 0.10553 -0.10553</s**2>	116 ->122	0.	14213				
Excited State 10: Singlet-A 4.0271 eV 307.87 nm f=0.0599 <s**2>=0.000 115 ->122 0.39637 0.53827 0.53827 0.10553 0.10553</s**2>	117 ->122	0.	65833				
115 ->122 0.39637 116 ->122 0.53827 121 ->123 -0.10553	Excited State	lo: Si	nglet-A	4.0271 eV	307.87 nm	f=0.0599	<s**2>=0.000</s**2>
116 ->122 0.53827 121 ->123 -0.10553	115 ->122	0	39637				
121 ->123 -0.10553	116 ->122	0.:	53827				
	121 ->123	-0.1	10553				
121 ->124 -0.11490	121 ->124	-0.1	11490				

HOMO: 121, LUMO: 122

Table S5. TD-DFT calculated first-ten electron transitions of 6 in dichloromethane at B3LYP / 6-311+G(d,p) level

- (1)					
Excited State 1:	Singlet-A	2.2957 eV	540.08 nm	f=0.0511	<s**2>=0.000</s**2>
134 -> 135	0.70377				
Excited State 2:	Singlet-A	2.4348 eV	509.22 nm	f=0.0004	<s**2>=0.000</s**2>
127 -> 135	-0.11945				
132 -> 135	0.69381				
Excited State 3:	Singlet-A	2.7694 eV	447.69 nm	f=0.4460	<s**2>=0.000</s**2>
131 -> 135	0.10076				
133 -> 135	0.69081				
Excited State 4:	Singlet-A	3.1458 eV	394.13 nm	f=0.0610	<s**2>=0.000</s**2>
131 -> 135	0.68069				
134 -> 136	0.11049				
Excited State 5:	Singlet-A	3.3746 eV	367.41 nm	f=0.0000	<s**2>=0.000</s**2>

0.11448				
0.10673				
0.67516				
Singlet-A	3.4846 eV	355.81 nm	f=0.2156	<s**2>=0.000</s**2>
0.11091				
0.29571				
-0.13396				
0.58599				
0.11309				
Singlet-A	3.5288 eV	351.35 nm	f=0.0008	<s**2>=0.000</s**2>
0.67644				
0.11635				
-0.11334				
Singlet-A	3.6310 eV	341.46 nm	f=0.3150	<s**2>=0.000</s**2>
0.17915				
0.49436				
0.10565				
-0.36215				
-0.12722				
0.19527				
Singlet-A	3.7324 eV	332.18 nm	f=0.0009	<s**2>=0.000</s**2>
0.64914				
-0.25533				
Singlet-A	3.7733 eV	328.58 nm	f=0.0196	<s**2>=0.000</s**2>
0.66626				
-0.16440				
	0.11448 0.10673 0.67516 Singlet-A 0.11091 0.29571 -0.13396 0.58599 0.11309 Singlet-A 0.67644 0.11635 -0.11334 Singlet-A 0.17915 0.49436 0.10565 -0.36215 -0.12722 0.19527 Singlet-A 0.64914 -0.25533 Singlet-A 0.66626 -0.16440	0.11448 0.10673 0.67516 Singlet-A 3.4846 eV 0.11091 0.29571 -0.13396 0.58599 0.11309 Singlet-A 3.5288 eV 0.67644 0.11635 -0.11334 Singlet-A 3.6310 eV 0.17915 0.49436 0.10565 -0.36215 -0.12722 0.19527 Singlet-A 3.7324 eV 0.64914 -0.25533 Singlet-A 3.7733 eV 0.66626 -0.16440	0.11448 0.10673 0.67516 Singlet-A 0.1091 0.29571 -0.13396 0.58599 0.11309 Singlet-A 0.67644 0.11635 -0.11334 Singlet-A 0.17915 0.49436 0.10565 -0.36215 -0.12722 0.19527 Singlet-A 0.64914 -0.25533 Singlet-A 3.7733 eV 328.58 nm 0.66626 -0.16440	0.11448 0.10673 0.67516 Singlet-A 0.11091 0.29571 -0.13396 0.58599 0.11309 Singlet-A 0.67644 0.11635 -0.11334 Singlet-A 0.17915 0.49436 0.10565 -0.36215 -0.12722 0.19527 Singlet-A 3.7324 eV 328.58 nm f=0.0009 0.64914 -0.25533 Singlet-A 3.7733 eV 328.58 nm f=0.0196 0.66626 -0.16440

HOMO: 177, LUMO: 178

Cartesian coordinates for theoretically optimized structures 5 opt B3LYP/6-31G(d,p) Imaginary Frequency 0

5 Opt B3LYF	76-31G(d,p) Imaginary Free	luency 0		
С	1.24491900	-1.93393300	-0.01548900	
С	0.15345300	-1.11054900	-0.01807600	
С	0.28996100	0.31820200	-0.01233900	
С	1.55340200	0.93150400	-0.00459000	
С	2.72430200	0.07084200	-0.00155800	
С	2.57927100	-1.37083000	-0.00687500	
С	0.37036400	3.13433300	-0.00186300	
С	-0.86667300	2.46545700	-0.00913500	
С	-2.06131200	3.21505200	-0.01041100	
Н	-3.02019100	2.71326400	-0.01610600	
С	-2.00816800	4.60131500	-0.00456500	
С	-0.77854800	5.27490400	0.00249100	
С	0.39405000	4.53795800	0.00372300	
Н	-0.83920000	-1.53157800	-0.02496600	

Н	-2.93734600	5.16398800	-0.00559800
Н	-0.74816200	6.35994000	0.00692900
Н	1.37177500	5.00741600	0.00906700
С	-2.16895400	0.40013200	-0.01853300
С	-2.79925800	0.08288700	1.18741000
С	-2.79771100	0.09078700	-1.22297200
С	-4.04297000	-0.54235100	1.17676100
Н	-2.31148300	0.32861000	2.12553300
С	-4.04568000	-0.53651000	-1.22066500
Н	-2.31005500	0.34198700	-2.15973700
С	-4.69794500	-0.86768300	-0.02466500
Н	-4.51038300	-0.77781300	2.12773200
Н	-4.50662900	-0.76296300	-2.17459200
С	1.66498800	2.40386000	0.00027700
Ο	2.71955500	3.03529300	0.00584500
С	-0.08449500	-3.90646000	-0.02886700
Н	0.11084200	-4.97903200	-0.03129200
Н	-0.66593200	-3.64268600	0.86314000
Н	-0.65687200	-3.63701800	-0.92504400
Ο	1.19157600	-3.28090100	-0.02047200
С	5.00656200	-0.22948400	0.00953100
С	6.32402900	0.31700800	0.01833200
С	4.84496200	-1.65655700	0.00402100
С	7.41244200	-0.51851400	0.02139200
Н	6.41940400	1.39764500	0.02236200
С	5.99647900	-2.49518200	0.00738700
С	7.24892400	-1.93475400	0.01588200
Н	8.41560100	-0.10222600	0.02809200
Н	5.84239400	-3.56940000	0.00307000
Н	8.12946800	-2.57040400	0.01849200
Ν	-0.88733800	1.06256500	-0.01504900
Ν	3.61500700	-2.20444500	-0.00416100
Ν	3.95023800	0.60236100	0.00663100
С	-6.07408700	-1.55695300	0.01413600
С	-6.63121400	-1.83065000	-1.39542600
С	-5.94945700	-2.90918300	0.75583500
С	-7.07990800	-0.65134900	0.76414200
Н	-6.77251400	-0.90671000	-1.96550000
Н	-5.97781500	-2.49355900	-1.97201600
Н	-7.60696500	-2.31971600	-1.31576800
Н	-5.59788900	-2.78103700	1.78374700
Н	-6.92293700	-3.40958400	0.79796400
Н	-5.24844000	-3.57539400	0.24240000
Н	-8.06401600	-1.13072600	0.80451400

Н	-6.76461400	-0.45409800	1.79284500	
Н	-7.19281100	0.31280500	0.25805800	
6 opt B3LYP/6	-31G(d,p) Imaginary Fre	quency 0		
С	0.46148800	-1.76622600	-0.01242600	
С	-0.68102000	-1.01912000	-0.01396900	
С	-0.64236100	0.41901300	-0.01004600	
С	0.57329300	1.11892000	-0.00452700	
С	1.80600600	0.34380500	-0.00341100	
С	1.75929200	-1.11465600	-0.00719100	
С	-0.76167600	3.23241500	-0.00098000	
С	-1.94836900	2.47812800	-0.00690000	
С	-3.19319100	3.14081400	-0.00769500	
Н	-4.11412200	2.57239900	-0.01243700	
С	-3.23831900	4.52740300	-0.00257800	
С	-2.05929700	5.28605300	0.00324400	
С	-0.83730800	4.63408300	0.00393300	
Н	-1.64316800	-1.50577400	-0.01833800	
Н	-4.20490500	5.02302500	-0.00321600	
Н	-2.10574400	6.37053500	0.00712100	
Н	0.10477900	5.17150700	0.00825800	
С	-3.10145400	0.32630100	-0.01634400	
С	-3.71023500	-0.03224600	1.18900100	
С	-3.70598100	-0.02548200	-1.22148200	
С	-4.90902900	-0.73986500	1.17702100	
Н	-3.24154200	0.24646900	2.12762100	
С	-4.90879900	-0.73545000	-1.22041200	
Н	-3.23519900	0.25777100	-2.15772500	
С	-5.53917400	-1.10881900	-0.02508800	
Н	-5.36082000	-1.00573400	2.12751500	
Н	-5.35204700	-0.99299400	-2.17482100	
С	0.58132700	2.59462200	0.00017500	
0	1.58865300	3.29915100	0.00512900	
С	-0.73000300	-3.82429600	-0.02092700	
Н	-0.46209200	-4.88104400	-0.02263400	
Н	-1.32624100	-3.59932600	0.87192500	
Н	-1.32080500	-3.59504300	-0.91629600	
0	0.50058100	-3.11314200	-0.01554000	
Ν	-1.86894700	1.07677800	-0.01191700	
Ν	2.84004200	-1.87425800	-0.00622900	
Ν	2.98353600	0.95669500	0.00098200	
С	4.10614900	0.19803000	0.00192700	
С	5.36222500	0.82840300	0.00645100	
С	4.04175300	-1.24382700	-0.00162300	

C	6.54131400	0.08093800	0.00757400	
Н	5.38551400	1.91369200	0.00903300	
С	5.22598600	-1.99776000	-0.00044000	
С	7.83243600	0.70214200	0.01210500	
С	6.47281900	-1.37004400	0.00406600	
Н	5.14563100	-3.08068100	-0.00317900	
С	8.97563000	-0.04858500	0.01312500	
Н	7.88180300	1.78744500	0.01471100	
С	7.69754000	-2.11298400	0.00531800	
С	8.90766600	-1.47579900	0.00969000	
Н	9.94680000	0.43745000	0.01656500	
Н	7.64261800	-3.19820800	0.00269000	
Н	9.82795100	-2.05237700	0.01057800	
С	-6.86707300	-1.88711800	0.01206500	
С	-7.40157500	-2.19949300	-1.39822300	
С	-6.65643400	-3.22684900	0.75691100	
С	-7.93179800	-1.04753200	0.75768200	
Н	-7.60200900	-1.28797500	-1.97055100	
Н	-6.70460300	-2.81910300	-1.97195600	
Н	-8.34324000	-2.75150400	-1.31978600	
Н	-6.31660700	-3.07431100	1.78543900	
Н	-7.59547200	-3.78930800	0.79762400	
Н	-5.91241600	-3.84714000	0.24646800	
Н	-8.88276800	-1.58980300	0.79635900	
Н	-7.63282300	-0.82844600	1.78683200	
Н	-8.10571900	-0.09362800	0.24948000	

9. References

[S1] M. Orda-Zgadzaj, W. Abraham, Synthesis 2007, 3345-3356.

[S2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, **2016**.

[S3] (a) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592. (b) H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Org. Lett. 2006, 8, 863-866. (c) S. Klod, E. Kleinpeter, J. Chem. Soc., Perkin Trans. 2 2001, 1893-1898. (d) Z. Liu, T. Lu, Q. Chen, Carbon 2020, 165, 468-475.