Access to fused π-extended acridone derivatives through a regioselective oxidative

 demethylation
Table of Contents

1. General remarks S2
2. Experimental section S2
3. Reaction mechanism S5
4. NMR spectra S6
5. Fluorescence decay curves S7
6. CV and DPV curves S11
7. X-ray crystallographic structure determination S12
8. Theoretical calculations S15
9. References S22

1. General remarks

All reagents and solvents were commercially available and were used without further purification unless otherwise noted. For thin layer chromatography Silica gel 60 F254 plates from Merck were used and examined under UV-light irradiation (254 nm and 365 nm). Flash column chromatography was performed on silica gel (particle size: 200-300 mesh). Melting points were measured with a MPA100 OptiMelt. IR-Spectra were recorded as KBr -pellets on a Bruker VERTEX 80V spectrometer. NMR spectra were taken on Bruker AVANCE III HD (600 MHz). Chemical shifts (δ) are reported in parts per million (ppm) relative to traces of CHCl_{3} and DMSO in the corresponding deuterated solvents. HRMS experiments were carried out on a ThermoFisher LTQ Orbitrap XL. Absorption spectra were recorded on a Shimadzu UV2600. Emission spectra, absolute quantum yields, as well as fluorescence lifetimes were measured on FluoroMax-4 spectrometer equipped with an integral sphere and a timecorrelated single photon counting system with a NanoLED laser. Crystal structure analysis was accomplished with a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. Cyclic voltammagrams were obtained using a glassy carbon working electrode, a platinum counter electrode, and a Ag reference electrode tested on CHI660E station. 2,3-dimethoxyacridone was synthesized according to the reported method. ${ }^{[\mathrm{S} 1]}$

2. Experimental section

\boldsymbol{N}-(4-tert-butylphenyl)-2,3-dimethoxyacridone 2

A 120 mL screw capped glass vial was charged with 2,3-dimethoxyacridone ($1.13 \mathrm{~g}, 4.43 \mathrm{mmol}$), 4-tert-butyl-1-bromobenzene ($1.22 \mathrm{~g}, 5,76 \mathrm{mmol}$), $\mathrm{CuI}(83 \mathrm{mg}, 0.44 \mathrm{mmol}), 2,2,6,6-$ tetramethylheptane-3,5-dione ($170 \mathrm{mg}, 0.89 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.92 \mathrm{~g}, 6.65 \mathrm{mmol})$ and dry DMF $(9 \mathrm{~mL})$. The mixture was heated in an oil bath at $160^{\circ} \mathrm{C}$ for 48 hours. After cooling down to room temperature, the mixture was diluted with dichloromethane $(200 \mathrm{~mL})$ and washed with water $(6 \times 200 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate 10:1) to give the product as light yellow solid ($1.10 \mathrm{~g}, 64 \%$). m. p. : $262-264{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.59(\mathrm{dd}, J=$ $8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (ddd, $J=8.5,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.22$ $(\mathrm{m}, 3 \mathrm{H}), 6.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=176.7,154.5,153.1,145.7,142.9,139.7,136.4,132.5,129.5,128.0,127.1$, $121.5,121.4,116.9,115.8,106.5,98.6,56.4,55.8,35.2,31.5$. IR $(\mathrm{KBr}) \tilde{v}\left(\mathrm{~cm}^{-1}\right)=2955,1632,1598$, $1510,1490,1472,1430,1364,1305,1278,1247,1213,1157,1131,1110,1020,899,860,824,782$, 755, 611.HRMS(ESI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{3}$, 388.1913, found, 388.1902.

N-(4-tert-butylphenyl)-3-methoxyacridine-1,2,9-trione 3

Compound $2(1.10 \mathrm{~g}, 2.84 \mathrm{mmol})$ was dissolved in dichloromethane $(14 \mathrm{~mL})$, acetonitrile (70 mL) and water (14 mL). Ceric ammonium nitrate ($6.03 \mathrm{~g}, 11 \mathrm{mmol}$) was added to the above solution and the reaction was stirred at room temperature for 15 minutes. The reaction solution was diluted with dichloromethane (200 mL) and washed with water $(3 \times 200 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate $4: 1$) to give the product as red solid ($0.70 \mathrm{~g}, 64 \%$), m.p.: $318-320^{\circ} \mathrm{C}(\mathrm{dec}.) .{ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta(\mathrm{ppm})=8.26(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm})=174.6,173.6$, $172.3,154.8,154.0,153.5,141.2,134.6,133.0,128.7,127.6$ (2C), 126.0, 125.9, 119.4, 110.0, 103.5, 55.4, 34.9, 31.0. IR (KBr) $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3059,2960,2868,2360,2341,1703,1676,1630,1605,1509$, $1476,1459,1446,1426,1367,1334,1299,1252,1198,1118,1092,765 . \operatorname{HRMS}(E S I)(m / z):$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{4}, 388.1549$, found, 388.1551 .

5-(4-tert-butylphenyl)-7-methoxyquinonelino[3,2-a]phenazin-14-one 5

A 120 mL screw capped glass vial was charged with compound $\mathbf{3}(190 \mathrm{mg}, 0.5 \mathrm{mmol})$, chloroform $(10 \mathrm{~mL})$, acetic acid (5 mL) and phenylene-1,2-diamine ($72 \mathrm{mg}, 0.66 \mathrm{mmol}$). The vial was screwcapped and the vial was heated in an oil bath at $80{ }^{\circ} \mathrm{C}$ for 40 hours. After cooling down to room temperature, the mixture was diluted with dichloromethane (100 mL) and washed with water (3×200 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was suspended in methanol $(10 \mathrm{~mL})$ and filtered off to give the product as pale brown solid (160 mg , 70%). m.p.: $360-361{ }^{\circ} \mathrm{C}(\mathrm{dec}.) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})=8.78(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.56 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{ddd}, J=8.4,6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (ddd, $J=$ $8.3,6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (dt, $J=8.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50 (ddd, $J=8.6,6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45-7.38$ (m, $3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $(\mathrm{ppm})=175.7,157.7,153.6,147.7,144.5,144.0,141.4,140.2,136.1,133.9,132.0,130.9,130.4$, $129.8,129.5,129.2,128.1,127.4,126.0,123.5,117.4,108.8,99.4,56.1,35.1,31.4 . \operatorname{IR}(\mathrm{KBr}) \tilde{v}\left(\mathrm{~cm}^{-1}\right)$
$=2947,1642,1601,1548,1511,1477,1446,1425,1363,1399,1309,1259,1227,1198,1156,1118$, 1054, 1025, 864, 827, 752, 616, 578. HRMS(ESI) $(m / z):[M+H]^{+}$calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}, 460.2025$, found, 460.2017.

5-(4-tert-butylphenyl)-7-methoxybenzo[i]quinonelino[3,2-a]phenazin-16-one 6
A 120 mL screw capped glass vial was charged with compound 3 ($180 \mathrm{mg}, 0.46 \mathrm{mmol}$), chloroform (14 mL), acetic acid (7 mL) and naphthalene-2,3-diamine ($95 \mathrm{mg}, 0.60 \mathrm{mmol}$). The vial was screw-capped and the vial was heated in an oil bath at $80^{\circ} \mathrm{C}$ for 40 hours. After cooling down to room temperature, the mixture was diluted with dichloromethane (100 mL) and washed with water $(3 \times 200 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by rotatory evaporation and the crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate 10:1) to give the product as red solid ($90 \mathrm{mg}, 38 \%$). m.p.: $364-366^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $(\mathrm{ppm})=9.20(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 3 \mathrm{H}), 6.83$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$. Record of ${ }^{13} \mathrm{C}$ NMR spectrum was not successful due to the poor solubility. IR $(\mathrm{KBr}) \tilde{v}\left(\mathrm{~cm}^{-1}\right)=2963,2284,1638,1610,1508,1482,1444$, 1430, 1399, 1311, 1249, 1226, 1154, 1119, 1056, 877, 828, 749, 616, 562, 485.HRMS(ESI) (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}, 510.2182$, found, 510.2184.

3. Reaction mechanism

Scheme S1. The resonance structures of 2 and its bond lengths in the crystal.

Scheme S2. Proposed mechanism for the oxidative demethylation

4. NMR Spectra

$\begin{array}{cc}\text { N } & 0 \\ \circ & \bullet \\ \dot{\sim} & \text { m } \\ 1 & 1\end{array}$

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}, 600 \mathrm{MHz}$) of 4

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- $d_{6}, 150 \mathrm{MHz}$) of 4

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of 5

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ of 5

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of $\mathbf{6}$

5. Fluorescence decay curves

Figure S8. Fluorescence decay curve of $\mathbf{5}$ in dichloromethane at room temperature.

Figure S9. Fluorescence decay curve of $\mathbf{6}$ in solid state at room temperature.
6. CV and DPV curves

Figure S10. CV and DPV curves of 5

Figure S11. CV and DPV curves of 6

7. X-ray crystallographic structure determination

Table S1. Crystal data and structure refinement for 2

Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{3}$
Formula weight	387.46
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	8.6227(10)
b/Å	11.3588(12)
c/Å	11.8411(17)
$\alpha /{ }^{\circ}$	117.309(13)
$\beta /{ }^{\circ}$	91.977(11)
$\gamma /{ }^{\circ}$	96.236(10)
Volume/ ${ }^{\text {a }}$	1019.7(2)
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.262
μ / mm^{-1}	0.657
F(000)	412.0
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	8.442 to 133.194
Index ranges	$-10 \leq \mathrm{h} \leq 6,-13 \leq \mathrm{k} \leq 13,-14 \leq 1 \leq 13$
Reflections collected	6322
Independent reflections	$3591\left[\mathrm{R}_{\text {int }}=0.0587, \mathrm{R}_{\text {sigma }}=0.0541\right]$
Data/restraints/parameters	3591/0/267
Goodness-of-fit on F^{2}	1.089
Final R indexes $[\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0936, \mathrm{wR}_{2}=0.2981$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1154, \mathrm{wR}_{2}=0.3188$
Largest diff. peak/hole / e \AA^{-3}	0.43/-0.41

Figure S12. Crystal structure of $\mathbf{2}$ with an ellipsoid contour at the 50% probability level.

Table S2. Crystal data and structure refinement for $\mathbf{5}$

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a / \AA
b/ \AA
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}$
698.26
149.99(10)
monoclinic
P21/c
11.7193(8)
25.313(2)
11.1041(10)

90
105.097(9)

90
3180.4(5)

4
1.458
0.576
1432.0

Mo K $\alpha(\lambda=0.71073)$
3.942 to 49.998
$-13 \leq \mathrm{h} \leq 11,-30 \leq \mathrm{k} \leq 23,-13 \leq 1 \leq 13$
13938
5599 [$\mathrm{R}_{\text {int }}=0.0412, \mathrm{R}_{\text {sigma }}=0.0598$]
5599/0/392
1.038
$\mathrm{R}_{1}=0.0668, \mathrm{wR}_{2}=0.1583$
$\mathrm{R}_{1}=0.0916, \mathrm{wR}_{2}=0.1756$

Figure S13. Crystal structure of $\mathbf{5}$ with an ellipsoid contour at the 50% probability level.

Table S3. Crystal data and structure refinement for 6

Figure S14. Crystal structure of $\mathbf{6}$ with an ellipsoid contour at the 50% probability level.

8. Theoretical calculations

All the theoretical calculations were carried out using a Gaussian 16 software. ${ }^{[\mathrm{S} 2]}$ All the calculations were based on the optimized geometries at B3LYP/6-31G(d,p) level of theory. The frontier molecular orbitals are calculated at the B3LYP $/ 6-311+G(d, p)$ level of theory. The calculation of excited state properties was performed using time-depended DFT methods at B3LYP/6-311G+(d,p) level of theory in the solvent dichloromethane. The nucleus-independent chemical shift (NICS) calculation was done at GIAO-B3LYP/6-311+G(d,p) level of theory. Bq atoms were inserted at the calculated positions and the Bq positions that are at the $1 \AA$ away above the molecule were fixed with the assistant of Multiwfn 3.8 software, as well as the generation of isotropic chemical shielding surfaces (ICSS) and related quantities. ${ }^{[\mathrm{S3]}}$ The hole transfer integral was calculated by $t_{h}=1 / 2$ (Еномо - Еномо-1) and the electron transfer integral was calculated by $t_{e}=1 / 2\left(E_{L U M O+1}-E_{L U M O}\right)$. To calculate the reorganization energy λ, the geometry of the molecule was first optimized at the ground state and the single point energy was then calculated with the charge of $0,+1$ and -1 . The energies were denoted as $E_{\mathrm{G} 0}, E_{\mathrm{G}+1}$ and $E_{\mathrm{G}-1}$, respectively. Then the geometry of the molecule was optimized with the charge of +1 (Cation) and -1 (Anion) and the single point energy was calculated with the charge of $0,+1$ and $0,-1$, respectively. The energies were denoted as $E_{\mathrm{C} 0}, E_{\mathrm{C}+1}, E_{\mathrm{A} 0}$ and $E_{\mathrm{A}-1}$, respectively. The hole reorganization energy was calculated by $\lambda_{h}=\left(E_{\mathrm{C} 0}-E_{\mathrm{G} 0}\right)+\left(E_{\mathrm{G}+1}-E_{\mathrm{C}+1}\right)$ and the electron reorganization energy was calculated by $\lambda_{e}=\left(E_{\mathrm{A} 0}-E_{\mathrm{G} 0}\right)+\left(E_{\mathrm{G}-1}-E_{\mathrm{A}-1}\right)$.

Figure S15. UV/Vis absorption spectrum of compound $\mathbf{5}$ and TD-DFT calculated oscillator strength (blue column) in dichloromethane solvent at B3LYP/6-311G+(d,p) level.

Figure S16. UV/Vis absorption spectrum of compound $\mathbf{6}$ and TD-DFT calculated oscillator strength (blue column) in dichloromethane solvent at B3LYP/6-311G $+(\mathrm{d}, \mathrm{p}$) level.

Table S4. TD-DFT calculated first-ten electron transitions of $\mathbf{5}$ in dichloromethane at B3LYP / 6$311+G(d, p)$ level

Excited State	1 :	Singlet-A	2.6698 eV	464.39 nm	$\mathrm{f}=0.0025$	$<$ S**2>=0.000
$114->122$		0.12233				
$120->122$		0.68178				
$121->122$		-0.12800				
Excited State	2 :	Singlet-A	2.8065 eV	441.78 nm	$\mathrm{f}=0.1708$	$<S^{* *} 2>=0.000$
$120->122$		0.12488				
$121->122$		0.68419				
Excited State	3 :	Singlet-A	3.2090 eV	386.37 nm	$\mathrm{f}=0.2761$	$<$ S**2>=0.000
$119->122$		0.68222				
$121->123$		-0.12388				
Excited State	4 :	Singlet-A	3.3912 eV	365.61 nm	$\mathrm{f}=0.0005$	$<$ S**2>=0.000
$114->122$		0.11155				
$114->123$		-0.10102				
$120->123$		0.67492				
Excited State	$5:$	Singlet-A	3.7516 eV	330.48 nm	$\mathrm{f}=0.0035$	$<$ S**2>=0.000
114 ->122		0.66957				

$120->122$		-0.11964				
$120->123$		-0.10516				
Excited State 6:	6:	Singlet-A	3.7704 eV	328.84 nm	$\mathrm{f}=0.0961$	$<$ S**2>=0.000
$115->122$		-0.16335				
$118->122$		0.54960				
$121->123$		-0.37074				
Excited State 7:	7:	Singlet-A	3.7976 eV	326.48 nm	$\mathrm{f}=0.1712$	$<$ S**2>=0.000
$116->122$		0.11441				
$118->122$		0.36713				
$119->123$		0.10258				
121 ->123		0.55264				
Excited State 8:	8 :	Singlet-A	3.9426 eV	314.47 nm	$\mathrm{f}=0.0187$	$<$ S**2>=0.000
115 ->122		0.41163				
$116->122$		-0.33650				
$117->122$		0.23631				
$118->122$		0.20234				
$119->123$		-0.25402				
$119->124$		0.11472				
$121->124$		-0.13923				
Excited State 9:	9:	Singlet-A	3.9617 eV	312.96 nm	$\mathrm{f}=0.0070$	$<$ S**2>=0.000
$115->122$		-0.16054				
$116->122$		0.14213				
117 ->122		0.65833				
Excited State 10:		Singlet-A	4.0271 eV	307.87 nm	$\mathrm{f}=0.0599$	$<$ S**2>=0.000
$115->122$		0.39637				
$116->122$		0.53827				
$121->123$		-0.10553				
$121->124$		-0.11490				

HOMO: 121, LUMO: 122
Table S5. TD-DFT calculated first-ten electron transitions of 6 in dichloromethane at B3LYP / 6$311+G(d, p)$ level

Excited State 1:	Singlet-A	2.2957 eV	540.08 nm	$\mathrm{f}=0.0511$	$<\mathrm{S}^{* *} 2>=0.000$
$134->135$	0.70377				
Excited State 2:	Singlet-A	2.4348 eV	509.22 nm	$\mathrm{f}=0.0004$	$<\mathrm{S}^{* *} 2>=0.000$
$127->135$	-0.11945				
$132->135$	0.69381				
Excited State 3:	Singlet-A	2.7694 eV	447.69 nm	$\mathrm{f}=0.4460$	$<\mathrm{S}^{* *} 2>=0.000$
$131->135$	0.10076				
$133->135$	0.69081				
Excited State 4:	Singlet-A	3.1458 eV	394.13 nm	$\mathrm{f}=0.0610$	$<\mathrm{S}^{* *} 2>=0.000$
$131->135$	0.68069				
$134->136$	0.11049				
Excited State 5:	Singlet-A	3.3746 eV	367.41 nm	$\mathrm{f}=0.0000$	$<\mathrm{S}^{* *} 2>=0.000$

127 -> 135	0.11448				
127 -> 136	0.10673				
$132->136$	0.67516				
Excited State 6:	Singlet-A	3.4846 eV	355.81 nm	$\mathrm{f}=0.2156$	$<$ S**2>=0.000
129 -> 135	0.11091				
$130->135$	0.29571				
$131->135$	-0.13396				
$134->136$	0.58599				
$134->138$	0.11309				
Excited State 7:	Singlet-A	3.5288 eV	351.35 nm	$\mathrm{f}=0.0008$	$<$ S**2>=0.000
$127->135$	0.67644				
$132->135$	0.11635				
132 -> 136	-0.11334				
Excited State 8:	Singlet-A	3.6310 eV	341.46 nm	$\mathrm{f}=0.3150$	$<$ S**2>=0.000
129 -> 135	0.17915				
$130->135$	0.49436				
$133->136$	0.10565				
$134->136$	-0.36215				
$134->137$	-0.12722				
134 -> 138	0.19527				
Excited State 9:	Singlet-A	3.7324 eV	332.18 nm	$\mathrm{f}=0.0009$	$<$ S**2>=0.000
129 -> 135	0.64914				
$130->135$	-0.25533				
Excited State 10:	Singlet-A	3.7733 eV	328.58 nm	$\mathrm{f}=0.0196$	$<S^{* *} 2>=0.000$
$128->135$	0.66626				
$133->136$	-0.16440				

HOMO: 177, LUMO: 178
Cartesian coordinates for theoretically optimized structures
5 opt B3LYP/6-31G(d,p) Imaginary Frequency 0

C	1.24491900	-1.93393300	-0.01548900
C	0.15345300	-1.11054900	-0.01807600
C	0.28996100	0.31820200	-0.01233900
C	1.55340200	0.93150400	-0.00459000
C	2.72430200	0.07084200	-0.00155800
C	2.57927100	-1.37083000	-0.00687500
C	0.37036400	3.13433300	-0.00186300
C	-0.86667300	2.46545700	-0.00913500
C	-2.06131200	3.21505200	-0.01041100
H	-3.02019100	2.71326400	-0.01610600
C	-2.00816800	4.60131500	-0.00456500
C	-0.77854800	5.27490400	0.00249100
C	0.39405000	4.53795800	0.00372300
H	-0.83920000	-1.53157800	-0.02496600

H	-2.93734600	5.16398800	-0.00559800
H	-0.74816200	6.35994000	0.00692900
H	1.37177500	5.00741600	0.00906700
C	-2.16895400	0.40013200	-0.01853300
C	-2.79925800	0.08288700	1.18741000
C	-2.79771100	0.09078700	-1.22297200
C	-4.04297000	-0.54235100	1.17676100
H	-2.31148300	0.32861000	2.12553300
C	-4.04568000	-0.53651000	-1.22066500
H	-2.31005500	0.34198700	-2.15973700
C	-4.69794500	-0.86768300	-0.02466500
H	-4.51038300	-0.77781300	2.12773200
H	-4.50662900	-0.76296300	-2.17459200
C	1.66498800	2.40386000	0.00027700
O	2.71955500	3.03529300	0.00584500
C	-0.08449500	-3.90646000	-0.02886700
H	0.11084200	-4.97903200	-0.03129200
H	-0.66593200	-3.64268600	0.86314000
H	-0.65687200	-3.63701800	-0.92504400
O	1.19157600	-3.28090100	-0.02047200
C	5.00656200	-0.22948400	0.00953100
C	6.32402900	0.31700800	0.01833200
C	4.84496200	-1.65655700	0.00402100
C	7.41244200	-0.51851400	0.02139200
H	6.41940400	1.39764500	0.02236200
C	5.99647900	-2.49518200	0.00738700
C	7.24892400	-1.93475400	0.01588200
H	8.41560100	-0.10222600	0.02809200
H	5.84239400	-3.56940000	0.00307000
H	8.12946800	-2.57040400	0.01849200
N	-0.88733800	1.06256500	-0.01504900
N	3.61500700	-2.20444500	-0.00416100
N	3.95023800	0.60236100	0.00663100
C	-6.07408700	-1.55695300	0.01413600
C	-6.63121400	-1.83065000	-1.39542600
C	-5.94945700	-2.90918300	0.75583500
C	-7.07990800	-0.65134900	0.76414200
H	-6.77251400	-0.90671000	-1.96550000
H	-5.97781500	-2.49355900	-1.97201600
H	-7.60696500	-2.31971600	-1.31576800
H	-5.59788900	-2.78103700	1.78374700
H	-6.92293700	-3.40958400	0.79796400
H	-5.24844000	-3.57539400	0.24240000
H	-8.06401600	-1.13072600	0.80451400

H	-6.76461400	-0.45409800	1.79284500
H	-7.19281100	0.31280500	0.25805800

6 opt B3LYP/6-31G(d,p) Imaginary Frequency 0

C	0.46148800	-1.76622600	-0.01242600
C	-0.68102000	-1.01912000	-0.01396900
C	-0.64236100	0.41901300	-0.01004600
C	0.57329300	1.11892000	-0.00452700
C	1.80600600	0.34380500	-0.00341100
C	1.75929200	-1.11465600	-0.00719100
C	-0.76167600	3.23241500	-0.00098000
C	-1.94836900	2.47812800	-0.00690000
C	-3.19319100	3.14081400	-0.00769500
H	-4.11412200	2.57239900	-0.01243700
C	-3.23831900	4.52740300	-0.00257800
C	-2.05929700	5.28605300	0.00324400
C	-0.83730800	4.63408300	0.00393300
H	-1.64316800	-1.50577400	-0.01833800
H	-4.20490500	5.02302500	-0.00321600
H	-2.10574400	6.37053500	0.00712100
H	0.10477900	5.17150700	0.00825800
C	-3.10145400	0.32630100	-0.01634400
C	-3.71023500	-0.03224600	1.18900100
C	-3.70598100	-0.02548200	-1.22148200
C	-4.90902900	-0.73986500	1.17702100
H	-3.24154200	0.24646900	2.12762100
C	-4.90879900	-0.73545000	-1.22041200
H	-3.23519900	0.25777100	-2.15772500
C	-5.53917400	-1.10881900	-0.02508800
H	-5.36082000	-1.00573400	2.12751500
H	-5.35204700	-0.99299400	-2.17482100
C	0.58132700	2.59462200	0.00017500
O	1.58865300	3.29915100	0.00512900
C	-0.73000300	-3.82429600	-0.02092700
H	-0.46209200	-4.88104400	-0.02263400
H	-1.32624100	-3.59932600	0.87192500
H	-1.32080500	-3.59504300	-0.91629600
O	0.50058100	-3.11314200	-0.01554000
N	-1.86894700	1.07677800	-0.01191700
N	2.84004200	-1.87425800	-0.00622900
N	2.98353600	0.95669500	0.00098200
C	4.10614900	0.19803000	0.00192700
C	5.36222500	0.82840300	0.00645100
C	4.04175300	-1.24382700	-0.00162300

C	6.54131400	0.08093800	0.00757400
H	5.38551400	1.91369200	0.00903300
C	5.22598600	-1.99776000	-0.00044000
C	7.83243600	0.70214200	0.01210500
C	6.47281900	-1.37004400	0.00406600
H	5.14563100	-3.08068100	-0.00317900
C	8.97563000	-0.04858500	0.01312500
H	7.88180300	1.78744500	0.01471100
C	7.69754000	-2.11298400	0.00531800
C	8.90766600	-1.47579900	0.00969000
H	9.94680000	0.43745000	0.01656500
H	7.64261800	-3.19820800	0.00269000
H	9.82795100	-2.05237700	0.01057800
C	-6.86707300	-1.88711800	0.01206500
C	-7.40157500	-2.19949300	-1.39822300
C	-6.65643400	-3.22684900	0.75691100
C	-7.93179800	-1.04753200	0.75768200
H	-7.60200900	-1.28797500	-1.97055100
H	-6.70460300	-2.81910300	-1.97195600
H	-8.34324000	-2.75150400	-1.31978600
H	-6.31660700	-3.07431100	1.78543900
H	-7.59547200	-3.78930800	0.79762400
H	-5.91241600	-3.84714000	0.24646800
H	-8.88276800	-1.58980300	0.79635900
	-7.63282300	-0.82844600	1.78683200

9. References

[S1] M. Orda-Zgadzaj, W. Abraham, Synthesis 2007, 3345-3356.
[S2] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
[S3] (a) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592. (b) H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Org. Lett. 2006, 8, 863-866. (c) S. Klod, E. Kleinpeter, J. Chem. Soc., Perkin Trans. 2 2001, 1893-1898. (d) Z. Liu, T. Lu, Q. Chen, Carbon 2020, 165, 468-475.

