Supporting Information

Regioselective Benzoyloxylative Dearomatization of Naphthols by Benzoyl Peroxide under Catalyst-Free Conditions

Hong-Wei Chen^a and Qin-Hua Song*^a

^{*a*}Hefei National Laboratory for Physical Sciences at Microscale & Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

E-mail: qhsong@ustc.edu.cn

List of Contents

1. Methods and Materials	2
2. General Procedure for the Preparation of Starting Materials	3
3. Plausible Reaction Path	14
4. ¹ H, ¹³ C and ¹⁹ F NMR Spectra for New Compounds	15

1. Methods and Materials.

All reactions were carried out under argon atmosphere with dry solvents, unless otherwise noted. All the chemicals were purchased commercially and used without further purification. Anhydrous THF was distilled from sodium-benzophenone. Dichloromethane was distilled from calcium hydride. Dimethyl sulfoxide was purchased from Energy Chemical and used directly without further purification. Thinlayer chromatography (TLC) was conducted with 0.25 mm Tsingdao silica gel plates (60F-254). Flash column chromatography was performed on Tsingdao silica gel (200 - 300 mesh). ¹H NMR spectra were recorded on Bruker spectrometers (at 400 or 500 MHz) and reported relative to deuterated solvent signals or tetramethylsilane internal standard signals. Data for ¹H NMR spectra were reported as follows: chemical shift (δ/ppm) , multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.), coupling constant (J/Hz) and integration. ¹³C NMR spectra were recorded on Bruker Spectrometers (100 or 125 MHz). Data for ¹³C NMR spectra were reported in terms of chemical shift. ¹⁹F NMR spectra were recorded on Bruker Spectrometers (376 MHz). High-resolution mass spectrometry (HRMS) was conducted on Bruker Apex IV RTMS.

2. General Procedure for the Preparation of Starting Materials

To a mixture of **1a** (15.8 mg, 0.1 mmol) in hexane (1.0 mL) was added **2a** (29.0 mg, 0.12 mmol) at room temperature and the resultant mixture was stirred for 24 hours at room temperature. Upon completion, the mixture was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to give the desired product **3a** (26.7 mg, 96%) as a white solid.

ref. 4

Scheme 1 Scope of α -naphthols

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, J = 7.6 Hz, 1H), 8.06 (d, J = 7.6 Hz, 2H), 7.64 – 7.55 (m, 2H), 7.45 – 7.40 (m, 3H), 7.31 (d, J = 7.6 Hz, 1H), 6.70 (d, J = 10.0 Hz, 1H), 6.17 (d, J = 10.0 Hz, 1H), 1.64 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 196.2, 165.4, 137.0, 134.8, 134.7, 133.4, 130.0, 129.3, 129.1, 128.43, 128.38, 128.0, 127.6, 125.9, 78.5, 24.0. **HRMS** (ESI): m/z Calcd. for [C₁₈H₁₄O₃Na, M+Na]⁺: 301.0835; Found: 301.0839.

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 7.6 Hz, 2H), 7.62 - 7.55 (m, 2H), 7.45 -7.38 (m, 3H), 7.29 (d, J = 7.6 Hz, 1H), 6.70 (d, J = 10.0 Hz, 1H), 6.16 (d, J = 10.0 Hz, 1H), 2.07 – 1.90 (m, 2H), 1.63 – 1.52 (m, 1H), 1.40 – 1.31 (m, 1H), 0.95 – 0.91 (m, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 196.4, 165.3, 137.0, 134.6, 133.7, 133.2, 129.9, 129.7, 129.4, 128.3, 127.9, 127.2, 126.8, 81.1, 40.5, 16.2, 14.3. **HRMS** (ESI): m/z Calcd. for [C₂₀H₁₈O₃Na, M+Na]⁺: 329.1148; Found: 329.1143.

¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 7.6 Hz, 2H), 7.62 – 7.55 (m, 2H), 7.46 – 7.38 (m, 3H), 7.30 (d, J = 7.6 Hz, 1H), 6.73 (d, J = 10.0 Hz, 1H), 6.22 (d, J = 10.0 Hz, 1H), 1.99 – 1.89 (m, 3H), 1.09 (d, J = 6.4 Hz, 3H), 0.94 (d, J = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 165.3, 136.9, 134.5, 133.8, 133.2, 129.9, 129.5, 129.4, 128.3, 127.9, 127.4, 126.4, 81.5, 46.4, 24.6, 24.2. HRMS (ESI): m/z Calcd. for [C₂₁H₂₀O₃Na, M+Na]⁺: 343.1305; Found: 343.1308.

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.6 Hz, 1H), 8.05 (d, J = 7.6 Hz, 2H), 7.63 – 7.55 (m, 2H), 7.46 – 7.38 (m, 3H), 7.30 (d, J = 7.6 Hz, 1H), 6.76 (d, J = 10.0 Hz, 1H), 6.15 (d, J = 10.0 Hz, 1H), 5.90 – 5.79 (m, 1H), 5.21 – 5.12 (m, 2H), 2.80 – 2.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 165.2, 137.0, 134.6, 133.3, 133.1, 130.1, 129.9, 129.6, 129.3, 128.45, 128.37, 128.0, 127.3, 127.0, 120.3, 80.2, 42.6. HRMS (ESI): m/z Calcd. for [C₂₀H₁₆O₃Na, M+Na]⁺: 327.0992; Found: 327.0989.

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, J = 7.6 Hz, 1H), 8.05 (d, J = 7.6 Hz, 2H), 7.61 – 7.55 (m, 2H), 7.45 – 7.39 (m, 3H), 7.29 (d, J = 5.2 Hz, 1H), 6.74 (d, J = 6.4 Hz, 1H), 6.17 (d, J = 6.4 Hz, 1H), 4.95 (s, 1H), 4.84 (s, 1H), 2.75 (d, J = 9.2 Hz, 1H), 2.62 (d, J = 9.2 Hz, 1H), 1.92 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 195.6, 165.3, 139.0, 137.0, 134.6, 133.6, 133.3, 129.9, 129.51, 129.46, 128.4, 128.0, 127.4, 126.6, 117.1, 80.9, 45.7, 24.5. **HRMS** (ESI): m/z Calcd. for [C₂₁H₁₈O₃Na, M+Na]⁺: 341.1148; Found: 341.1150.

¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, J = 7.6 Hz, 1H), 8.04 (d, J = 7.6 Hz, 2H), 7.63 – 7.56 (m, 2H), 7.46 – 7.39 (m, 3H), 7.29 (d, J = 7.6 Hz, 1H), 6.76 (d, J = 9.6 Hz, 1H), 6.14 (d, J = 9.6 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 2.55 – 2.47 (m, 2H), 2.43 – 2.36 (m, 1H), 2.32 – 2.27 (m, 1H), 1.25 – 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 172.4, 165.2, 136.8, 134.8, 133.4, 133.0, 129.9, 129.4, 129.2, 128.6, 128.4, 128.0, 127.4, 127.3, 79.8, 60.7, 32.6, 27.6, 14.1. HRMS (ESI): m/z Calcd. for [C₂₂H₂₀O₅Na, M+Na]⁺: 387.1203; Found: 387.1203.

¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 7.2 Hz, 1H), 8.08 (d, J = 7.2 Hz, 2H), 7.59 – 7.53 (m, 2H), 7.46 – 7.38 (m, 8H), 7.24 (d, J = 8.0 Hz, 1H), 6.09 (s, 1H), 5.98 – 5.88 (m, 1H), 5.28 – 5.18 (m, 2H), 2.90 – 2.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 165.0, 138.6, 138.4, 137.5, 134.3, 133.2, 132.1, 130.2, 129.9, 129.6, 129.4, 129.1, 128.4, 128.32, 128.28, 127.9, 127.7, 127.1, 120.3, 80.4, 42.8. HRMS (ESI): m/z Calcd. for [C₂₆H₂₀O₃Na, M+Na]⁺: 403.1305; Found: 403.1307.

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (d, J = 7.2 Hz, 1H), 8.08 (d, J = 7.2 Hz, 2H), 7.60 – 7.54 (m, 2H), 7.46 – 7.41 (m, 3H), 7.34 – 7.31 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 3.2 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 6.05 (s, 1H), 5.98 – 5.87 (m, 1H), 5.30 – 5.18 (m, 2H), 3.86 (s, 3H), 2.88 – 2.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 195.6, 165.0 , 159.4, 138.1, 137.8, 134.3, 133.2, 131.8, 130.7, 130.32, 130.26, 129.9, 129.6, 129.4, 128.3, 128.2, 127.7, 127.1, 120.2, 113.8, 80.5, 55.3, 42.8. HRMS (ESI): m/z Calcd. for [C₂₇H₂₂O₄Na, M+Na]⁺: 433.1410; Found: 433.1407.

¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 7.6 Hz, 1H), 8.04 (d, J = 7.6 Hz, 2H),

7.57 – 7.51 (m, 2H), 7.44 – 7.39 (m, 3H), 7.35 – 7.31 (m, 1H), 7.26 (d, J = 7.6 Hz, 1H), 6.98 – 6.92 (m, 3H), 6.08 (s, 1H), 5.95 – 5.85 (m, 1H), 5.27 –5.16 (m, 2H), 3.81 (s, 3H), 2.84 – 2.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 165.0, 159.5, 139.8, 138.4, 137.4, 134.3, 133.2, 132.0, 130.2, 129.8, 129.6, 129.44, 129.36, 128.31, 128.29, 127.6, 127.1, 121.5, 120.3, 114.7, 113.4, 80.3, 55.2, 42.8. HRMS (ESI): m/z Calcd. for [C₂₇H₂₂O₄Na, M+Na]⁺: 433.1410; Found: 433.1412.

¹**H NMR (400 MHz, CDCl₃)** δ 8.11 – 8.04 (m, 3H), 7.58 – 7.54 (m, 1H), 7.45 – 7.41 (m, 2H), 6.90 (dd, J = 8.8, 2.4 Hz, 1H), 6.75 (d, J = 2.4 Hz, 1H), 6.70 (d, J = 10.0 Hz, 1H), 6.17 (d, J = 9.6 Hz, 1H), 5.90 – 5.78 (m, 1H), 5.20 – 5.11 (m, 2H), 3.90 (s, 3H), 2.80 – 2.66 (m, 2H); ¹³**C NMR (100 MHz, CDCl₃)** δ 194.2, 165.1, 164.8, 139.2, 134.2, 133.3, 130.2, 129.9, 129.4, 128.3, 127.0, 123.2, 120.1, 114.2, 112.5, 80.0, 55.6, 42.8. **HRMS (ESI):** m/z Calcd. for [C₂₁H₁₈O₄Na, M+Na]⁺: 357.1097; Found: 357.1097.

¹**H NMR (400 MHz, CDCl₃)** δ 8.11 (d, J = 7.6 Hz, 2H), 7.65 – 7.59 (m, 2H), 7.49 – 7.45 (m, 2H), 7.28 (d, J = 6.4 Hz, 1H), 7.18 (dd, J = 8.4, 2.8 Hz, 1H), 6.75 (d, J = 10.0 Hz, 1H), 6.06 (d, J = 9.6 Hz, 1H), 5.93 – 5.82 (m, 1H), 5.20 – 5.15 (m, 2H), 3.91 (s, 3H), 2.84 – 2.71 (m, 2H); ¹³C **NMR (100 MHz, CDCl₃)** δ 195.9, 165.2, 159.7, 133.3, 130.8, 130.4, 130.3, 130.1, 129.9, 129.5, 129.3, 128.4, 126.7, 122.2, 109.8, 80.0, 56.0, 42.6. **HRMS (ESI):** m/z Calcd. for [C₂₁H₁₈O₄Na, M+Na]⁺: 357.1097; Found: 357.1098.

¹**H NMR (400 MHz, CDCl₃)** δ 8.08 (d, J = 7.6 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.45 – 7.39 (m, 3H), 7.33 (s, 1H), 7.29 – 7.25 (m, 3H), 2.08 (s, 1H), 1.70 (s, 1H); ¹³**C NMR (100 MHz, CDCl₃)** δ 197.8, 165.0, 143.1, 141.0, 133.3, 132.0, 130.0, 129.6, 129.4, 128.6, 128.4, 128.0, 123.9, 80.0, 28.3, 15.8. **HRMS (ESI):** m/z Calcd. for [C₁₉H₁₆O₃Na, M+Na]⁺: 315.0992; Found: 315.0995.

¹**H NMR (400 MHz, CDCl₃)** δ 8.07 (d, J = 7.2 Hz, 2H), 7.58 – 7.55 (m, 1H), 7.45 – 7.42 (m, 2H), 7.37 – 7.35 (m, 1H), 7.30 – 7.26 (m, 4H), 2.25 – 2.15 (m, 1H), 2.12 – 2.02 (m, 4H), 0.82 (t, J = 7.6 Hz, 1H); ¹³**C NMR (100 MHz, CDCl₃)** δ 197.9, 164.9, 141.6, 140.9, 133.2, 133.0, 130.6, 129.9, 129.7, 129.0, 128.41, 128.37, 128.0, 124.4, 82.8, 35.4, 16.0, 7.1. **HRMS (ESI):** m/z Calcd. for [C₂₀H₁₈O₃Na, M+Na]⁺: 329.1148; Found: 329.1153.

5c

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.2 Hz, 2H), 7.59 – 7.55 (m, 1H), 7.46 – 7.42 (m, 2H), 7.38 – 7.36 (m, 1H), 7.30 – 7.20 (m, 4H), 2.19 – 2.12 (m, 1H), 2.07 (s, 3H), 2.05 – 1.98 (m, 1H), 1.27 – 1.06 (m, 4H), 0.85 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 164.9, 141.9, 140.9, 133.2, 132.9, 130.5, 129.9, 129.7, 129.0, 128.42, 128.37, 128.0, 124.4, 82.5, 42.0, 24.4, 22.8, 15.7, 13.8. HRMS (ESI): m/z Calcd. for [C₂₂H₂₂O₃Na, M+Na]⁺: 357.1461; Found: 357.1464.

5d

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 2H), 7.59 – 7.55 (m, 1H), 7.46 – 7.42 (m, 2H), 7.37 – 7.25 (m, 5H), 2.60 – 2.41 (m, 2H), 2.25 – 2.17 (m, 1H), 2.16 – 2.02 (m, 1H), 1.19 (t, J = 7.6 Hz, 1H), 0.83 (t, J = 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.5, 164.8, 141.5, 139.2, 138.4, 133.2, 130.5, 129.9, 129.7, 129.0, 128.6, 128.3, 128.0, 124.4, 82.9, 35.3, 22.2, 12.5, 7.1. HRMS (ESI): m/z Calcd. for [C₂₁H₂₀O₃Na, M+Na]⁺: 343.1305; Found: 343.1309.

5e

¹**H NMR (400 MHz, CDCl₃)** δ 8.09 – 8.07 (m, 2H), 7.55 – 7.26 (m, 5H), 6.33 (d, *J* = 10.0 Hz, 1H), 1.74(s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 197.5, 164.9, 144.7, 143.9, 133.7, 133.4, 130.5, 130.2, 129.9, 129.5, 129.3, 129.0, 128.44, 128.38, 128.0, 124.3, 124.1, 79.9, 28.1. **HRMS (ESI):** m/z Calcd. for [C₁₈H₁₄O₃Na, M+Na]⁺: 301.0835; Found: 301.0833.

5f

¹**H NMR (400 MHz, CDCl₃)** δ 8.13 – 8.07 (m, 2H), 7.70 – 7.26 (m, 9H), 6.33 (d, J = 10.0 Hz, 1H), 2.25 – 2.20 (m, 1H), 2.12 – 2.07 (m, 1H), 0.87 (t, J = 7.4 Hz, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 197.6, 164.7, 144.6, 142.6, 133.7, 133.4, 130.2, 129.9, 129.6, 129.4, 128.5, 128.4, 128.1, 125.4, 124.7, 82.7, 35.2, 7.0. **HRMS (ESI):** m/z Calcd. for [C₁₉H₁₆O₃Na, M+Na]⁺: 305.0992; Found: 305.0992.

5g

¹H NMR (400 MHz, CDCl₃) δ 8.12 – 8.06 (m, 2H), 7.64 – 7.56 (m, 1H), 7.51 – 7.30 (m, 7H), 6.32 (d, *J* = 10.0 Hz, 1H), 2.21 – 2.13 (m, 1H), 2.07 – 2.00 (m, 1H), 1.38 – 1.30 (m, 1H), 1.29 – 1.11 (m, 5H), 0.83 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 164.9, 144.6, 142.8, 133.3, 130.22, 130.16, 130.0, 129.9, 129.5, 129.4, 128.5, 128.4, 128.0, 125.3, 124.6, 82.5, 41.9, 31.7, 22.3, 21.8, 13.9. HRMS (ESI): m/z Calcd. for [C₂₂H₂₂O₃Na, M+Na]⁺: 357.1461; Found: 357.1464.

5h

¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 3.2 Hz, 1H), 8.07 (d, *J* = 3.6 Hz, 2H), 7.64 – 7.56 (m, 2H), 7.50 – 7.41 (m, 5H), 7.38 – 7.26 (m, 3H), 6.31 (d, *J* = 9.6 Hz, 1H), 5.66 – 5.55 (m, 1H), 5.08 – 5.00 (m, 1H), 2.90 – 2.79 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 171.8, 164.8, 144.8, 141.9, 133.8, 133.5, 130.22, 130.19, 130.02, 130.00, 129.5, 129.4, 129.3, 128.51, 128.50, 128.3, 125.1, 125.0, 46.1. **HRMS (ESI):** m/z Calcd. for [C₂₀H₁₆O₃Na, M+Na]⁺: 327.0992; Found: 327.0988.

5i

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.46 - 7.42 (m, 3H), 7.34 (d, J = 6.8 Hz, 1H), 6.90 - 6.87 (m, 2H), 6.31 (d, J = 2.4 Hz, 1H), 5.64 - 5.53 (m, 1H), 5.07 - 5.00 (m, 2H), 3.82 (s, 3H), 2.89 - 2.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 164.7, 159.3, 144.6, 133.8, 133.4, 131.2, 130.2, 129.9, 129.5, 128.5, 128.4, 126.4, 125.8, 120.4, 115.8, 114.3, 81.4, 55.4, 46.2. HRMS (ESI): m/z Calcd. for [C₂₂H₂₂O₃Na, M+Na]⁺: 357.1097; Found: 357.1098.

¹**H NMR (400 MHz, CDCl₃)** δ 7.96 (d, J = 8.8 Hz, 2H), 7.34 – 7.32 (m, 1H), 7.22 – 7.19 (m, 4H), 6.84 (d, J = 9.2 Hz, 1H), 3.79 (s, 3H), 2.02 (s, 3H), 1.61 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 196.9, 163.6, 162.6, 142.3, 139.9, 131.0, 130.9, 128.3, 127.6, 126.9, 122.9, 120.9, 78.6, 54.4, 27.3, 14.8. **HRMS (ESI):** m/z Calcd. for [C₂₀H₁₈O₄Na, M+Na]⁺: 345.1097; Found: 345.1102.

5k

¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.08 (m, 2H), 7.40 – 7.38 (m, 1H), 7.34 –

7.33(m, 1H), 7.30 – 7.25 (m, 3H), 7.13 – 7.08 (m, 2H), 2.08 (d, J = 0.8Hz, 3H), 1.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 167.2, 164.7, 163.9, 142.9, 141.1, 132.8, 132.6, 132.5, 131.9, 129.4, 129.3, 128.6, 128.0, 125.7, 125.7, 123.8, 115.6, 115.4, 80.1, 28.3, 15.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.8. HRMS (ESI): m/z Calcd. for [C₁₉H₁₅O₃FNa, M+Na]⁺: 333.0897; Found: 333.0897.

¹H NMR (400 MHz, CDCl₃) δ 8.02 – 8.00 (m, 2H), 7.43 – 7.42 (m, 2H), 7.34 – 7.33 (m, 1H), 7.39 – 7.37 (m, 1H), 7.24 (s, 1H), 7.30 – 7.26 (m, 3H), 2.08 (d, *J* = 0.8 Hz, 3H), 1.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 163.1, 161.2, 141.8, 140.12, 140.07, 138.8, 130.9, 130.5, 130.3, 130.1, 128.4, 128.3, 127.7, 127.6, 127.1, 126.9, 122.81, 122.77, 79.3, 27.3, 14.7. HRMS (ESI): m/z Calcd. for [C₁₉H₁₅O₃ClNa, M+Na]⁺: 349.0602; Found: 349.0603.

5m

¹**H NMR (400 MHz, CDCl₃)** δ 8.30 – 8.24 (m, 4H), 7.39 – 7.37 (m, 2H), 7.34 – 7.30 (m, 3H), 2.09 (d, *J* = 1.2 Hz, 3H), 1.74 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 197.4, 163.1, 150.7, 142.3, 141.4, 134.8, 132.0, 131.1, 129.6, 129.4, 128.8, 128.4, 123.8, 123.6, 81.2, 28.4, 15.8. **HRMS (ESI):** m/z Calcd. for [C₁₉H₁₅O₃NNa, M+Na]⁺: 360.0842; Found: 360.0843.

Synthesis of 6

To a solution of **5a** (29.2 mg, 0.1 mmol) in methanol (1.0 mL) was added 40% NaOH (0.33 mL) at room temperature and the reaction mixture was stirred for overnight at 60 °C. Upon completion, the mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with NH₄Cl, water and brine, dried over Na₂SO₄, concentrated under reduced pressure. The residue was purified by flash column chromatography to provide **6** (16.5 mg, 87%). ¹**H** NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.6 Hz, 1H), 7.30 (td, *J* = 7.6, 1.2 Hz, 1H), 7.21 (td, *J* = 7.6, 1.2 Hz, 1H), 7.16 – 7.14 (m, 2H), 3.66 (s, 1H), 1.97 (s, 3H), 1.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.9, 144.1, 142.0, 130.3, 129.5, 128.6, 128.4, 127.8, 125.2, 76.9, 33.3, 15.4. HRMS (ESI): m/z Calcd. for. [C₁₂H₁₂O₂Na, M+Na]⁺: 211.0730; Found: 211.0732.

Reference:

1. M. Kawaguchi, K. Nakano, K. Hosoya, T. Orihara, M. Yamanaka, M. Odagi and K. Nagasawa, *Org. Lett.*, 2018, **20**, 2811-2815.

- 2. D. G. Batt, G. D. Maynard, J. J. Petraitis, J. E. Shaw, W. Galbraith and R. R. Harris,
- J. Med. Chem., 1990, **33**, 360-370.
- 3. M. Ciufolini and N. Jain, Synlett., 2015, 26, 631-634.
- 4. T. Ollevier and T. M. Mwene-Mbeja, Tetrahedron Lett., 2006, 47, 4051-4055.
- 5. T. Oguma and T. Katsuki, J. Am. Chem. Soc., 2012, 134, 20017-20020.
- 6. W.-J. Shi, X.-L. Li, Z.-W. Li and Z.-J. Shi, Org. Chem. Front., 2016, 3, 375-379.
- 7. J. Nan, J. Liu, H. Zheng, Z. Zuo, L. Hou, H. Hu, Y. Wang and X. Luan, *Angew. Chem. Int. Ed.*, 2015, **54**, 2356-2360.

 S. Kotha, K. Mandal, A. Tiwari and S. M. Mobin, *Chem. Eur. J.*, 2006, **12**, 8024-8038.

3. Plausible Reaction Path

Figure S1

We propose that the hydroxyl group of naphthol activates the benzoyl peroxide through H-bonding interaction that increases the electrophilicity of benzoyl peroxide.

4. ¹H, ¹³C and ¹⁹F NMR Spectra for New Compounds.

¹H NMR and ¹³C NMR Spectrum of **3a**

¹H NMR and ¹³C NMR Spectrum of **3b**

¹H NMR and ¹³C NMR Spectrum of **3c**

¹H NMR and ¹³C NMR Spectrum of **3d**

¹H NMR and ¹³C NMR Spectrum of **3e**

¹H NMR and ¹³C NMR Spectrum of **3f**

 $^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 3g

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 3h

¹H NMR and ¹³C NMR Spectrum of **3i**

¹H NMR and ¹³C NMR Spectrum of **3j**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 3k

¹H NMR and ¹³C NMR Spectrum of **5a**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of $\mathbf{5b}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 5c

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of $\mathbf{5d}$

¹H NMR and ¹³C NMR Spectrum of **5**e

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of $\mathbf{5f}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of $\mathbf{5g}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 5h

¹H NMR and ¹³C NMR Spectrum of **5**i

¹H NMR and ¹³C NMR Spectrum of **5**j

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 5k

¹⁹F NMR Spectrum of **5**k

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of $5\mathrm{I}$

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 5m

¹H NMR and ¹³C NMR Spectrum of 6