Supplementary Information

The Formation of Benzoxacin-3-ones via Intramolecular Nicholas Reactions and Synthesis of 8- Membered Heliannuols

Brent. St. Onge and James R. Green*

Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada

Table of Contents

1.	General Considerations	2
2.	Experimental Procedures for New Compounds	2
3.	References	32
4.	¹ H and ¹³ C NMR Spectra of New Compounds	33

General Considerations. Reagents were obtained from commercial sources otherwise stated. Reactions were conducted under inert atmosphere (N₂) using glassware dried in an oven (110 °C, > 1h). The solvent for each reaction was acquired from a solvent purification system (Innovative Technologies). BF3-OEt2 was distilled prior to use and stored under an inert atmosphere (N₂). Flash chromatography was performed according to the method of Still. High- Resolution Mass Spectrometry (HRMS) results were obtained via a Direct Insertion Probe-Electron Ionization method (70 eV), on a GCT Time of Flight (Tof) Mass Spectrometer at the McMaster Regional Centre for Mass Spectrometry, on a GCT Time of Flight (Tof) Mass Spectrometer at Queen's University, and in the University of Windsor Mass Spectrometry lab with a Tof mass spectrometer using the Atmospheric Solids Analysis Probe (ASAP) and a corona discharge to facilitate ionization. ¹H NMR spectra were obtained on 300 or 500 MHz spectrometers. Chemical shifts (d) are reported in parts per million (ppm), relative to the 7.27 ppm resonance for the residual CHCl₃ in CDCl₃, unless otherwise indicated. Coupling constants are reported in Hertz (Hz). ¹³C NMR data were obtained at either 75 or 125 MHz. Infrared spectra (IR) were recorded neat on a FT-IR spectrophotometer using an ATR attachment. Phenolic ether carboxylic acids 8a-g,¹ and 8i,² were made by literature methods.

2-(2-Isopropylphenoxy)-2-methylpropanoic acid (8h)

General Procedure 1 (GP1): Sodium hydroxide (1.4623 g, 36.6 mmol, 5 equiv) was added with acetone (7 mL). To the resulting suspension, a solution of 2-isopropyl phenol (0.9950 g, 7.31 mmol) in acetone (7 mL) was added. The mixture was heated to reflux for 30 min, and chloroform (0.79 mL, 8.8 mmol, 1.2 equiv) in acetone (7 mL) was added. The resulting solution was further

stirred at reflux for 3.5 hours and was subsequently concentrated under vacuum. The residue was dissolved using water and extracted with dichloromethane. The aqueous phase was acidified using 1M HCl. The resulting white suspension was extracted with dichloromethane. The combined CH₂Cl₂ phases were dried (MgSO₄) and concentrated under reduced pressure. The resulting **8h** was obtained as an off-white solid (1.1289 g, 70%) and of sufficient purity for subsequent use: **8h**, mp 85-86°C; ¹H NMR (300 MHz, CDCl₃) δ 11.51 (br s, 1H), 7.33 – 7.30 (m, 1H) 7.17 – 7.15 (m, 1H) 7.12 – 7.02 (m, 1H) 6.87 – 6.84 (m, 1H) 3.44 (septet, J = 6.9 Hz, 1H) 1.72 (s, 6H) 1.30 (d, J = 6.9 Hz, 6H); ¹³C (75 MHz, CDCl₃) 180.6, 152.0, 139.7, 126.5, 126.0, 122.3, 116.9, 78.6, 26.9, 25.2, 22.8; IR v_{max} : 3102, 3081, 2997, 2963, 1701, 1487, 1450, 1237, 1155, 754; HRMS m/e for C₁₃H₁₈O₃ calcd (M⁺) 222.1255 found 222.1253.

2-(4-Methoxy-3-methylphenoxy)-2-methylpropanoic acid (8j)

The application of **GP1** using 4-methyl-3-methoxyphenol (0.5376 g, 3.89 mmol). The resulting **8j** was obtained as a light tan oil (0.6694 g, 77%) and of sufficient purity for future use: **8j**, ¹H NMR (300 MHz, CDCl₃) δ 9.69 (br s, 1H), 6.80 – 6.68 (m, 3H) 3.80 (s, 3H) 2.19 (s, 3H) 1.56 (s, 6H);¹³C (125 MHz, CDCl₃) 177.5, 154.3, 146.8, 127.6, 124.6, 119.5, 110.2, 80.2, 55.6, 24.8, 16.3; IR v_{max} : 2983, 2940, 2835, 1708, 1497, 1465, 1256, 1142, 1033; HRMS m/e for C₁₂H₁₆O₄ calcd (M⁺) 224.1049 found 224.1051.

N-Methoxy-N,2-dimethyl-2-(phenoxy)propenamide (9a)

General Procedure 2 (GP2): To a 50mL 2-necked round bottom flask containing carboxylic acid 8a (0.5250 g, 2.97 mmol) was added dry dichloromethane (25 mL) and a drying tube. To the resulting solution, a few drops of dimethylformamide (DMF) and oxalyl chloride (0.764 mL, 8.91 mmol, 3 equiv) was added dropwise (HCl formation!). The resulting solution was stirred at room temperature for 3.5 h and concentrated under reduced pressure to yield the crude acid chloride. The flask was fitted with a drying tube and dichloromethane (25 mL) was added. N,Odimethylhydroxylamine hydrochloride was added (0.3475 g, 3.56 mmol, 1.2 equiv), followed by triethylamine (1.03 mL, 7.42 mmol, 2.5 equiv) at 0°C dropwise. Once the addition of triethylamine is complete, the resulted solution was allowed to stir overnight at room temperature. Saturated sodium bicarbonate was added and the mixture extracted with dichloromethane. The organic phase was then washed with 1M HCl (3x) and brine. The organic phase was dried using magnesium sulfate (MgSO₄) and concentrated under reduced pressure. The product **9a** was sufficient purity for future use as a tan oil (0.6492 g, 98%); ¹H NMR (300 MHz, CDCl₃) δ 7.23 (m, 2H) 6.97 – 6.92 (m, 1H) 6.86 (m, 2H) 3.58 (s, 3H) 3.28 (s, 3H) 1.61 (s, 6H); ¹³C (75 MHz, CDCl₃) 172.8, 155.5, 129.2, 121.5, 118.1, 79.7, 60.4, 34.5, 25.0; IR vmax: 2991, 2979, 1650, 1595, 1490, 1228, 1148, 753, 694; HRMS m/e for $C_{12}H_{17}NO_3$ calcd (M⁺+H) 224.1286 found 224.1282.

N-Methoxy-N,2-dimethyl-2-(p-tolyloxy)propenamide (9b)

GP2 was applied to carboxylic acid **8b** (0.5167 g, 2.66 mmol) employing oxalyl chloride (0.680 mL, 7.98 mmol, 3 equiv), N,O-dimethylhydroxylamine hydrochloride (0.3114 g, 3.19 mmol, 1.2 equiv) and triethylamine (0.930 mL, 6.65 mmol, 2.5 equiv). Once the addition of triethylamine was complete, the resulting solution was allowed to stir overnight at room temperature. The reaction was quenched with saturated sodium bicarbonate and extracted with dichloromethane. The organic phase was then washed with 1M HCl (3x) and brine. The organic phase was dried using magnesium sulfate (MgSO₄) and concentrated under reduced pressure. The product **9b** was isolated as a yellow oil (0.5921 g, 94%); ¹H NMR (300 MHz, CDCl₃) δ 7.00 (d, J = 8.4 Hz, 2H) 6.74 (d, J = 8.4 Hz, 2H) 3.59 (s, 3H) 3.27 (s, 3H) 2.24 (s, 3H) 1.57 (s, 6H); ¹³C (75 MHz, CDCl₃) 172.7, 153.2, 130.9, 129.6, 118.1, 79.7, 60.4, 34.5, 24.9, 20.3; IR v_{max} : 2974, 2924, 1652, 1611, 1583, 1506, 1227, 1150, 811; HRMS m/e for C1₃H₁₉NO₃ calcd (M⁺+H) 238.1443 found 238.1440.

2-(4-tert-Butylphenoxy)-N-methoxy-N,2-dimethylpropanamide (9c)

GP2 was applied to carboxylic acid **8c** (0.6255 g, 2.64 mmol), using oxalyl chloride (0.680 mL, 7.94 mmol), N,O-dimethylhydroxylamine hydrochloride (0.3098 g, 3.17 mmol), and triethylamine (0.920 mL, 6.60 mmol). The product **9c** was isolated crude as a gold oil (0.6159 g, 83%); ¹H NMR (300 MHz, CDCl₃) δ 7.22 (d, J = 7.5 Hz, 2H) 6.78 (d, J = 7.8 Hz, 2H), 3.60 (s, 3H) 3.29 (s, 3H)

1.58 (s, 6H) 1.26 (s, 9H); ¹³C (75 MHz, CDCl₃) 173.5, 153.2, 144.5, 126.1, 118.0, 79.9, 60.6, 34.8, 34.1, 31.5, 25.2; IR v_{max} : 2961, 2903, 1652, 1607, 1509, 1461, 1290, 1176, 832; HRMS m/e for C₁₆H₂₅NO₃ calcd (M⁺+H) 280.1912 found 280.1908.

N-Methoxy-2-(4-methoxyphenoxy)-N,2-dimethylpropanamide (9d)

GP2 was applied to carboxylic acid **8d** (0.7593 g, 3.61 mmol), using oxalyl chloride (0.930 mL, 10.8 mmol), N,O-dimethylhydroxylamine hydrochloride (0.4228 g, 4.33 mmol), and triethylamine (1.26 mL, 9.03 mmol). The crude product subjected to flash chromatography using 5:1 petroleum ether : Et₂O, to afford **9d** as a yellow oil (0.6555 g, 72%); ¹H NMR (300 MHz, CDCl₃) δ 6.83 – 6.74 (m, 4H) 3.74 (s, 3H) 3.64 (s, 3H), 3.30 (br s, 3H), 1.55 (s, 6H); ¹³C (125 MHz, CDCl₃) 173.5, 154.6, 149.1, 120.0, 114.3, 80.2, 60.5, 55.4, 34.6, 25.0; IR v_{max} : 2993, 2936, 2835, 1650, 1504, 1441, 1216, 1149; HRMS m/e for C₁₃H₁₉NO₄ calcd (M⁺+H) 254.1392 found 254.1394.

2-(4-Chlorophenoxy)-N-methoxy-N,2-dimethylpropanamide (9e)

GP2 was applied to carboxylic acid derivative **8e** (0.8148 g, 3.79 mmol), using oxalyl chloride (0.980 mL, 11.3 mmol), N,O-dimethylhydroxylamine hydrochloride (0.4443 g, 4.55 mmol), and triethylamine (1.32 mL, 9.49 mmol). The crude product subjected to flash chromatography 10:1 petroleum ether : Et₂O, which gave **9e** as a yellow oil (0.6074 g, 62%); this material was spectroscopically identical to a literature report.³

N-Methoxy-N,2-dimethyl-2-(m-tolyloxy)propenamide (9f)

GP2 was applied to carboxylic acid derivative carboxylic acid **8f** (0.6328 g, 3.26 mmol), using oxalyl chloride (0.840 mL, 9.77 mmol), N,O-dimethylhydroxylamine hydrochloride (0.3814 g, 3.91 mmol), and triethylamine (1.14 mL, 8.14 mmol). The crude product was subjected to flash chromatography (10:1 petroleum ether : Et₂O) to afford **9f** a pale yellow oil (0.4559 g, 59%); ¹H NMR (500 MHz, CDCl₃) δ 7.11 (m, 1H), 6.78 (m, 1H), 6.70 – 6.64 (m, 2H), 3.61 (s, 3H), 3.30 (s, 3H), 2.29 (s, 3H), 1.61 (s, 6H); ¹³C (125 MHz, CDCl₃) 173.4, 155.5, 139.3, 129.0, 122.5, 119.0, 114.9, 79.7, 60.5, 34.7, 25.1, 21.4; IR v_{max} : 2980, 2923, 2866, 1652, 1601, 1487, 1258, 1171; HRMS m/e for C₁₃H₁₉NO₃ calcd (M⁺+H) 238.1443 found 238.1444.

N-Methoxy-N,2-dimethyl-2-(o-tolyloxy)propenamide (9g)

GP2 was applied to carboxylic acid derivative carboxylic acid **8g** (0.7603 g, 3.91 mmol), using oxalyl chloride (1.00 mL, 11.7 mmol), N,O-dimethylhydroxylamine hydrochloride (0.4582 g, 4.70 mmol), and triethylamine (1.36 mL, 9.79 mmol). The crude product was subjected to flash chromatography (10:1 petroleum ether : Et₂O) to give **9g** as a white crystalline solid (0.6805 g, 73 %), mp 63-65°C; ¹H NMR (300 MHz, CDCl₃) δ 7.13 (d, J = 7.4 Hz, 1H) 7.04 (apparent t, J = 7.8 Hz, 1H) 6.85 (apparent t, J = 7.4 Hz, 1H) 6.75 (d, J = 8.1 Hz, 1H) 3.56 (s, 3H) 3.28 (s, 3H) 2.22 (s, 3H) 1.63 (s, 6H); ¹³C (75 MHz, CDCl₃) 173.0, 153.7, 130.8, 128.3, 126.3, 121.1, 115.4,

79.5, 60.2, 34.5, 25.1, 16.5; IR v_{max} : 3005, 2992, 2818, 1644, 1599, 1488, 1454, 1201, 1154; HRMS m/e for C₁₃H₁₉NO₃ calcd (M⁺+H) 238.1443 found 238.1442.

2-(2-Isopropylphenoxy)-N-methoxy-N,2-dimethylpropanamide (9h)

GP2 was applied to carboxylic acid derivative carboxylic acid **8h** (0.5500 g, 2.47 mmol), with oxalyl chloride (0.640 mL, 7.42 mmol), N,O-dimethylhydroxylamine hydrochloride (0.2896 g, 2.97 mmol), and triethylamine (0.860 mL, 6.18 mmol). The crude product was purified using flash chromatography (15:1 hexanes : ethyl acetate) to afford **9h** as a white solid (0.5043 g, 77%), mp 52-53°C; ¹H NMR (300 MHz, CDCl₃) δ 7.19 (d, J = 7.4 Hz, 1H) 7.02 (dd, J = 8.1, 7.4 Hz, 1H) 6.92 (dd, J = 8.1, 7.4 Hz, 1H) 6.72 (d, J = 8.1 Hz, 1H) 3.57 (s, 3H) 3.32 (septet, J = 6.9 Hz, 1H) 3.30 (s, 3H) 1.63 (s, 6H) 1.23 (d, J = 6.9 Hz, 6H) ;¹³C (75 MHz, CDCl₃) 173.4, 152.7, 138.6, 126.5, 126.1, 121.4, 115.7, 79.5, 60.4, 34.5, 27.2, 25.1, 22.7; IR v_{max} : 2965, 2949, 1650, 1597, 1583, 1487, 1442, 1236, 1152, 746; HRMS m/e for C₁₅H₂₃NO₃ calcd (M⁺+H) 266.1756 found 266.1756. **2-(4-Chloro-3-methylphenoxy)-N-methoxy-N,2-dimethylpropanamide (9i)**

GP2 was applied to carboxylic acid derivative carboxylic acid **8i** (1.1940 g, 5.22 mmol), using oxalyl chloride (1.34 mL, 15.7 mmol), N,O-dimethylhydroxylamine hydrochloride (0.6112 g, 6.27 mmol), and triethylamine (1.82 mL, 13.1 mmol). The crude product was subjected to flash chromatography (10:1 petroleum ether : Et₂O) to afford **9i** a yellow oil (1.3071 g, 92%); ¹H NMR

(300 MHz, CDCl₃) δ 7.17 (d, J = 8.7 Hz, 1H) 6.76 (d, J = 2.9 Hz, 1H) 6.64 (dd, J = 8.7, 2.9 Hz, 1H) 3.60 (s, 3H) 3.29 (s, 3H) 2.30 (s, 3H) 1.60 (s, 6H); ¹³C (75 MHz, CDCl₃) 173.0, 154.1, 137.1, 129.5, 127.0, 120.9, 116.7, 80.2, 60.6, 34.6, 25.1, 20.2; IR v_{max} : 2980, 2937, 2866, 1652, 1477, 1240, 1177; HRMS m/e for C₁₃H₁₈ClNO₃ calcd (M⁺+H) 272.1053 found 272.1053.

```
N-Methoxy-2-(4-methoxy-3-methylphenoxy)-N,2-dimethylpropanamide (9j)
```


GP2 was applied to carboxylic acid derivative carboxylic acid **8j** (1.3011 g, 5.80 mmol), using oxalyl chloride (1.50 mL, 17.4 mmol), N,O-dimethylhydroxylamine hydrochloride (0.6791 g, 6.96 mmol), and triethylamine (2.00 mL, 14.5 mmol). The crude product was subjected to flash chromatography (5:1 petroleum ether : Et₂O) to afford **9j** as a pale yellow oil (1.4423 g, 93%); ¹H NMR (300 MHz, CDCl₃) δ 6.70 – 6.66 (m, 3H) 3.75 (s, 3H) 3.65 (s, 3H) 3.32 (s, 3H) 2.15 (s, 3H) 1.55 (s, 6H); ¹³C (75 MHz, CDCl₃) 173.1, 152.9, 148.6, 127.5, 122.0, 116.3, 110.3, 80.0, 60.5, 55.5, 34.7, 25.0, 16.2; IR v_{max} : 2973, 2866, 1651, 1498, 1218, 1149; HRMS m/e for C₁₄H₂₁NO4 calcd (M⁺+H) 268.1549 found 268.1554.

6-Methoxy-2-methyl-2-phenoxyhex-4-yn-3-one (10a)

General Procedure 3 (GP3): To a solution of methyl propargyl ether (0.27 mL, 3.2 mmol) dry tetrahydrofuran (15 mL) at -78 °C was added n-butyllithium (0.79 mL, 1.6 mmol). The solution was stirred at -78°C for 1 h. The Weinreb amide **9a** (0.1507 g, 0.67 mmol) was dissolved in dry

tetrahydrofuran and injected dropwise. The resulting solution was allowed to warm to room temperature with stirring overnight. Saturated NH4Cl(aq) was added and the mixture was extracted with diethyl ether. The organic phase was dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude material was filtered through a silica plug, giving **10a** as a yellow oil (0.1489g, 95%); ¹H NMR (300 MHz, CDCl₃) δ 7.28 (t, J = 7.8 Hz, 2H), 7.03 (apparent t, J = 7.3 Hz, 1H), 6.91 (d, J = 7.9 Hz, 2H), 4.27 (s, 2H), 3.34 (s, 3H), 1.58 (s, 6H); ¹³C (75 MHz, CDCl₃) 189.9, 155.1, 129.2, 122.5, 119.7, 91.7, 83.74, 83.66, 59.5, 57.8, 23.7; IR v_{max} :3064, 3039, 2989, 2935, 2897, 2206, 1677, 1589, 1490, 1462, 1227, 1125, 1100, 752, 693; HRMS m/e for C₁₄H₁₆O₃Na calcd (M⁺ + Na) 255.0997, found 255.0991.

6-Methoxy-2-methyl-2-phenoxyhex-4-yn-3-one (10aa)

GP3 was applied to Weinreb amide **9a** (0.2081 g, 0.93 mmol) using the lithium acetylide generated from the 3-benzyloxybutyne and n-butyllithium. The crude product was subjected to column chromatography (25:1 hexane : Et₂O), to give **10aa** (0.2253 g, 75%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.29 (m, 7H) 7.05 (t, J = 7.4, 1H), 6.94 (m, 2H) 4.69 (d, J = 11.6 Hz, 1H) 4.40 (d, J = 11.6 Hz, 1H) 4.34 (q, J = 6.9 Hz, 1H) 1.64 (s, 3H) 1.63 (s, 3H) 1.49 (d, J = 6.9 Hz, 3H); ¹³C (75 MHz, CDCl₃) 190.3, 155.2, 137.1, 129.2, 128.3, 128.0, 127.8, 122.2, 119.1, 95.4, 83.7, 82.3, 70.7, 63.9, 24.2, 23.4, 21.0; IR v_{max} : 3064, 3031, 2988, 2868, 2209, 1679, 1589, 1489, 1455, 1106, 1027, 750, 694; HRMS m/e for C₂₁H₂₂O₃ calcd 323.1647 (M⁺+H), found 323.1641.

6-Methoxy-2-methyl-2-(p-tolyloxy)hex-4-yn-3-one (10b)

GP3 was applied to Weinreb amide **9b** (0.3909 g, 1.65 mmol) using methyl propargyl ether (0.70 mL, 8.25 mmol) and n-butyllithium (2.05 mL, 2.00 M, 4.12 mmol). Compound **10b** was isolated as a gold oil (0.3652 g, 90%) with sufficient purity for future use; ¹H NMR (300 MHz, CDCl₃) δ 7.04 (d, J = 8.5 Hz, 2H), 6.78 (d, J = 8.5 Hz 2H), 4.27 (s, 2H), 3.35 (s, 3H), 2.29 (s, 3H), 1.52 (s, 6H); ¹³C (75 MHz, CDCl₃) 190.1, 152.7, 132.1, 129.7, 119.9, 91.5, 83.74, 83.71, 59.6, 57.8, 23.7, 20.5; IR v_{max} : 2988, 2932, 2208, 1677, 1610, 1506, 1224, 1156, 1125, 1099, 809; HRMS m/e for C₁₅H₁₈O₃ calcd (M⁺+H) 247.1334 found 247.1336.

2-(4-tert-Butylphenoxy)-6-methoxy-2-methylhex-4-yn-3-one (10c)

GP3 was applied to Weinreb amide **9c** (0.2212 g, 0.79 mmol) The crude product was subjected flash chromatography using (10:1 petroleum ether : Et₂O) to afford **10c** (0.0966 g, 42%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.24 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 4.25 (s, 2H), 3.30 (s, 3H), 1.54 (s, 6H), 1.28 (s, 9H); ¹³C (75 MHz, CDCl₃) 190.1, 152.6, 145.2, 125.9, 119.2, 91.5, 83.7, 83.6, 59.5, 57.7, 34.1, 31.4, 23.7; IR v_{max} : 2963, 2904, 2869, 2208, 1678, 1607, 1509, 1462, 1160, 1128, 1102, 860; HRMS m/e for C₁₈H₂₄O₃ calcd (M⁺+H) 289.1804, found 289.1794.

2-(4-tert-Butylphenoxy)-6-methoxy-2-methylhept-4-yn-3-one (10cc)

GP3 was applied to Weinreb amide **9c** (0.2302 g, 0.82 mmol) using the lithium acetylide generated from the 3-methoxybutyne and n-butyllithium. Following filtration through a short silica plug using dichloromethane, **10cc** was isolated as a yellow oil (0.2472 g, 99%); ¹H NMR (300 MHz, CDCl₃) δ 7.24 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 4.19 (q, J = 6.6 Hz, 1H), 3.28 (s, 3H) 1.54 (s, 6H), 1.40 (d, J = 6.9 Hz, 3H), 1.28 (s, 9H);¹³C (75 MHz, CDCl₃) 190.4, 152.8, 145.1, 125.9, 118.9, 95.2, 83.6, 82.3, 66.7, 56.5, 34.0, 31.4, 24.1, 23.6, 20.9; IR v_{max} : 3096, 3041, 2964, 2823, 2207, 1679, 1607, 1509, 1461, 1235, 1139; HRMS m/e for C₁₉H₂₆O₃ calcd (M⁺+H) 303.1960 found 303.1948.

6-(Benzyloxy)-2-(4-methoxyphenoxy)-2-methylhept-4-yn-3-one (10d)

GP3 was applied to Weinreb amide **9d** (0.2187 g, 0.86 mmol) using the lithium acetylide generated from the 3-benzyloxybutyne and n-butyllithium. The crude product was subjected to column chromatography using 7.5:1 petroleum ether : Et₂O to afford **10d** as a yellow oil (0.2788 g, 92%); ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 6.91 (d, J = 9.2 Hz, 2H), 6.81 (d, J = 9.2 Hz, 2H), 4.75 (d, J = 11.6 Hz, 1H), 4.47 (d, J = 11.6 Hz, 1H), 4.40 (q, J = 6.7 Hz, 1H), 3.78 (s, 3H), 1.56 – 1.53 (m, 9H); ¹³C (75 MHz, CDCl₃) 190.2, 155.3, 148.6, 137.1, 128.3, 128.0, 127.8, 121.5, 114.2, 95.3, 84.0, 82.4, 70.8, 64.1, 55.4, 23.9, 23.4, 21.1; IR v_{max} :3064, 3032, 2961, 2868, 2208,

1679, 1596, 1450, 1257, 1147, 1100, 743, 698; HRMS m/e for C₂₂H₂₄O₄ calcd (M⁺) 352.1674 found 352.1681.

6-(Benzyloxy)-2-(4-chlorophenoxy)-2-methylhept-4-yn-3-one (10e)

GP3 was applied to Weinreb amide **9e** (0.2041 g, 0.82 mmol) using the lithium acetylide generated from the 3-benzyloxybutyne and n-butyllithium. The crude product was subjected to column chromatography using 7.5:1 petroleum ether : Et₂O to afford **10e** as a yellow oil (0.2414 g, 85%); ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.16 (m, 7H), 6.80 (m, 2H), 4.64 (d, J = 11.7 Hz, 1H), 4.36 (d, J = 11.7 Hz, 1H), 4.31 (q, J = 6.8 Hz, 1H), 1.56 (s, 3H), 1.55 (s, 3H), 1.45 (d, J = 6.8 Hz, 3H); ¹³C (75 MHz, CDCl₃) 189.6, 153.8, 137.0, 129.2, 128.4, 127.9, 127.8, 127.4, 120.6, 95.7, 84.1, 82.1, 70.8, 64.0, 24.0, 23.3, 21.0; IR v_{max}: 3063, 3030, 2982, 2844, 2207, 1679, 1616, 1487, 1223, 1146; HRMS m/e for C₂₁H₂₁ClO₃ calcd (M⁺+H) 357.1257 found 357.1247.

6-(Benzyloxy)-2-methyl-2-(m-tolyloxy)hept-4-yn-3-one (10f)

GP3 was applied to Weinreb amide **9f** (0.2443 g, 1.02 mmol). The crude product was subjected to column chromatography (25:1 hexane : Et₂O) to afford **10f** as a as a yellow oil (0.2761 g, 80%); ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.31 (m, 5H), 7.19 (m, 1H), 6.88 (m, 1H), 6.79 – 6.72 (m, 2H), 4.70 (d, J = 11.4 Hz, 1H), 4.40 (d, J = 11.4 Hz, 1H), 4.38 (q, J = 6.6 Hz, 1H), 2.34 (s, 3H), 1.65 (s, 3H), 1.64 (s, 3H), 1.52 (d, J = 6.9 Hz, 3H); ¹³C (75 MHz, CDCl₃) 190.4, 155.2, 139.3,

137.1, 128.9, 128.3, 128.0, 127.8, 123.1, 120.0, 115.9, 95.3, 83.6, 82.3, 70.7, 63.9, 24.2, 23.3, 21.3, 21.0; IR v_{max} : 3023, 2982, 2937, 2844, 2209, 1679, 1583, 1455, 1146, 1098; HRMS m/e for C_{22H24O3} calcd 337.1803 (M⁺+H) found 337.1800.

6-(Benzyloxy)-2-methyl-2-(o-tolyloxy)hept-4-yn-3-one (10g)

GP3 was applied to Weinreb amide **9g** (0.2407 g, 1.01 mmol) using the lithium acetylide generated from the 3-benzyloxybutyne and n-butyllithium. The crude product was subjected to column chromatography (25:1 hexane : Et₂O) to afford **10g** (0.3156 g, 92%) as a light orange oil; ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.17 (m, 7H), 6.91 (apparent t, J = 7.4, 1H), 6.71 (apparent d, J = 8.1, 1H), 4.64 (d, J = 11.6 Hz, 1H), 4.35 (d, J = 11.6 Hz, 1H), 4.31 (q, J = 6.7 Hz, 1H), 2.29 (s, 3H), 1.63 (s, 3H), 1.62 (s, 3H), 1.47 (d, J = 6.7 Hz, 3H); ¹³C (75 MHz, CDCl₃) 190.6, 153.5, 137.1, 131.0, 129.0, 128.2, 128.0, 127.7, 126.2, 121.7, 116.4, 95.3, 83.6, 82.2, 70.6, 63.8, 24.2, 23.3, 20.9, 16.7; IR v_{max} : 3064, 3030, 2987, 2865, 2208, 1679, 1601, 1491, 1454, 1238, 1147, 1100, 777, 698; HRMS m/e for C₂₂H₂₄O₄ calcd 337.1804 (M⁺+H) found 337.1800.

2-(2-Isopropylphenoxy)-6-methoxy-2-methylhex-4-yn-3-one (10h)

GP3 was applied to Weinreb amide **9h** (0.3350 g, 1.26 mmol). After filtration through a short silica plug, **10h** was isolated as a orange oil (0.3454 g, 99%); ¹H NMR (300 MHz, CDCl₃) δ 7.23 (dd, J = 7.5, 1.9 Hz, 1H), 7.04 (apparent dt, J = 8.0, 1.9 Hz, 1H), 6.96 (apparent dt, J = 7.4, 1.2 Hz, 1H), 6.63 (dd, J = 8.0, 1.2 Hz, 1H), 4.21 (s, 2H), 3.38 (sept, J = 6.9 Hz, 1H), 3.26 (s, 3H), 1.59 (s, 6H),

1.24 (d, J = 6.9 Hz, 6H); ¹³C (75 MHz, CDCl₃) 190.6, 152.3, 139.3, 126.5, 125.9, 121.9, 116.5, 91.5, 83.7, 83.4, 59.5, 57.7, 27.0, 23.7, 22.7; IR v_{max} : 2961, 2934, 2870, 2208, 1678, 1486, 1448
1259, 1158, 1126, 1086, 749; HRMS m/e for C₁₇H₂₂O₃ calcd (M⁺+H) 275.1647 found 275.1649.
6-(Benzyloxy)-2-(4-chloro-3-methylphenoxy)-2-methylhept-4-yn-3-one (10i)

GP3 was applied to Weinreb amide **9i** (0.1578 g, 0.58 mmol) using the lithium acetylide generated from the 3-benzyloxybutyne and n-butyllithium. The crude product was subjected to column chromatography using 30:1 petroleum ether : Et₂O to afford **10i** (0.1723 g, 80%), as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.25 (m, 6H), 6.79 (d, J = 1.9 Hz, 1H), 6.65 (dd, J = 8.6, 1.9 Hz, 1H), 4.66 (d, J =11.7 Hz, 1H), 4.40 – 4.30 (m, 2H), 2.30 (s, 3H), 1.58 (s, 6H), 1.48 (d, 6.6 Hz, 3H); ¹³C (125 MHz, CDCl₃) 190.0, 153.7, 137.0, 129.4, 128.39, 128.0, 127.9, 127.7, 121.9, 117.8, 95.7, 84.0, 82.2, 70.8, 64.0, 24.1, 23.4, 21.0, 20.2; IR v_{max} : 3087, 3064, 3031, 2987, 2936, 2865, 2208, 1679, 1596, 1478, 1159, 1098, 806, 734, 696; HRMS m/e for C₂₂H₂₃ClO₃ calcd 371.1414 (M⁺+H) 371.1411.

6-(Benzyloxy)-2-(4-methoxy-3-methylphenoxy)-2-methylhept-4-yn-3-one (10j)

GP3 was applied to Weinreb amide **9j** (0.1758 g, 0.65 mmol) using the lithium acetylide generated from the 3-benzyloxybutyne and n-butyllithium. The crude product was subjected to column chromatography (20:1 hexane : Et₂O) to afford **10j** (0.2104 g, 87%) as a colorless oil; ¹H NMR

(300 MHz, CDCl₃) δ 7.44 – 7.35 (m, 5H), 6.86 – 6.74 (m, 3H), 4.81 (d, J = 11.7 Hz, 1H), 4.53 (d, J = 11.7 Hz, 1H), 4.46 (q, J = 6.9 Hz, 1H), 3.86 (s, 3H), 2.26 (s, 3H), 1.60 (m, 9H); ¹³C (75 MHz, CDCl₃) 190.4, 153.5, 148.2, 137.2, 128.3, 128.1, 127.8, 127.4, 123.3, 117.9, 110.1, 95.2, 83.8, 82.5, 70.8, 64.1, 55.5, 24.0, 23.4, 21.1, 16.2; IR v_{max} : 3064, 3032, 2985, 2868, 2208, 1679, 1598, 1487, 1450, 1147, 1092, 747, 697; HRMS m/e for C₂₃H₂₆O₄ calcd 367.1909 (M⁺+H) found 367.1909.

Hexacarbonyl[μ - η^4 -(6-methoxy-2-methyl-2-phenoxyhex-4-yn-3-one)]dicobalt (6a)

General Procedure 4 (GP4): To a solution of alkyne **10a** (0.1540 g, 0.66 mmol) in CH₂Cl₂ (15 mL) was added an unweighed amount of dicobalt octacarbonyl in portions, with monitoring by TLC. After 2 h, the deep red solution was concentrated under reduced pressure and filtered through a plug of silica using hexane, to remove excess Co₂(CO)₈, followed by diethyl ether. The residue of the diethyl ether washings was subjected to flash chromatography (25:1 hexanes : ethyl acetate), to afford **6a** was isolated as a dark red oil (0.2920 g, 85%); ¹H NMR (300 MHz, CDCl₃) δ 7.27 (apparent t, J = 7.9 Hz, 2H), 7.06 (apparent t, J = 7.2 Hz, 1H), 6.88 (dd, J = 7.8 Hz, 2H), 4.40 (s, 2H), 3.46 (s, 3H), 1.60 (s, 6H); ¹³C (75 MHz, CDCl₃) 206.8, 198.3, 154.5, 129.4, 122.9, 120.7, 96.3, 85.2, 80.3, 72.8, 59.0, 25.3; IR v_{max} : 2987, 2876, 2098, 2057, 2012, 1740, 1588, 1492, 1455, 1220, 1158, 753, 696; HRMS m/e for C₂₀H₁₆Co₂O₉ calcd (M⁺+H) 518.9536 found 518.9539.

Hexacarbonyl[μ - η^4 -(6-methoxy-2-methyl-2-phenoxyhex-4-yn-3-one)]dicobalt (6aa)

GP4 was applied to propargyl ether ketone **10aa** (0.2089 g, 0.65 mmol). Following the silica plug fitration, the compound was found to be sufficiently pure, and product **6aa** was isolated as a dark red oil (0.3660 g, 93%); ¹H NMR (500 MHz, CDCl₃): δ 7.38 – 7.29 (m, 7H), 7.14 (apparent t, J = 7.4 Hz, 1H), 6.92 (m, 2H), 4.76 (q, J = 6.2 Hz, 1H), 4.75 (1/2 AB, J = 11.8 Hz, 1H), 4.68 (1/2 AB, J = 11.8 Hz, 3H), 1.64 (s, 3H), 1.60 (s, 3H), 1.59 (d, J = 6.2 Hz, 3H); ¹³C (125 MHz, CDCl₃) 207.1, 198.6, 153.9, 138.1, 129.3, 128.3, 127.5, 123.4, 121.8, 104.3, 85.7, 81.9, 74.6, 71.0, 25.7, 25.1, 22.6; IR v_{max} : 3064, 3030, 2980, 2865, 2127, 2057, 2018, 1662, 1587, 1455, 1230, 1154; HRMS m/e for C₂₇H₂₂Co₂O₉ calcd (M -3CO) 524.0080 found 524.0097.

GP4 was applied to propargyl ether ketone **10b** (0.2571 g, 1.04 mmol). Following the silica plug fitration, the compound was found to be sufficiently pure and product **6b** was isolated as a dark red oil (0.3753 g, 68%); ¹H NMR (300 MHz, CDCl₃) δ 7.07 (d, J = 8.1 Hz, 2H), 6.78 (d, J = 8.1 Hz, 2H), 4.46 (s, 2H), 3.48 (s, 3H), 2.31 (s, 3H), 1.56 (s, 6H); ¹³C (75 MHz, CDCl₃) 206.6, 198.5, 151.9, 132.7, 129.8, 121.2, 96.3, 85.3, 80.6, 72.9, 58.9, 25.2, 20.6; IR v_{max} : 3030, 2987, 2931, 2874, 2129, 2056, 2007,1664, 1608, 1583, 1506, 1462, 1157, 1127, 1101 ; HRMS m/e for C₂₁H₁₈Co₂O₉ calcd (M⁺+H) 532.9693 found 532.9692.

Hexacarbonyl[μ - η^4 -(2-(4-tert-butylphenoxy)-6-methoxy-2-methylhex-4-yn-3-one)]dicobalt (6c)

GP4 was applied to propargyl ether ketone **10c** (0.0722 g, 0.25 mmol). Subsequent flash chromatography (25:1 hexanes : ethyl acetate) afforded **6c** as a dark red oil (0.1424 g, 99%); ¹H NMR (300 MHz, CDCl₃) δ 7.27(m, 2H), 6.79 (m, 2H), 4.36 (s, 2H), 3.45 (s, 3H), 1.60 (s, 6H), 1.30 (s, 9H); ¹³C (75 MHz, CDCl₃) 207.0, 198.5, 152.0, 145.6, 126.1, 119.9, 96.5, 85.0, 80.6, 72.7, 58.9, 34.2, 31.4, 25.3; IR v_{max} :2964, 2905, 2871, 2098,2057, 2016, 1664, 1607, 1579, 1509, 1462, 1159, 1125, 1103, 832; HRMS m/e for C₂₄H₂₄Co₂O₉ calcd (M⁺+H) 575.0162 found 575.0154. **Hexacarbonyl**[μ - η ⁴-(2-(4-tert-butylphenoxy)-6-methoxy-2-methylhept-4-yn-3-one)]dicobalt (6cc)

GP4 was applied to propargyl ether ketone **10cc** (0.2040 g, 0.67 mmol). Following the silica plug filtration, the compound was found to be sufficiently pure and **6cc** was isolated as a dark red oil (0.3882 g, 98%); ¹H NMR (300 MHz, CDCl₃) δ 7.28 (d, J = 8.7, 2H), 6.83 (d, J = 8.7, 2H), 4.45 (q, J = 6.2 Hz, 1H), 3.44 (s, 3H), 1.58 (s, 3H), 1.56 (s, 3H), 1.48 (d, J = 6.2 Hz, 3H), 1.30 (s, 9H); ¹³C (75 MHz, CDCl₃) 207.3, 198.7, 151.5, 146.2, 126.1, 121.2, 103.9, 85.6, 82.5, 57.0, 34.2, 31.4, 25.6, 25.2, 22.2; IR v_{max} : 3096, 3041, 2964, 2869, 2097, 2057, 2016, 1662, 1509, 1225, 1158; HRMS m/e for C₂₅H₂₆Co₂O₉ calcd (M⁺+H-3CO) 504.0416 found 504.0393.

Hexacarbonyl[μ - η^4 -(2-(6-(benzyloxy)-2-(4-methoxyphenoxy)-2-methylhept-4-yn-3-one)]dicobalt (6d)

GP4 was applied to propargyl ether ketone **6d** (0.1750 g, 0.50 mmol). Following the silica plug filtration, the compound was found to be sufficiently pure and **3d** was isolated as a dark red oil

(0.3168 g, 99%); ¹H NMR (500 MHz, CDCl₃): δ 7.33 – 7.24 (m, 5H), 6.83 – 6.78 (m, 4H), 4.78 (q, J = 6.4 Hz, 1H), 4.69 (1/2 AB, J = 11.8 Hz, 1H), 4.65 (1/2 AB, J = 11.8 Hz, 1H), 3.79 (s, 3H), 1.55 (d, J = 6.4 Hz, 3H), 1.52 (s, 3H), 1.49 (s, 3H); ¹³C (125 MHz, CDCl₃) 206.8, 198.7, 156.0, 146.8, 138.1, 128.3, 127.5, 124.0, 114.2, 103.8, 86.2, 82.0, 74.7, 71.1, 55.5, 25.6, 25.1, 22.8; IR v_{max} : 3088, 3065, 3032, 2981, 2867, 2097, 2057, 2016, 1661, 1587, 1504, 1455, 1213, 1149; HRMS m/e for C₂₈H₂₄Co₂O₁₀ calcd (M -3CO) 554.0186 found 554.0193.

Hexacarbonyl[μ - η^4 -(6-(benzyloxy)-2-(4-chlorophenoxy)-2-methylhept-4-yn-3-one)]dicobalt (6e)

GP4 was applied to propargyl ether ketone **10e** (0.1548 g, 0.43 mmol). Following the silica plug filtration, the compound was found to be sufficiently pure and **6e** was isolated as a dark red oil (0.2146 g, 77%); ¹H NMR (500 MHz, CDCl₃): δ 7.37 – 7.31 (m, 5H), 7.25 (m, 2H), 6.83 (m, 2H), 4.75 (1/2 AB, J = 11.8 Hz, 1H), 4.73 (q, J = 6.1 Hz, 1H), 4.67 (1/2 AB, J = 11.8 Hz, 1H), 1.61 (s, 3H), 1.579 (d, J = 6.1 Hz, 3H), 1.576 (s, 9H); ¹³C (125 MHz, CDCl₃) 206.6, 198.5, 152.4, 138.0, 129.3, 128.8, 128.3, 127.6, 127.5, 123.1, 104.3, 86.1, 81.5, 74.4, 71.0, 25.5, 24.9, 22.5; IR v_{max}: 3065, 3031, 2980, 2867, 2097, 2057, 2016, 1661, 1487, 1455, 1234, 1153; HRMS m/e for C₂₇H₂₁ClCo₂O₉ calcd (M -3CO) 557.9690 found 557.9703.

Hexacarbonyl[μ - η^4 -(6-(benzyloxy)-2-methyl-2-(m-tolyloxy)hept-4-yn-3-one)]dicobalt (6f)

GP4 was applied to propargyl ether ketone **6f** (0.1642 g, 0.49 mmol). Following the silica plug filtration, the compound was found to be sufficiently pure and **3f** was isolated as a dark red oil

(0.2741 g, 90%); ¹H NMR (500 MHz, CDCl₃): 7.35-7.25 (m, 5H), 7.14 (dd, J = 8.6, 7.7 Hz, 1H), 6.90 (d, J = 7.5 Hz, 1H), 6.64-6.69 (m, 2H), 4.71 (q, J = 6.2 Hz, 1H), 4.69 (1/2 AB, J = 11.8 Hz, 1H), 4.64 (1/2 AB, J = 11.8 Hz, 1H), 2.30 (s, 3H), 1.58 (s, 3H), 1.55 (s, 3H), 1.54 (d, J = 6.2, 3H); ¹³C (125 MHz, CDCl₃) 207.3, 198.6, 154.0, 139.3, 138.1, 129.0, 128.3, 127.5, 124.2, 122.3, 118.7, 104.3, 85.5, 82.0, 74.7, 71.0, 25.7, 25.1, 22.6, 21.4; IR v_{max} : 3086, 3064, 2981, 2866, 2097, 2058, 2024, 1662, 1584, 1497, 1456, 1254, 1140; HRMS m/e for C₂₈H₂₄Co₂O₉ calcd (M-3CO) 538.0237 found 538.0251.

GP4 was applied to propargyl ether ketone **6g** (0.2005 g, 0.60 mmol). Following the silica plug filtration, the compound was found to be sufficiently pure and **3g** was isolated as a dark red oil (0.3639 g, 98%); ¹H NMR (500 MHz, CDCl₃): δ 7.35 – 7.29 (m, 5H), 7.16 (d, J = 7.5 Hz, 1H), 6.99 (apparent t, J = 7.5 Hz, 1H), 6.91 (apparent t, J = 7.5 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 4.69 (1/2 AB, J = 11.8 Hz, 1H), 4.64 (q, J = 6.2 Hz, 1H), 4.61 (1/2 AB, J = 11.8 Hz, 1H) 2.22 (s, 3H) 1.63 (s, 3H) 1.60 (s, 3H) 1.50 (d, J = 6.2 Hz, 3H); ¹³C (125 MHz, CDCl₃) 208.5, 198.5, 153.0, 138.1, 131.3, 129.4, 128.3, 127.6, 127.5, 126.2, 122.1, 117.8, 105.3, 84.5, 81.7, 74.4, 71.0, 25.6, 25.0, 22.3, 16.6; IR v_{max} : 3065, 3030, 2981, 2864, 2097, 2057, 2016, 1659, 1587, 1492, 1445, 1240, 1155; HRMS m/e for C₂₈H₂₄Co₂O₉ calcd (M -6CO) 454.0389 found 454.0393.

Hexacarbonyl[μ - η^4 -(2-(2-isopropylphenoxy)-6-methoxy-2-methylhex-4-yn-3-one)]dicobalt (6h)

GP4 was applied to propargyl ether ketone **10h** (0.2242 g, 0.81 mmol). Subsequent flash chromatography (25:1 hexanes : ethyl acetate) afforded **6h** as a dark red solid (0.3603 g, 79%), mp 51-53°C; ¹H NMR (300 MHz, CDCl₃) δ 7.25 (dd, J = 7.2, 2.4 Hz, 1H), 7.04 – 6.94 (m, 2H), 6.57 (dd, J = 7.5, 1.2 Hz, 1H), 4.25 (s, 2H), 3.43 (s, 3H), 3.39 (sept, J = 7.2 Hz, 1H), 1.65 (s, 6H), 1.23 (d, J = 7.2 Hz, 6H); ¹³C (75 MHz, CDCl₃) 207.8, 198.4, 152.0, 139.3, 126.8, 125.9, 122.2, 117.0, 96.1, 84.2, 80.0, 72.6, 58.9, 26.5, 25.6, 23.0; IR v_{max} : 2966, 2941, 2870, 2096, 2041, 2006, 1658, 1609, 1584, 1486, 1160, 1126, 752; HRMS m/e for C₂₃H₂₂Co₂O₉ calcd (M⁺+H) 561.0006 found 561.0001.

Hexacarbonyl[μ - η^4 -(6-(benzyloxy)-2-(4-chloro-3-methylphenoxy)-2-methylhept-4-yn-3one)]dicobalt (6i)

GP4 was applied to propargyl ether ketone **10i** (0.1250 g, 0. mmol). Following the silica plug filtration, the compound was found to be sufficiently pure and **6i** was isolated as a dark red oil (0.1920 g, 90%); ¹H NMR (500 MHz, CDCl₃): δ 7.32-7.27 (m, 5H), 7.20 (d, J = 8.7 Hz, 1H) 6.72 (d, J = 2.5 Hz, 1H), 6.63 (m, 1H), 4.72 – 4.67 (m, 2H), 4.63 (1/2 AB, J = 11.9 Hz, 1H), 2.31 (s, 3H), 1.56 (s, 6H), 1.54 (obscured d, J = 6.1 Hz, 3H), 1.52 (s, 3H) ;¹³C: (125 MHz, CDCl₃) 206.8, 198.6, 152.4, 138.0, 137.0, 129.5, 128.9, 128.3, 127.6, 127.5, 124.1, 120.5, 104.3, 85.9, 81.6, 74.5, 71.0, 25.6, 25.0, 22.6, 20.2; IR v_{max}: 3064, 3030, 2981, 2936, 2866, 2097, 2057, 2019, 1662, 1596, 1455, 1154, 1092, 736, 697; HRMS m/e for C₂₅H₂₃ClCo₂O₆ calcd (M-3CO) 571.9847 found 571.9851.

Hexacarbonyl[μ - η^4 -(6-(benzyloxy)-2-(4-methoxy-3-methylphenoxy)-2-methylhept-4-yn-3one)]dicobalt (6j)

GP4 was applied to propargyl ether ketone **10j** (0.1750 g, 0.48 mmol). Following the silica plug filtration, the compound was found to be sufficiently pure and **6j** was isolated as a dark red solid (0.2742 g, 88%), mp 52-55°C; ¹H NMR (500 MHz, CDCl₃) 7.40-7.30 (m, 5H), 6.71-6.74 (m, 3H), 4.84 (q, J = 6.2 Hz, 1H), 4.75 (1/2 AB, J = 11.8 Hz, 1H), 4.71 (1/2 AB, J = 11.8 Hz, 1H), 3.86 (s, 3H), 2.23 (s, 3H), 1.61 (d, J = 6.2 Hz, 3H), 1.57 (s, 3H), 1.54 (s, 3H); ¹³C (125 MHz, CDCl₃) 207.0, 198.7, 154.2, 146.4, 138.2, 128.3, 127.5, 127.3, 125.4, 120.6, 110.1, 103.9, 86.0, 82.2, 74.8, 71.1, 55.6, 25.6, 25.2, 22.8, 16.3; IR v_{max} : 3030, 3006, 2975, 2869, 2096, 2057, 2013, 1665, 1497, 1455, 1217, 1143; HRMS m/e for C₂₉H₂₆Co₂O₁₀ calcd (M -3CO) 568.0342 found 568.0344.

Hexacarbonyl[μ - η^4 -(4,5-didehydro-2,2-dimethyl-2H-benzo[b]oxocin-3(6H)-one)]dicobalt (7a)

General Procedure 5 (GP5): To a solution of cobalt alkynyl ether complex **6a** (0.0614 g, 0.12 mmol) in dichloromethane (50 mL), at 0°C was added dibutyl boron triflate (178 uL, 1M in CH₂Cl₂, 1.5 equiv). The solution was stirred for 15 min with monitoring by TLC. Saturated aqueous ammonium chloride was added and the mixture extracted with dichloromethane. The organic phase was dried (MgSO₄) and concentrated under reduced pressure. Flash chromatography (25:1 hexanes : Et₂O) afforded **7a** isolated as a dark red solid (0.0365g, 63%), mp 59-61°C; ¹H

NMR (300 MHz, CDCl₃) δ 7.18-7.23 (m, 2H), 7.12 (dd, J = 8.4, 1.2 Hz, 1H), 7.01 (apparent dt, J = 1.2, 7.3 Hz, 1H), 4.28 (br, 2H), 1.73 (s, 6H); ¹³C (75 MHz, CDCl₃) 207.2, 198.3, 154.3, 136.3, 129.3, 128.1, 125.2, 124.1, 98.3, 88.2, 78.3, 38.5, 27.8 (br); IR v_{max} : 3066, 2983, 2873, 2097, 2040, 2015, 1659, 1593, 1454, 1152, 1133; HRMS m/e for C₁₉H₁₂Co₂O₈ calcd (M⁺+H) 486.9274 found 486.9277.

Hexacarbonyl[μ - η^4 -(4,5-didehydro-2,2,6-trimethyl-2H-benzo[b]oxocin-3(6H)-one)]docibalt (7aa)

GP5 was applied to cobalt protected alkynyl ether complex **6aa** (0.0721 g, 0.12 mmol) using dibutyl boron triflate (178 uL, 1M in CH₂Cl₂, 1.5 equiv). The product **7aa** was purified using Flash chromatography (25:1 petroleum ether : Et₂O) followed by preparative TLC (25:1 petroleum ether:diethyl ether) afforded **7aa** as a dark red crystalline solid (0.0480 g, 81%), mp 84-85°C; ¹H NMR (500 MHz, CDCl₃) δ 7.25 (m, 1H), 7.13 – 7.20 (m, 2H), 7.05 (m, 1H), 4.70 (broad s, 1H), 1.77 (s, 3H), 1.75 (obscured d, 3H); ¹³C (125 MHz, CDCl₃) 207.1, 198.4, 154.1, 140.4, 127.6, 125.3, 124.7, 124.0, 107.3, 88.5, 78.6, 36.5, 29.9, 25.8, 17.8; IR v_{max} : 2986, 2877, 2095, 2052, 2006, 1665, 1594, 1481, 1456, 1138, 1067; HRMS m/e for C₂₀H₁₄Co₂O₈ calcd (M⁺+H) 500.9431 found 500.9429.

Hexacarbonyl[μ - η^4 -(4,5-didehydro-2,2,8-trimethyl-2H-benzo[b]oxocin-3(6H)-one)]dicobalt (7b)

GP5 was applied to cobalt protected alkynyl ether complex **6b** (0.0601 g, 0.11 mmol) using dibutyl boron triflate (1.5 equiv, 170 uL, 1 M in CH₂Cl₂, 1.5 equiv). Flash chromatography and preparative thin-layer chromatography (25:1 hexanes : ethyl acetate) afforded **7b** as a red oil (0.0485 g, 86%); ¹H NMR (300 MHz, CDCl₃): 6.99 (m, 3H), 4.21 (br, 2H), 2.27 (s, 3H), 1.70 (s, 6H); at -30 °C the 4.21 resonance decoalesces to 4.55 (d, J = 15.2 Hz, 1H), 3.84 (d, J = 15.2 Hz, 1H); ¹³C (75 MHz, CDCl₃) 208.4, 198.1, 151.3, 135.8, 133.5, 129.7, 128.3, 124.5, 98.2, 87.8, 38.1, 29.6, 25.3, 20.6; IR v_{max} : 3020, 2995, 2928, 2098, 2060, 2027, 1661, 1601, 1527, 1493, ; HRMS m/e for C₂₀H₁₄Co₂O₈ calcd (M⁺+H) 500.9430 found 500.9423.

Hexacarbonyl[μ-η⁴-(8-tert-butyl-4,5-didehydro-2,2-dimethyl-2H-benzo[b]oxocin-3(6H)one)]dicobalt (7c)

GP5 was applied to cobalt protected alkynyl ether complex **6c** (0.0627 g, 0.11 mmol) using dibutyl boron triflate (0.160 uL, 1M in CH₂Cl₂, 1.5 equiv). Flash chromatography (25:1 hexanes : ethyl acetate) afforded **7c** as a dark red solid (0.0446g, 75%), mp 59-60°C; ¹H NMR (300 MHz, CDCl₃): 7.16-7.20 (m, 2H), 7.03 (m, 1H), 4.24 (br, 2H), 1.71 (s, 6H), 1.27 (s, 9H); ¹³C (75 MHz, CDCl₃) 207.4, 198.2, 151.8, 147.0, 135.7, 126.3, 124.7, 124.5, 99.0, 88.0, 78.7, 38.8, 34.2, 31.3; IR v_{max} : 2961, 2932, 2869, 2093, 2047, 2006, 1653, 1605, 1494, 1461, 832; HRMS m/e for C₂₃H₂₀Co₂O₈ calcd (M⁺+H) 542.9900 found 542.9902.

Hexacarbonyl[μ - η^4 -(8-tert-butyl-4,5-didehydro-2,2,6-trimethyl-2H-benzo[b]oxocin-3(6H)-one)]dicobalt (7cc)

GP5 was applied to cobalt protected alkynyl ether complex **6cc** (0.1057 g, 0.18 mmol) using dibutyl boron triflate (270 uL, 1M in CH₂Cl₂, 1.5 equiv) Flash chromatography (25:1 hexanes : Et₂O) afforded **7cc** as a dark red solid (0.0748g, 75%), mp 86-87°C; ¹H NMR (300 MHz, CDCl₃): 7.27-7.15 (m, 2H), 7.04 (d, J = 8.7 Hz, 1H), 4.69 (br, 1H), 1.76 (br s, 6H), 1.72 (obscured d, 3H), 1.27 (s, 9H); ¹³C (75 MHz, CDCl₃) 207.4, 198.1, 151.7, 146.6, 139.6, 128.8, 124.1, 122.0, 107.8, 88.2, 79.1, 36.6, 34.4, 31.3, 30.0, 25.8, 17.8; IR v_{max} : 3116, 3074, 3044, 2966, 2869, 2096, 2058, 2019, 1662, 1586, 1490, 1463, 1140,1125; HRMS m/e for C₂₄H₂₂Co₂O₈ calcd (M⁺+H) 557.0057 found 557.0043.

Hexacarbonyl[μ - η^4 -(4,5-didehydro-8-methoxy-2,2,6-trimethyl-2H-benzo[b]oxocin-3(6H)-one)]dicobalt (7d)

GP5 was applied to cobalt protected alkynyl ether complex **6c** (0.0614 g, 0.10 mmol) using dibutyl boron triflate (144 uL, 1M in CH₂Cl₂, 1.5 equiv) Flash chromatography (25:1 petroleum ether : Et₂O) followed by prep TLC (25:1 ether:diethyl ether) which afforded **7d** as a dark red crystalline solid (0.0405 g, 79%), mp 136-137°C (dec.). ¹H NMR (500 MHz, CDCl₃) δ 7.06 (d, J = 8.8 Hz, 1H), 6.79 (s, 1H), 6.68 (dd, J = 8.8, 2.9 Hz, 1H), 4.68 (br q, J = 6.2 Hz, 1H), 3.76 (s, 3H), 1.75 (s, 3H), 1.73 (s, 3H), 1.71 (br, 3H);¹³C (125 MHz, CDCl₃) 207.3, 198.2, 155.7, 147.7, 141.6, 125.2, 112.1, 111.1, 107.0, 88.1, 78.9, 55.6, 36.5, 29.9, 25.7, 17.8; IR v_{max} : 3066, 2983, 2873, 2097, 2061, 2015, 1659, 1583, 1454, 1152, 1133; HRMS m/e for C₂₁H₁₆Co₂O₉ calcd (M⁺+H) 530.5936 found 530.5942.

 $Hexa carbonyl [\mu - \eta^4 - (4, 5 - dide hydro - 2, 2, 6, 9 - tetramethyl - 2H - benzo[b] oxocin - 3(6H) - benzo[b] oxocin$

GP5 was applied to cobalt protected alkynyl ether complex **6f** (0.0758 g, 0.12 mmol) using dibutyl boron triflate (182 uL, 1M in CH₂Cl₂, 1.5 equiv). Flash chromatography (25:1 petroleum ether : Et₂O) followed by prep TLC (25:1 ether:diethyl ether) afforded **7f** as a dark red crystalline solid (0.0385 g, 61%), mp 54-56°C; ¹H NMR (500 MHz, CDCl₃) δ 7.10 (d, J = 7.3 Hz, 1H), 6.94 (s, 1H), 6.85 (d, J = 7.3 Hz, 1H), 4.64 (broad s, 1H), 2.29 (s, 3H), 1.77 (s, 3H), 1.72 (obscured d, 3H), 1.72 (s, 3H);¹³C (125 MHz, CDCl₃) 207.2, 198.1, 154.0, 137.6, 137.4, 125.4, 124.9, 124.6, 107.8, 88.2, 78.9, 36.3, 30.0, 25.8, 21.1, 17.9; IR v_{max} : 2979, 2873, 2095, 2054, 2005, 1661, 1588, 1491, 1454, 1136, 1065; HRMS m/e for C₂₁H₁₆Co₂O₈ calcd (M⁺+H) 548.9207 found 548.9198.

 $Hexacarbonyl[\mu-\eta^4-(4,5-didehydro-2,2,6,10-tetramethyl-2H-benzo[b]oxocin-3(6H)-one)]dicobalt~(7g)$

GP5 was applied to cobalt protected alkynyl ether complex **6g** (0.0647 g, 0.10 mmol) using dibutyl boron triflate (155 uL, 1M in CH₂Cl₂, 1.5 equiv). Flash chromatography (25:1 petroleum ether : Et₂O) followed by prep TLC (25:1 ether:diethyl ether) which yielded **7g** as a dark red crystalline solid (0.0441 g, 82%), mp 76-77°C; ¹H NMR (300 MHz, CDCl₃) δ 7.11-7.14 (m, 2H), 7.01 (apparent t, J = 7.5 Hz, 1H), 4.40 (q, J = 7.0 Hz, 1H), 2.37 (s, 3H), 1.71 (d, J = 7.0 Hz, 3H), 1.64 (br s, 3H), 1.56 (br s, 3H) ¹³C (75 MHz, CDCl₃) 206.7, 198.5, 153.0, 139.9, 134.1, 130.6, 125.4,

124.1, 104.4, 88.6, 77.9, 29.7, 25.6, 25.1, 22.5, 19.2; IR v_{max}: 3003, 2937, 2865, 2096, 2052, 2007, 1659, 1578, 1481, 1456, 1151, 1121; HRMS m/e for C₂₁H₁₆Co₂O₈ calcd (M⁺+H) 514.9587 found 514.9600.

Hexacarbonyl[μ-η⁴-(4,5-didehydro-10-isopropyl-2,2-dimethyl-2H-benzo[b]oxocin-3(6H)one)]dicobalt (7h)

A modified **GP5** was applied to cobalt protected alkynyl ether complex **6h** (0.0946 g, 0.17 mmol) using boron trifluoride diethyl etherate (0.68 mmol, 85 μ L, 4.0 equiv), and allowing the reaction to progress for 1.5 h. Flash chromatography and preparative thin-layer chromatography (25:1 hexanes : ethyl acetate) afforded **7h** as a red oil (0.0512 g, 57%). Product indicated by ¹H NMR (300 MHz, CDCl₃): δ 7.22 (m, 1H), 7.08 – 7.04 (m, 2H) 4.39 (s, 2H) 3.40 (sept, J = 6.9 Hz, 1H) 1.57 (s, 6H) 1.20 (d, J = 6.9 Hz, 6H); ¹³C (75 MHz, CDCl₃) 207.7, 198.5, 151.0, 145.3, 133.2, 127.8, 125.6, 124.7, 96.3, 88.9, 79.5, 39.5, 27.6, 25.3, 23.5; IR v_{max} : 2967, 2936, 2870, 2097, 2057, 2018, 1669, 1614, 1584, 1457, 1135, 777; HRMS m/e for C₂₂H₁₈Co₂O₈ calcd (M⁺+H) 528.9743 found 528.9742.

Hexacarbonyl[μ - η^4 -(4,5-didehydro-2,2,6,8,9-pentamethyl-2H-benzo[b]oxocin-3(6H)-one)]dicobalt (7i)

GP5 was applied to cobalt protected alkynyl ether complex **6i** (0.0815 g, 0.12 mmol) using dibutyl boron triflate (186 uL, 1 M in CH₂Cl₂, 1.5 equiv). Flash chromatography (30:1 petroleum ether :

Et₂O) followed by prep TLC yielded (30:1 petroleum ether : Et₂O) **7i** as a dark red crystalline solid (0.0401 g, 59%), mp 56-57°C; ¹H NMR (500 MHz, CDCl₃): δ 7.19 (s, 1H), 7.00 (s, 1H), 4.61 (br, 1H), 2.30 (s, 3H), 1.75 (s, 3H), 1.72 (d, J = 7.1 Hz, 3H), 1.71 (s, 3H); ¹³C (125 MHz, CDCl₃) 206.7, 198.0, 152.4, 139.5, 135.1, 129.3, 127.0, 125.8, 106.5, 88.6, 78.6, 36.2, 29.8, 25.7, 20.0, 17.8; IR v_{max} : 2985, 2877, 2095, 2054, 2010, 1666, 1594, 1482, 1456, 1137, 1067; HRMS m/e for C_{21H16}Co₂O₈ calcd (M⁺+H) 514.9587 found 514.9581.

Hexacarbonyl[μ - η^4 -(4,5-didehydro-8-methoxy-2,2,6,9-tetramethyl-2H-benzo[b]oxocin-3(6H)-one)]dicobalt (7j)

GP5 was applied to cobalt protected alkynyl ether complex **6j** (0.0647 g, 0.10 mmol) using dibutyl boron triflate (150 uL, 1 M in CH₂Cl₂, 1.5 equiv). Flash chromatography (25:1 petroleum ether : Et₂O) followed by prep TLC (25:1 petroleum ether : Et₂O) afforded **7j** as a dark red crystalline solid (0.0426 g, 79%), mp 54-56°C; ¹H NMR (300 MHz, CDCl₃) δ 6.92 (s, 1H), 6.67 (s, 1H), 4.66 (br, 1H), 3.79 (s, 3H), 2.14 (s, 3H), 1.70-1.75 (m, 9H); ¹³C (75 MHz, CDCl₃) 207.4, 198.2, 153.9, 147.2, 138.3, 126.94, 126.92, 125.6, 107.5, 87.8, 55.9, 36.5, 30.0, 25.8, 18.0, 16.0; IR v_{max} :2998, 2850, 2095, 2055, 2001, 1671, 1589, 1495, 1463, 1135, 1061; HRMS m/e for C₂₂H₁₈Co₂O₉ calcd (M⁺+H) 544.9693 found 544.9692

8-tert-Butyl-2,2,6-trimethyl-4-(triethylsilyl)-2H-benzo[b]oxocin-3(6H)-one (11cc)

General procedure 6 (GP6): Triethylsilane (102 uL, 0.64 mmol) was added to a mixture containing cyclooctyne complex **7cc** (71.4 mg, 0.13 mmol) and bis(trimethylsilyl)acetylene (55 uL, 0.26 mmol) in degassed 1,2-dichloroethane (15 mL) at room temperature. The reaction mixture was heated to 60°C until TLC showed complete consumption of the complexed cyclooctyne (3 h). The resulting mixture was concentrated under reduced pressure and the residue was passed through a plug of silica using hexane as solvent. Preparative thin-layer chromatography (20:1 hexanes : Et₂O) afforded vinyltriethylsilane **11cc** (35.8 mg, 0.09 mmol, 72%) as an off- white solid, mp 45-47°C; ¹H NMR (300 MHz, CDCl₃) 7.11-7.17 (m, 2H), 6.90 (d, J = 8.1 Hz, 1H), 6.07 (d, J = 6.3 Hz, 1H), 3.70 (br m, 1H), 1.48 (d, J = 6.9, 3H), 1.46 (s, 3H), 1.45 (s, 3H), 1.28 (s, 9H), 0.94 (t, J = 7.8 Hz, 9H), 0.66 (m, 6H); ¹³C (75 MHz, CDCl₃) 210.8, 151.9, 147.7, 147.5, 139.4, 135.2, 124.2, 124.13, 124.10, 85.9, 40.2, 34.4, 31.5, 26.5, 23.5, 19.0, 7.1, 3.5; IR v_{max} : 2955, 2872, 1672, 1608, 1496, 1459, 1145, 1080; HRMS m/e for C₂₄H₃₈O₂Si calcd (M⁺+H) 387.2719 found 387.2719.

8-Methoxy-2,2,6,9-tetramethyl-4-(triethylsilyl)-2H-benzo[b]oxocin-3(6H)-one (11j)

GP6 was applied to cyclic cobalt complex **7j** (41.4 mg, 0.08 mmol). The residue was passed through a plug of silica using hexane as solvent. Preparative thin-layer chromatography (20:1 hexanes : Et₂O) afforded the vinyltriethylsilane **11j** (26.2 mg, 92%) as an colorless oil; ¹H NMR (300 MHz, CDCl₃): 6.79 (s, 1H), 6.55 (s, 1H), 6.08 (d, J = 6.0 Hz, 1H), 3.79 (s, 3H), 3.71 (br m, 1H), 2.15 (s, 3H), 1.48 (d, J = 7.2 Hz, 3H), 1.46 (s, 3H), 1.43 (s, 3H), 0.93 (t, J = 7.8 Hz, 9H), 0.62 (m, 6H); ¹³C(75 MHz, CDCl₃): 210.6, 154.7, 147.4, 139.6, 134.0, 128.4, 126.9, 125.5, 109.1, 85.8, 40.1, 26.1, 23.6, 19.1, 15.7, 7.2, 3.5; HRMS m/e for C₂₂H₃₄O₃Si calcd (M⁺+H) 374.2277 found 261.1491.

To a solution of 2,2,6,6-tetramethylpiperidine (0.16 mL, 0.94 mmol, 5 equiv) in THF (5 mL) at 0 °C was added *n*-BuLi (0.37 mL, 2.5 M, 0.93 mmol, 5 equiv). The solution was stirred at 0 °C for 30 min and added by syringe to a solution of **11**j (0.0687 g, 0.183 mmol) and chlorotrimethylsilane (0.14 mL, 1.1 mmol, 6 equiv) in THF (3 mL) at -78 °C. The solution was stirred at -78 °C for 1 h and allowed to warm to rt for 30 min. NH₄Cl (aq) was added and the mixture subjected to a conventional extractive workup. The crude material was dissolved in acetone (10 mL) and 3 M HCl (1 mL) was added. The mixture was stirred for 1 h, and NaHCO₃ (aq) was added. Following the removal of acetone under reduced pressure, the mixture was subjected to a conventional extractive workup. The crude product was dissolved in THF (5 mL), and NH₄Cl(aq) (7 drops) and *n*-Bu₄NF (0.27 mL, 1 M, 0.27 mmol, 1.5 equiv) was added. After 10 h, the mixture was subjected to a conventional extractive workup. Following preparative TLC (15:1 petroleum ether : Et₂O) afforded 13 (0.0350 g, 73%) as a colorless oil, which was spectroscopically identical to the literature report;^{4,5} ¹H NMR (300 MHz, CDCl₃) 6.88 (s, 1H), 6.64 (s, 1H), 5.75 (dq, J = 7.7, 1.5 Hz, 1H), 3.83 (s, 3H), 2.98 (d, J = 7.7 Hz, 2H), 2.21 (s, 3H), 2.06 (m, 3H), 1.47 (s, 6H); 13 C (75) MHz, CDCl₃) 208.7, 154.6, 145.1, 137.2, 132.9, 127.5, 126.4, 119.4, 108.5, 81.7, 55.6, 41.0, 24.6, 23.8, 16.1.

8-Methoxy-2,2,6,9-tetramethyl-2H-benzo[b]oxocin-3(6H)-one (14)

Sodium hypophosphite monohydrate (112.4 mg, 1.27 mmol) was added to a mixture of the cyclooctyne complex **7j** (139.0 mg, 0.26 mmol) in 1,2-dichloroethane/2-methoxyethanol (5 mL + 15 mL) at room temperature. The reaction was heated to 65°C for 4 hours (with monitoring by TLC). The mixture was cooled to room temperature and filtered through a plug of Celite[®]. The resulting solution was washed with brine and extracted with ethyl acetate. The organic phase was dried using magnesium sulfate and concentrated under reduced pressure to afford an orange oil. Preparative TLC (10:1 hexanes : Et2O) gave, in order of elution, recovered **7j** (3.8 mg, 3%) and **14** as a light yellow oil (36.3 mg, 55%, 57% BRSM); ¹H NMR (300 MHz, CDCl₃) 6.86 (s, 1H), 6.56 (s, 1H), 6.23 (dd, J = 12.9, 5.1 Hz, 1H), 5.77 (dd, J = 12.9, 2.1 Hz, 1H), 3.88 (br m, 1H), 3.78 (s, 3H), 2.16 (s, 3H), 1.55 (s, 3H), 1.54 (s, 3H), 1.51 (d, J = 7.5 Hz, 3H); ¹³C (75 MHz, CDCl₃) 206.0, 154.8, 147.5, 144.2, 135.6, 126.8, 126.2, 125.5, 109.5, 87.3, 55.7, 38.5, 25.6, 24.7, 19.5, 15.8; C₁₆H₂₁O₃ calcd (M⁺+H) 261.1491 found 261.1491.

Heliannuol K methyl ether (3b)

To a round bottom flask containing the enone (36.3 mg, 0.14 mmol) in methanol (5 mL) added 5% Pd/C (10 mg) and was allowed to stir at room temperature under a hydrogen atmosphere. The reaction mixture was filtered through a glass-frit which was then concentrated under reduced pressure. The following crude product was filtered through a plug of silica to give Heliannuol K methyl ether (**3b**) (32.8 mg, 90%) as a colorless oil. Product indicated by ¹H NMR (300 MHz, CDCl₃): 6.74 (s, 1H), 6.58 (s, 1H), 3.80 (s, 3H), 3.12 (m, 1H), 2.40-2.55 (m, 2H), 2.16 (s, 3H), 2.02 (m, 1H), 1.71 (m, 1H), 1.50 (s, 3H), 1.47 (s, 3H), 1.33 (d, J = 7.1 Hz, 3H); ¹³C (75 MHz, 1.20 MHz,

CDCl₃) 213.0, 154.0, 146.0, 137.0, 127.5, 124.4, 108.8, 86.0, 55.5, 36.1, 34.7, 34.5, 24.4, 23.5, 20.5, 15.8.⁵

The following is a ¹H and ¹³C NMR spectra comparison between the currently prepared **3b** and the literature report.⁵

¹ H NMR	¹ H NMR ⁵	¹³ C NMR		¹³ C NMR ⁵	
current work		current work			
6.74 (s, 1H)	6.74 (s, 1H)	213.0	34.5	212.98	34.46
6.58 (s, 1H)	6.58 (s, 1H)	154.0	24.4	154.86	24.36
3.80 (s, 3H)	3.80 (s, 3H)	146.0	23.5	145.96	23.45
3.12 (m, 1H)	3.02-3.20 (m, 1H)	137.0	20.5	136.90	20.43
2.40-2.55 (m, 2H)	2.39-2.61 (m, 2H)	127.5	15.8	127.46	15.78
2.16 (s, 3H)	2.15 (s, 3H)	124.4		124.37	
2.02 (m, 1H)	1.90-2.07 (m, 1H)	108.8		108.71	
1.71 (m, 1H)	1.61-1.79 (m, 1H)	86.0		85.91	
1.50 (s, 3H)	1.49 (s, 3H)	55.5		55.45	
1.47 (s, 3H)	1.45 (s, 3H)	36.1		36.03	
1.33 (d, J = 7.1 Hz, 3H)	1.34 (d, J = 7.1 Hz, 3H)	34.7		34.65	

References

- Wang, B.; Tang, C.; Han, Y.; Guo, R.; Qian, H.; Huang, W. Synthesis and Preliminary Antihyperlipidaemic Activities Evaluation of Andrographolide Derivatives. *Med. Chem.* 2012, 293–298.
- (2) Ramalingam, T.; Sattur, P. B. Synthesis and Biological Activity of α-(3-Pentadecylaryloxy) Isobutyric Acids, Their Hydrazides and Cyclic Derivatives: Oxadiazoles and Pyrroles. *Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.* 1989, 28B, 611-613.
- (3) Shimizu, T.; Osako, K.; Nakata, T. Efficient Method for Preparation of N-Methoxy-N-methyl Amides by Reaction of Lactones or Esters with Me₂AlCl-MeONHMe•HCl. *Tetrahedron Lett.* 1997, 38, 2685–2688.
- (4) Lecornue, F.; Paugam, R.; Ollivier, J. Strategies for the Total Asymmetric Synthesis of Heliannuols K and L: Scope and Limitations. *Eur. J. Org. Chem.* 2005, 2589-2598.
- (5) Lecornue, F.; Ollivier, J. Convergent Formal Synthesis of (±)-Heliannuols A, K, and L From a Common Intermediate. Synlett 2004, 1613-1615.

T

	4	61.410.410.420.410 14.410.440.410.410	han (a ghla ha a gar phylogram (a ghla ha a gar phylogram (a ghla a g	1	a jahina lahi Marija jahina lahina	1									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		land and a second s					(1) 4 - 10 4 4 4 4 4 4 4 4 4
210	200	190	180	170	160	150	140	130	120	D 110) 100) 90	80	70	60	50	40	30	20	10	0	ppm 58

75 MHz, CDCl₃

-190.256

|--|

—190.057						T6.572					
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OI OCI3	Ие									
n an de skis hatti se de alla ika ika si de alla ika ika ika ika ika ika ika ika ika ik		Same of the second s		an a		damadal dagi alka Mgaybal wasayan	liter on the stand of the state	l blan skillet minster og at skillet s Skillet skillet		ing a state of the state of the	and the second sec
200 190 180 170	160 150 1	40 130	120 1	10 100	90 80	70	60 50	40 30	20	16 0	ppm

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10 ₆₈	ppm

T

60

50

40

30

20

-190.553

200 190 180 170 160 150 140 130 120 110 100 90 80 70

ppm

10⁷⁴

......

-

00000000

* * * * * * * *

00000

52860 анннн

7.356 7.356 7.357 7.357 7.356 7.329 7.314 7.319 6.814 6.814 6.818 6.818 6.818

. н 1 ٦.

5 J

. л.

ι. īι. īι.

bso.0608 1 m-Me propargyl Me SM complex, 6/8/21

bso.0608 2 13C m-Me proprg Me SM complex, 125 MHz, 6/8/21

bso.0609 1 o-Me propargyl Me SM complex, 6/9/21

bso.0609 2 13C o-Me proparg Me SM complex, 125 MHz, 6/9/21

bso.0602 1, o-Me/propargyl Me cycliz prod, 6/2/21

bso.0510 5, deconj ketone formal synth, 1H, 5/10/21

(\mathbf{n})	0	\sim	$\infty \infty$	0											
0	H	Ы	5 N	8		m c		∞	Ы	0	9	σ	ω	0	Ч
σ	0	σ	4 4		9	\sim			α	0	σ	σ	σ	\sim	Ξ
•	•	•	• •	•	σ	40	ЪIJ	വ	0	\sim	4	\sim	4	4	α
4	9	9	て 中	8	•	•	• •	•	•	•	•	•	•	•	•
വ	4	\sim	2 7 7	0	വ		~ 0	വ	9	4	4	4	\sim	0	ഥ
Ч	Ч	Ч	-	\vdash	α		< ~ ~	വ	\sim	\sim	\sim	\sim	\sim	\sim	Ч
						\langle			\langle	$\langle V$	/	\langle	$\langle $	/	/
	154.903				$ \begin{array}{c} -154.903 \\ -146.010 \\ -136.952 \\ -124.428 \\ -124.428 \\ -108.786 \\ \end{array} $			$ \begin{array}{c} -154.903 \\ -146.010 \\ -136.952 \\ -136.952 \\ -124.428 \\ -124.428 \\ -124.428 \\ -108.786 \\ -77.423 \\ 77.423 \\ -77.000 \\ 76.577 \\ -76.577 \\ \end{array} $	$ \begin{array}{c} -154.903 \\ -146.010 \\ -136.952 \\ -136.952 \\ -124.428 \\ -124.428 \\ -124.428 \\ -124.428 \\ -124.428 \\ -124.428 \\ -126.577 \\ -76.577 \\ -55.518 \\ \end{array} $			$ \begin{array}{c} 154.903 \\ -146.010 \\ -146.010 \\ -136.952 \\ -136.952 \\ -124.428 \\ -124.428 \\ -124.428 \\ -124.428 \\ -124.428 \\ -124.428 \\ -77.423 \\ -77.423 \\ -77.423 \\ -77.200 \\ -55.518 \\ -55.518 \\ -55.518 \\ -34.700 $	$ \begin{array}{c} -154.903\\ -146.010\\ -146.010\\ -136.952\\ -136.952\\ -124.428\\ -124.428\\ -124.428\\ -124.428\\ -124.428\\ -24.399\\ -24.339\\ -24.428\\ -24$	$ \begin{array}{c} -154.903\\ -146.010\\ -146.010\\ -136.952\\ -136.952\\ -124.428\\ -124.428\\ -124.428\\ -124.428\\ -108.786\\ -124.428\\ -55.518\\ -55.518\\ -55.518\\ -34.700\\ -23.496\\ -23.498\\ -2$	$ \begin{array}{c} 154.903 \\ $

