Supporting Information

Acid-Catalyzed Three-Component Addition of Carbonyl Compounds with

1,2,3-Triazoles and Indoles

Qiaoyan Xing, Chunlan Zhou, Shuxin Jiang, Shanping Chen and Guo-Jun Deng*

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China. E-mail: gjdeng@xtu.edu.cn

Table of Contents

1. General information 2
2. General procedure for 4-phenyl-1-tosyl-1H-1,2,3-triazole synthesis 2
3. Characterization data of products 2-19
4. References 19
5. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all products 20-49

1. General information

All reactions were carried out under air atmosphere unless otherwise noted. Column chromatography was performed using aluminum oxide (neutral) (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker-AV (400 and 100 MHz , respectively) instrument internally referenced to tetramethylsilane (TMS), chloroform or DMSO signals. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra (HRMS) were performed on FTMS ICR MS BRUKER 7T or Agilent 6230 TOF L C/MS. The structures of known compounds were further corroborated by comparing their ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR data and MS data with those of literature. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected. Most reagents were obtained from commercial suppliers and used without further purification.

2. General procedure for 4-phenyl-1-tosyl-1H-1,2,3-triazole

To a stirred solution of phenylacetylene ($112 \mathrm{mg}, 1.1 \mathrm{mmol}$), 4-methylbenzenesulfonyl azide ($197 \mathrm{mg}, 1 \mathrm{mmol}$), and 2-aminophenol ($5.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{MeCN}(1 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{mg}, 0.1 \mathrm{mmol})$ at room temperature. After 2 a was exhausted (ca. 6 h , monitored by TLC), the solvent was removed off in vacuum. The residue was purified by chromatography (silica gel, $10 \% \mathrm{EtOAc}$ in PE) to give desired product 4-phenyl-1-tosyl-1H-1,2,3-triazole as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.03-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.80(\mathrm{~m}$, 2H), 7.42-7.36(m, 5H), $2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 147.5,133.2,130.6$ (2C), 129.2 (2C), 129.1 (2C), 129.0, 128.8 (2C), 126.2 (2C), 119.1, 22.0.

3. General procedure (4a)

A 10 mL oven-dried reaction vessel was charged with $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(3 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(10 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$, 1-methyl-1H-indole (1a, $25 \mu \mathrm{~L}, \quad 0.2 \mathrm{mmol})$ cyclohexanone (2a, $42 \mu \mathrm{~L}, \quad 0.4 \mathrm{mmol})$, 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1,2-dichlorobenzene (1 mL) under air. The sealed reaction vessel was stirred at $60{ }^{\circ} \mathrm{C}$ for 28 h . After cooling to room temperature, the reaction was diluted with ethyl acetate $(5 \mathrm{~mL})$ and washed with saturated sodium chloride solution. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product 4a as yellow oil ($33.8 \mathrm{mg}, 75 \%$ yield).

4. Characterization data of products

1-Methyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4a)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.2,6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=7.9,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.84(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.16$ $-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 2 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta$ $146.4,137.4,131.1,131.0,129.4,128.7,127.0,126.0,125.3,121.5,120.4,119.4,119.2,110.3,67.0,36.1,32.8$, 25.1, 22.5; HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+}$379.1899, found 379.1895.

1,5-Dimethyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4b)

The reaction was conducted with 1,5 -dimethyl-1H-indole (1b, $29.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42 \mu \mathrm{~L}$, 0.4 mmol) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $\mathbf{4 b}$ as yellow oil ($34.8 \mathrm{mg}, 47 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.67(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J$ $=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 146.3,135.9,131.2,131.1,129.4,128.7,127.5,127.0,126.0$, 123.1, 120.2, 110.1, 67.1, 36.0, 32.8, 25.1, 22.5, 21.8; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+} 393.2055$, found 393.2102.

5-Methoxy-1-methyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4c)

The reaction was conducted with 5-methoxy-1-methyl-1H-indole (1c, $32.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone (2a, $42 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=10: 1$) to yield the desired product $4 \mathbf{c}$ as yellow oil ($58.7 \mathrm{mg}, 76 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.3,152.2,151.9,135.3,134.9,131.1,127.9,127.5,127.1,122.4,121.3,34.1$, 23.8, 21.5; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}^{+}(\mathrm{M}+\mathrm{Na})^{+} 409.2004$, found 409.2003.

1-Methyl-5-phenoxy-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4d)

The reaction was conducted with 5 -(benzyloxy)-1-methyl-1H-indole ($\mathbf{1 d}, 47.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone (2a, $42 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) and 4-phenyl-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 a}, 59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=10: 1$) to yield the desired product $\mathbf{4 d}$ as white solid ($75.8 \mathrm{mg}, 82 \%$ yield $), \mathrm{mp}=180-181^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}$, $5 \mathrm{H}), 7.02(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.73(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.10(\mathrm{~d}, J$ $=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 1 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, DMSO- d_{6}) $\delta 152.31,146.32,137.93,132.87,131.24,130.98,129.45,128.76,128.08,127.98,127.44,125.96$, $125.52,112.16,111.04,104.02,70.15,66.99,36.02,32.99,25.16,22.47 .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $153.4,146.3,132.7,131.2,131.0,129.4,128.7,127.4,125.9,125.6,119.1,111.4,111.0,102.2,67.0,55.5,36.1$, 33.0, 25.2, 22.5; HRMS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}^{+}(\mathrm{M}+\mathrm{Na})^{+} 485.2317$, found 485.2316.

5-Fluoro-1-methyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4e)

The reaction was conducted with 5-fluoro-1-methyl-1H-indole ($\mathbf{1}, 29.8 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone (2a, 42 $\mu \mathrm{L}, 0.4 \mathrm{mmol}$) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product 4 e as yellow oil ($64.3 \mathrm{mg}, 86 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}$, $3 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=11.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.56(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 155.9$ $(\mathrm{d}, J=232.3 \mathrm{~Hz}), 146.6,134.2,131.2,130.9,130.7,129.5,129.0 .128 .8,126.0,119.4,111.7(\mathrm{~d}, J=9.9 \mathrm{~Hz})$, $109.9(\mathrm{~d}, J=26.2 \mathrm{~Hz}), 105.2(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 66.8,36.0,33.2,25.1,22.5$; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FN}_{4}{ }^{+}$ $(\mathrm{M}+\mathrm{K})^{+} 413.1544$, found 413.1549.

5-Chloro-1-methyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4f)

The reaction was conducted with 5-chloro-1-methyl-1H-indole (1f, $33.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone (2a, 42 $\mu \mathrm{L}, 0.4 \mathrm{mmol}$) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $\mathbf{4 f}$ as white solid ($56.3 \mathrm{mg}, 72 \%$ yield), $\mathrm{mp}=147-148{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 146.6, 136.0, $131.3,130.9,129.5,128.9,128.8,126.2,126.1,124.0,121.5,119.6,119.1,112.1,66.7,36.0,33.1,25.1,22.4$.

5-Bromo-1-methyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4g)

The reaction was conducted with 5-bromo-1-methyl-1H-indole ($\mathbf{1 g}, 42.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone (2a, 42 $\mu \mathrm{L}, 0.4 \mathrm{mmol}$) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product 4 g as white solid $(67.7 \mathrm{mg}, 78 \%$ yield $), \mathrm{mp}=180-181^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{dd}, J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.24(\mathrm{~m}$, $2 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 146.6,136.1,131.3,130.8$, $129.4,128.8,128.7,126.9,126.0,124.0,122.7,119.0,112.6,112.1,66.7,36.0,33.1,25.1,22.4 ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrN}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+} 457.1004$, found 457.1000.

1,6-Dimethyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4h)

The reaction was conducted with 1,6-dimethyl-1H-indole ($\mathbf{1 h}, 29.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42 \mu \mathrm{~L}$, 0.4 mmol) and 4-phenyl-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 a}, 59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $\mathbf{4 h}$ as yellow oil ($48.8 \mathrm{mg}, 66 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{td}, J=8.0,4.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 5 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 2 \mathrm{H})$, $1.45(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 146.4,137.8,131.0,130.0,131.7$, $129.4,128.7,126.3,126.0,123.3,121.0,120.1,119.3,110.1,67.0,36.1,32.7,25.2,22.5,21.8 ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+}$393.2055, found 393.2054.

6-Fluoro-1-methyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4i)

The reaction was conducted with 6-fluoro-1-methyl-1H-indole (1i, $29.8 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42$ $\mu \mathrm{L}, 0.4 \mathrm{mmol}$) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product 4 i as white solid $(62.1 \mathrm{mg}, 83 \%$ yield $), \mathrm{mp}=123-124^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.14(\mathrm{q}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{td}, J=5.9,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{q}, J=3.0,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.01(\mathrm{t}, J=$ $10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 158.0(\mathrm{~d}, J=236.2 \mathrm{~Hz}), 146.5,131.2,130.9,129.4,128.7,127.7,127.6,126.0,122.0,121.5(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}), 119.7,107.8(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 96.8(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 66.8,36.1,33.0,25.1,22.4$; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FN}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+}$397.1804, found 397.1811.

6-Chloro-1-methyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4j)

The reaction was conducted with 6-chloro-1-methyl-1H-indole ($\mathbf{1 j}, 33.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42$ $\mu \mathrm{L}, 0.4 \mathrm{mmol}$) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $\mathbf{4 j}$ as white solid ($56.2 \mathrm{mg}, 72 \%$ yield $), \mathrm{mp}=154-155^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, 2H), $1.56(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 146.6, 138.0, 131.3, 130.9, 129.5, $128.8,128.2,126.7,126.1,124.1,121.7,119.7,119.6,110.4,66.8,36.1,33.1,25.1,22.5 ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{4}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 413.1509$, found 413.1508.

1,7-Dimethyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4k)

The reaction was conducted with 1,7 -dimethyl-1H-indole ($\mathbf{1 k}, 29.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42 \mu \mathrm{~L}$, 0.4 mmol) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $\mathbf{4 k}$ as yellow oil $(44.4 \mathrm{mg}, 60 \%$ yield $)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.13(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.20(\mathrm{~m}$, $2 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 146.4,136.0,131.0,129.4$, 128.7, 126.5, 126.0, 124.0, 121.9, 119.4, 118.8, 118.4, 67.0, 36.9, 36.1, 25.2, 22.5, 19.8; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+}$393.2055, found 393.2081.

1-Ethyl-3-(1-(4-phenyl-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (41)

The reaction was conducted with 1-ethyl-1H-indole (11, $29.0 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42 \mu \mathrm{~L}, 0.4$ mmol) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $4 \mathbf{I}$ as yellow oil ($60.0 \mathrm{mg}, 81 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~d}$, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 146.5,136.5,131.1,131.0,129.5,128.7,126.1,125.5,125.4,121.5,120.6,119.7$, 119.2, 110.4, 67.1, 40.7, 36.2, 25.2, 22.5, 15.9; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+} 393.2055$, found

1-Methyl-3-(1-(4-(p-tolyl)-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4m)

The reaction was conducted with 1-methyl-1H-indole (1a, $26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone (2a, $42 \mu \mathrm{~L}, 0.4$ mmol) and 4 -(p-tolyl)-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 m}, 62.6 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $\mathbf{4 1}$ as yellow oil ($45.9 \mathrm{mg}, 62 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.96(\mathrm{~m}, 2 \mathrm{H})$, $2.28(\mathrm{~d}, J=23.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 146.5,138.0,137.4,130.8,130.0,125.9,121.5,120.4,119.2,110.4,66.9,36.1$, 32.8, 25.2, 22.5, 21.3; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+}$393.2055, found 393.2056.

3-(1-(4-(4-Ethylphenyl)-2H-1,2,3-triazol-2-yl) cyclohexyl)-1-methyl-1H-indole (4n)

The reaction was conducted with 1-methyl-1H-indole (1a, $26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42 \mu \mathrm{~L}, 0.4$ mmol) and 4-(4-ethylphenyl)-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 n}, 65.4 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $\mathbf{4 l}$ as yellow oil ($41.5 \mathrm{mg}, 54 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.95(\mathrm{~m}$,
$2 \mathrm{H}), 2.50(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 146.5,144.4,137.4,130.8,128.8,128.5,127.0,126.0,125.4$, $121.5,120.4,119.5,119.2,110.4,66.9,36.2,32.8,28.5,25.2,22.5,16.0$. HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4}{ }^{+}$ $(\mathrm{M}+\mathrm{Na})^{+} 407.2212$, found 407.2220.

3-(1-(4-(4-Methoxyphenyl)-2H-1,2,3-triazol-2-yl) cyclohexyl)-1-methyl-1H-indole (4o)

The reaction was conducted with 1 -methyl-1H-indole (1a, $26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42 \mu \mathrm{~L}, 0.4$ mmol) and 4-(4-methoxyphenyl)-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 o}, 65.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=10: 1$) to yield the desired product 40 as yellow oil ($35.5 \mathrm{mg}, 46 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 1 \mathrm{H}), 1.35(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 146.4,137.4,131.6,130.4,127.4,125.4,123.6,121.5,120.8$, $120.5,119.8,119.2,114.9,110.4,66.8,55.7,36.2,32.9,25.2,22.5$; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}^{+}$ $(\mathrm{M}+\mathrm{Na})^{+}$409.2004, found 409.2010.

3-(1-(4-(4-Ethoxyphenyl)-2H-1,2,3-triazol-2-yl) cyclohexyl)-1-methyl-1H-indole (4p)

The reaction was conducted with 1-methyl-1H-indole (1a, $26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone (2a, $42 \mu \mathrm{~L}, 0.4$
mmol) and 4-(4-ethoxyphenyl)-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 p}, 68.6 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=10: 1$) to yield the desired product $\mathbf{4 p}$ as white solid ($44.0 \mathrm{mg}, 55 \%$ yield $), \mathrm{mp}=190-191^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.95(\mathrm{~m}$, $2 \mathrm{H}), 2.50(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 146.5,144.4,137.4,130.8,128.8,128.5,127.0,126.0,125.4$, $121.5,120.4,119.5,119.2,110.4,66.9,36.2,32.8,28.5,25.2,22.5,16.0$; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}^{+}(\mathrm{M}+\mathrm{Na})^{+} 423.2161$, found 423.2173 .

3-(1-(4-(4-Fluorophenyl)-2H-1,2,3-triazol-2-yl) cyclohexyl)-1-methyl-1H-indole (4q)

The reaction was conducted with 1-methyl-1H-indole (1a, $26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone (2a, $42 \mu \mathrm{~L}, 0.4$ mmol) and 4-(4-fluorophenyl)-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 q}, 63.4 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $\mathbf{4 q}$ as yellow oil ($48.6 \mathrm{mg}, 65 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=8.4,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=8.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{q}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 161.2(\mathrm{~d}, J=245.8 \mathrm{~Hz}), 145.6,137.4,131.0,130.5,128.1(\mathrm{~d}, J=8.3 \mathrm{~Hz})$, $127.5(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 127.4,127.0,125.3,121.5,120.3,119.2,116.5,(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 110.4,36.1,32.8,25.1$, 22.5; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FN}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+}$397.1804, found 397.1810.

3-(1-(4-(4-Chlorophenyl)-2H-1,2,3-triazol-2-yl) cyclohexyl)-1-methyl-1H-indole (4r)

The reaction was conducted with 1 -methyl-1H-indole ($\mathbf{1 a}, 26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42 \mu \mathrm{~L}, 0.4$ mmol) and 4-(4-chlorophenyl)-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 r}, 66.6 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $4 \mathbf{r}$ as white solid $(65.5 \mathrm{mg}, 84 \%$ yield $), \mathrm{mp}=178-179^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.21-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.26(\mathrm{dt}, J=12.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H}), 1.39-1.27(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, DMSO- d_{6}) $\delta 145.4,137.4,133.2,131.3,129.5,127.7,127.1,125.3,121.6,120.4,119.8,119.3,110.4,67.2,36.1$, 32.9, 25.2, 22.5; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+} 413.1509$, found 413.1509 .

3-(1-(4-(4-Bromophenyl)-2H-1,2,3-triazol-2-yl) cyclohexyl)-1-methyl-1H-indole (4s)

The reaction was conducted with 1-methyl-1H-indole (1a, $26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42 \mu \mathrm{~L}, 0.4$ mmol) and 4-(4-bromophenyl)-1-tosyl-1H-1,2,3-triazole (3s, $75.4 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $4 \mathbf{r}$ as white solid $(61.6 \mathrm{mg}, 71 \%$ yield $), \mathrm{mp}=202-203^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 145.5,137.4,132.4,131.3,130.2,128.0,127.1,125.3,121.7,121.5$, $120.3,119.3,119.2,110.4,67.2,36.1,32.9,25.2,22.4$.

1-Methyl-3-(1-(4-(m-tolyl)-2H-1,2,3-triazol-2-yl) cyclohexyl)-1H-indole (4t)

The reaction was conducted with 1-methyl-1H-indole (1a, $26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone (2a, $42 \mu \mathrm{~L}, 0.4$ mmol) and 4-(m-tolyl)-1-tosyl-1H-1,2,3-triazole (3t, $62.6 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $4 \mathbf{t}$ as yellow oil ($44.4 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}$, $2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.07-$ $2.94(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 5 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 146.6,138.6,137.4,131.1,130.9,129.3,127.0,126.5,125.3,123.2,121.5,120.4,119.5,119.2$, $110.4,67.0,36.2,32.8,25.2,22.5,21.5$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 393.2055$, found 393.2072.

3-(1-(4-(3-Fluorophenyl)-2H-1,2,3-triazol-2-yl) cyclohexyl)-1-methyl-1H-indole (4u)

The reaction was conducted with 1-methyl-1H-indole (1a, $26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclohexanone ($\mathbf{2 a}, 42 \mu \mathrm{~L}, 0.4$ mmol) and 4-(3-fluorophenyl)-1-tosyl-1H-1,2,3-triazole ($3 \mathrm{u}, 63.4 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product 4 u as yellow oil ($46.4 \mathrm{mg}, 62 \%$ yield $)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.00$ $(\mathrm{d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.9(\mathrm{~d}, ~ J=244.2 \mathrm{~Hz}), 145.4,137.4,133.4(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 131.6,127.1,125.3,122.1$,

3-(1-(4-(4-Bromophenyl)-2H-1,2,3-triazol-2-yl)-4-(tert-butyl) cyclohexyl)-1-methyl-1H-indole (4v)

The reaction was conducted with 1-methyl-1H-indole (1a, $26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), 4-(tert-butyl)cyclohexan-1-one $(\mathbf{2 b}, 68 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ and 4-(4-bromophenyl)-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 v}, 75.4 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $4 v$ as white solid ($53.9 \mathrm{mg}, 55 \%$ yield), $\mathrm{mp}=209-210^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}$, $3 \mathrm{H}), 2.07(\mathrm{t}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{q}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H})$, $0.83-0.69(\mathrm{~m}, 1 \mathrm{H}), 0.65(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 145.5,137.4,132.4,131.3,130.2,128.0$, $126.3,125.3,121.8,121.6,120.2,120.2,119.2,110.4,66.7,46.6,36.4,32.8,32.6,27.7,23.2 ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{BrN}_{4}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 513.1630$, found 513.1626 .

3-(1-(4-(4-Bromophenyl)-2H-1,2,3-triazol-2-yl) cyclopentyl)-1-methyl-1H-indole (4w)

The reaction was conducted with 1-methyl-1H-indole (1a, $26.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), cyclopentanone ($\mathbf{2 c}, 36 \mu \mathrm{~L}, 0.4$ mmol) and 4-(4-bromophenyl)-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 w}, 75.4 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired
product $\mathbf{4 w}$ as yellow oil ($27.7 \mathrm{mg}, 33 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.14$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 2 \mathrm{H}), 1.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right)$ $\delta 145.7,137.5,132.4,131.5,130.2,128.0,127.5,126.0,121.8,121.7,120.2,119.4,117.1,110.4,75.3,38.3$, 32.9, 23.0.

1-Ethyl-3-(phenyl(4-phenyl-2H-1,2,3-triazol-2-yl) methyl)-1H-indole (5a)

The reaction was conducted with 1-ethyl-1H-indole ($\mathbf{1 b}, 29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$), benzaldehyde ($\mathbf{2 d}, 40 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $5 \mathbf{5 a}$ as white solid ($51.4 \mathrm{mg}, 68 \%$ yield $), \mathrm{mp}=160-161^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.35(\mathrm{dt}, J=13.8$, $7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 147.3,139.7,137.3,131.9,130.5,130.0,129.4,128.9,128.9,128.3,127.9,126.6,126.1$, 122.1, 119.7, 119.4, 112.8, 110.4, 65.8, 32.9; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+}$401.1742, found 401.1735.

1-Ethyl-3-((4-phenyl-2H-1,2,3-triazol-2-yl) (p-tolyl) methyl)-1H-indole (5b)

The reaction was conducted with 1-ethyl-1H-indole ($\mathbf{1 b}, 29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$), 4-methylbenzaldehyde ($\mathbf{2 e}, 48 \mu \mathrm{~L}$,
0.4 mmol) and 4-phenyl-1-tosyl-1H-1,2,3-triazole ($3 \mathbf{a}, 59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $\mathbf{5 b}$ as white solid ($44.7 \mathrm{mg}, 57 \%$ yield), $\mathrm{mp}=161-162^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.20$ $(\mathrm{m}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}$, $3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 147.3,137.7,136.8,136.4,131.9,130.6,129.6$, $129.5,129.0,128.4,128.0,126.8,126.1,122.1,119.7,119.7,113.1,110.5,65.9,40.9,21.2,16.0$; HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+} 415.1899$, found 415.1909.

3-((4-(tert-Butyl) phenyl) (4-phenyl-2H-1,2,3-triazol-2-yl) methyl)-1-ethyl-1H-indole (5c)

The reaction was conducted with 1-ethyl-1H-indole ($\mathbf{1 b}, 29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$), 4-(tert-butyl) benzaldehyde ($\mathbf{2} \mathbf{f}, 67$ $\mu \mathrm{L}, 0.4 \mathrm{mmol}$) and 4-phenyl-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 a}, 59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $5 \mathbf{c}$ as white solid ($26.0 \mathrm{mg}, 30 \%$ yield $), \mathrm{mp}=173-174{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{q}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 5 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 150.8,147.3,136.8,136.4$, $131.9,130.6,129.5,129.0,128.3,127.8,126.1,125.8,122.1,119.7,112.9,110.5,65.8,40.9,34.8,31.6,16.0 ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 457.2368$, found 457.2377.

1-Ethyl-3-((4-fluorophenyl) (4-phenyl-2H-1,2,3-triazol-2-yl) methyl)-1 H-indole (5d)

The reaction was conducted with 1-ethyl-1H-indole ($\mathbf{1 b}, 29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$), 4-fluorobenzaldehyde ($\mathbf{2 g}, 44 \mu \mathrm{~L}$, 0.4 mmol) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $5 \mathbf{d}$ as white solid $(38.0 \mathrm{mg}, 48 \%$ yield $)$, m.p. $=178-179{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=16.5,8.5,3.9 \mathrm{~Hz}, 5 \mathrm{H}), 7.28(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 161.0(\mathrm{~d}, J=245.1 \mathrm{~Hz}), 147.4,145.1$, $136.4,135.9,132.1,130.2(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 129.5,129.0$, $128.3,126.1,122.1,119.7(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 116.2$, $115.9(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 112.9,110.6,65.2,40.9,16.0$; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{FN}_{4}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 419.1648$, found 419.1660.

3-((4-Chlorophenyl) (4-phenyl-2H-1,2,3-triazol-2-yl) methyl) -1-ethyl-1H-indole (5e)

The reaction was conducted with 1-ethyl-1H-indole (1b, $29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$), 4-chlorobenzaldehyde ($\mathbf{2 h}, 56.0 \mathrm{mg}$, 0.4 mmol) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $5 \mathbf{e}$ as white solid $(42.8 \mathrm{mg}, 52 \%$ yield $), \mathrm{m} . \mathrm{p} .=183-184^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 7 \mathrm{H}), 7.27-7.23(\mathrm{~m}$, $1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 147.5,138.7,136.4,133.1,132.1,130.5,129.9$,
$129.5,129.0,128.5,126.7,126.2,122.2,119.8,112.6,110.6,65.2,40.9,40.7,16.0,16.0 ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClN}_{4}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 435.1352$, found 435.1346.

3-((4-Bromophenyl) (4-phenyl-2H-1,2,3-triazol-2-yl) methyl) -1-ethyl-1H-indole (5f)

The reaction was conducted with 1-ethyl-1H-indole (1b, $29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$), 4-bromobenzaldehyde ($\mathbf{2 i}, 73.6 \mathrm{mg}$, 0.4 mmol) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $5 \mathbf{f}$ as white solid ($42.8 \mathrm{mg}, 47 \%$ yield), m.p. $=200-201^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}$, $3 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 147.5,139.1,136.4$, $132.1,132.0,130.5,130.2,129.5,129.0,128.5,126.7,126.1,122.1,121.7,119.8,112.5,110.6,65.3,40.9,15.9$; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{BrN}_{4}^{+}(\mathrm{M}+\mathrm{Na})^{+}$479.0847, found 479.0854.

3-((3-Chlorophenyl) (4-phenyl-2H-1,2,3-triazol-2-yl) methyl) -1-ethyl-1H-indole (5g)

The reaction was conducted with 1-ethyl-1H-indole ($\mathbf{1 b}, 29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$), 3-chlorobenzaldehyde ($\mathbf{2 j}, 56.0 \mathrm{mg}$, 0.4 mmol) and 4-phenyl-1-tosyl-1H-1,2,3-triazole ($\mathbf{3 a}, 59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product 5 g as white solid $(43.6 \mathrm{mg}, 53 \%$ yield $), \mathrm{m} . \mathrm{p} .=183-184^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.20-7.12(\mathrm{~m}$, $3 \mathrm{H}), 7.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 147.5,142.1,136.4,133.6,132.3,131.0,130.4,129.5,129.1,128.5,128.5,127.8$, 126.7, 126.6, 126.1, 122.2, 119.8, 119.6, 112.3, 110.6, 65.2, 40.9, 16.0; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClN}_{4}{ }^{+}$ $(\mathrm{M}+\mathrm{Na})^{+} 435.1352$, found 435.1364 .

3-((2,4-Dichlorophenyl) (4-phenyl-2H-1,2,3-triazol-2-yl) methyl) -1-ethyl-1H-indole (5h)

The reaction was conducted with 1-ethyl-1H-indole (1b, $29 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$), 2,4-dichlorobenzaldehyde ($\mathbf{2 k}, 69.6$ $\mathrm{mg}, 0.4 \mathrm{mmol}$) and 4-phenyl-1-tosyl-1H-1,2,3-triazole (3a, $59.8 \mathrm{mg}, 0.2 \mathrm{mmol}$). The residue was purified by aluminum oxide (neutral) (200-300 mesh) column (petroleum ether/ethyl acetate $=20: 1$) to yield the desired product $5 \mathbf{h}$ as white solid ($49.1 \mathrm{mg}, 55 \%$ yield), m.p. $=220-221{ }^{\circ} \mathrm{C} . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{4}{ }^{+}$ $(\mathrm{M}+\mathrm{Na})^{+} 469.0963$, found 469.0967 .

4. References

1 Y. T. Liu, X. Y. Wang, J. M. Xu, Q. Zhang, Y. Zhao and Y. F. Hu, Tetrahedron., 2011, 67, 6294.

5. NMR spectra for products

4a

-146.4071
-137.3795
$\begin{aligned} & 131.0510 \\ & 130.9481 \\ & 129.3925 \\ & 128.6512 \\ & 126.9947 \\ & 125.9750 \\ & 125.3143 \\ & 121.4898 \\ & 120.3474 \\ & 119.3777 \\ & 119.2027 \\ & 110.3323\end{aligned}$
-67.0190

40.5912
40.3827
40.1746
39.9647
39.7569
39.5483
39.3385
36.1169
32.7863
-25.1379
-22.4549

[^0]-67.098
40.626
40.418
40.209
40.000
39.791
39.583
39.374
36.012
32.827
25.146
22.478
21.848

4b

4d

-70.1510
-66.9899

$4 i$

$4 i$

4j

$4 q$

-163.6770
-161.2433

$4 q$

4s

6LZ8.S9-

$5 f$

$5 f$

[^0]:

