Electronic Supporting Information

Fluorescent styrylpyrylium probes for the imaging of

mitochondria in live cells

Ignacio Muñoz Resta,[†] Federico Lucantoni,^{‡,§} Nadezda Apostolova,^{* ‡,§,#} Francisco Galindo^{*†}

 †. Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071, Castellón, Spain. E-mail: <u>francisco.galindo@uji.es</u>

‡. Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Av.
Blasco Ibañez n. 15-17, 46010, Valencia, Spain. E-mail: <u>nadezda.apostolova@uv.es</u>

§. FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana), Spain.

#. CIBERehd (Centro de Investigación Biomédica en Red: Enfermedades hepáticas y digestivas), Spain.

Index

Stokes shift of commercial and synthesized dyes	
Spectroscopic data of compounds	.3
Lifetime measurements	15
Acid-base equilibria of hydroxypyrylium dyes	.18
Colocalization analysis	.19

Stokes shift of commercial and synthesized dyes

Dye	Stokes shift (nm)	Source
Rhodamine 123	22	a
Nile Red	80	a
Nile Blue	32	a
Cy3	14	a
Cy5	18	а
Cy7	25	а
BCEF	43	а
DAPI	97	a
Bodipy 500/510	10	а
Bodipy FL	10	а
Alexa Fluor 488	19	а
Dansyl	190	а
Calcium Green	22	а
DCF	20	а
Syto 11	18	a
TAMRA	24	a
Texas Red	20	a
Mag-Fura-2	166	а
Oregon Green	25	а
GFP	21	а
Cascade Yellow	146	а
Calcain AM	21	а
Lysosensor Green	60	а
Lysosensor Yellow/Blue	155	a
Mitotracker Red	16	а
Mitotracker Orange	28	a
1a	136	This work
1b	127	This work
1c	114	This work
1d	116 (L) ^b	This work
	193 (D) ^b	
2a	152	This work
2b	36	This work
2c	88	This work
2d	103	This work

Table S1. Stokes shifts of various commercial dyes, and those corresponding to the compounds synthesized in the present work.

a: data from ThermoFisher Scientific Inc. webpage

b: considering emission band L or D

Spectroscopic data of compounds

2,4-bis(4-methoxyphenyl)-6-methylpyrylium tetrafluoroborate

Figure S1. ¹H NMR, ¹³C NMR (CD₃CN) and HRMS spectra of the precursor 2,4-bis(4-methoxyphenyl)-6-methylpyrylium tetrafluoroborate.

Compound 1a

Figure S2. ¹H NMR, ¹³C NMR (CD₃CN) and HRMS spectra of compound 1a.

Compound 1b

Figure S3. 1 H NMR, 13 C NMR (CD₃CN) and HRMS spectra of compound 1b.

Compound 1c

Figure S4. ¹H NMR, ¹³C NMR (CD₃CN) and HRMS spectra of compound 1c.

Compound 1d

Figure S5. ¹H NMR, ¹³C NMR (DMSO-d₆) and HRMS spectra of compound 1d.

2,6-bis(4-methoxyphenyl) hydrogen sulfate

Figure S6. ¹H NMR, ¹³C NMR (CD₃CN) and HRMS spectra of the precursor 2,6-bis(4-*methoxyphenyl*) hydrogen sulfate.

2,6-bis(4-methoxyphenyl)-4-methyl-4H-pyran

Figure S7. ¹H NMR and ¹³C NMR (CD₃CN) spectra of the precursor 2,6-bis(4-methoxyphenyl)-4-methyl-4H-pyran.

Figure S8. ¹H NMR, ¹³C NMR (CD₃CN) and HRMS spectra of the precursor 2,6-bis(4-methoxyphenyl)-4-methylpyrylium tetrafluoroborate.

Compound 2a

Figure S9. ¹H NMR, ¹³C NMR (CD₃CN) and HRMS spectra of compound 2a.

Compound 2b

Figure S10. ¹H NMR, ¹³C NMR (CD₃CN) and HRMS spectra of compound 2b.

Compound 2c

Figure S11. ¹H NMR, ¹³C NMR (CD₃CN) and HRMS spectra of compound 2c.

Compound 2d

Figure S12. ¹H NMR, ¹³C NMR (CD₃CN) and HRMS spectra of compound 2d.

Measurements of the fluorescence lifetime

Figure S14. Fluorescence decay curves for compounds **1a-d**, **2a-d** in dichloromethane at 295 K. λ_{exc} was set at 464 nm. λ_{em} was set at the emission maximum for each compound. The incident light pulse and the residuals are also shown.

Figure S13. Fluorescence decay curves for compounds **1a-d**, **2a-d** in acetonitrile at 295 K. λ_{exc} was set at 464 nm. λ_{em} was set at the emission maximum for each compound. The incident light pulse and the residuals are also shown.

Figure S15. Fluorescence decay curves for compounds **1a-d**, **2a-d** in PBS (10 mM, pH 7.4) at 295 K. λ_{exc} was set at 464 nm. λ_{em} was set at the emission maximum for each compound. The incident light pulse and the residuals are also shown.

Acid-base equilibria of hydroxypyrylium dyes

Figure S16. Equilibria between pyrylium cations and the quinoidal bases upon deprotonation of the hydroxyl group (top: **1c**; bottom: **2c**).

Figure S17. Colocalization analysis between green fluorescence (**1d** or **2d**) and blue fluorescence (Hoechst 33342). Representative images and correlation between the green and the blue fluorescent signal are displayed (Pearson's coefficient).