Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Iridium/f-diaphos Catalyzed Asymmetric Hydrogenation of 2-Imidazolyl

Aryl/Alkyl Ketones

Ze Wang, XiangHua Zhao, Shiliang Wang, An Huang, Yifan Wang, Jiaying He, Fei Ling,* and Weihui Zhong*

Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's

Republic of China

E-mail: weihuizhong@zjut.edu.cn

Table of Contents

I. General experimental information

Commercial reagents were used without further purification, and solvents were dried before using. Melting points were recorded with a micro melting point apparatus and uncorrected. The ¹H NMR spectra were recorded at 400 or 600 MHz. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane, and were reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet), br s (broad singlet), etc. The coupling constants *J* were given in Hz. HRMS spectra were recorded on an Agilent 1200HPLC-6210TOFMS using ESI as ion source. The conversion of starting materials was monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm). Optical rotations were determined using an AUTOPOL V polarimeter. HPLC analyses were performed using Agilent 1100 equipped with IA-H, IC-H, OD-H and AD-H.

II. General procedure for the preparation of ligands

After being flushed with Ar, A solution of (R_c , S_{FC})-A (1 mmol), (R, R)-1,2-diamine-B (1.5 mmol) in dry MeOH (1 mL) was stirred at reflux overnight. Upon completion, the reaction mixture was cooled to room temperature. Then, the resulting mixture was diluted with DCM (20 mL), and washed with water (10 mL) and brine (10 mL). The organic layer was dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) as the eluent to give L1 (90.9 mg, 78%). L2-L12 were obtained in a similar manner.

The *f*-diaphos ligands L1, L4-L6, L8 and L12 have been reported in our previous work.^{1,2}

N-((1R,2R)-2-(((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-

methylbenzenesulfonamide (L1)

Orange solid, 65% yield, 431.7 mg, mp 153-154 °C, $[\alpha]^{20}_{D} = -129.1$ (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 2H), 7.52 (s, 2H), 7.42 (s, 3H), 7.29 (d, *J* = 7.6 Hz, 2H), 7.21 (s, 1H), 7.10 (s, 4H), 5.91 (s, 1H), 4.55 (s, 1H), 4.39 (s, 1H), 4.10-4.05 (m, 6H), 3.73 (s, 1H), 2.47 (s, 3H), 2.15 (s, 2H), 1.97-1.88 (m, 2H), 1.50 (s, 2H), 1.39 (d, *J* = 4.0 Hz, 3H), 1.11-0.99 (m, 2H), 0.90-0.83 (m, 1H), -0.26 to - 0.28 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 139.9, 139.8, 137.2, 136.7, 136.6, 135.0, 134.8, 132.8, 132.6, 129.4, 129.1, 128.32, 128.27, 128.2, 128.1, 127.5, 98.2, 74.3, 74.2, 71.14, 71.10, 69.7, 69.5, 69.2, 57.7, 56.9, 32.1, 29.8, 24.8, 23.9, 21.5, 20.0. ³¹P NMR (162 MHz, CDCl₃) δ -24.85. HRMS (ESI) calcd for C₃₇H₄₂FeN₂O₂PS [M+H]⁺: 665.2049, found: 665.2053.

N-((1S,2S)-2-(((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-

methylbenzenesulfonamide (L2)

Orange solid, 61% yield, 405.2 mg, mp 141-142 °C, $[\alpha]^{20}_{D} = -72.5$ (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.64 (s, 2H), 7.42 (s, 3H), 7.31-7.30 (m, 7H), 5.15 (s, 1H), 4.46 (s, 2H), 4.07 (s, 2H), 3.96 (s, 5H), 2.47 (s, 3H), 2.41 (s, 1H), 1.99 (d, *J* = 8.4 Hz, 1H), 1.87-1.84 (m, 2H), 1.46-1.45 (m, 3H), 1.38-1.24 (m, 3H), 1.00-0.92 (m, 1H), 0.79-0.67 (m, 2H), 0.55-0.52 (m, 1H). ¹³C NMR

(100 MHz, CDCl₃) δ 142.9, 140.24, 140.16, 137.84, 137.76, 137.6, 135.3, 135.1, 132.8, 132.6, 129.5, 129.2, 128.4, 128.3, 128.14, 128.11, 128.06, 127.3, 100.0, 74.0, 70.94, 70.90, 69.9, 69.7, 68.6, 68.5, 56.8, 47.5, 47.4, 31.9, 31.7, 24.8, 24.0, 23.8, 21.6. ³¹P NMR (162 MHz, CDCl₃) δ -24.83. HRMS (ESI) calcd for C₃₇H₄₂FeN₂O₂PS [M+H]⁺: 665.2049, found: 665.2044.

N-((1R,2R)-2-(((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-((S)-1-(2-(diphenylphosphanylphos

methylbenzenesulfonamide (L3)

Orange solid, 64% yield, 425.1 mg, mp 146-147 °C, $[\alpha]^{20}_{D}$ = +85.8 (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 2H), 7.52-7.42 (m, 5H), 7.30-7.10 (m, 7H), 5.92 (s, 1H), 4.55 (s, 1H), 4.39 (s, 1H), 4.10 (s, 6H), 3.73 (s, 1H), 2.48 (s, 3H), 2.15 (s, 2H), 1.94-1.87 (m, 2H), 1.49-1.39 (m, 6H), 1.06-0.86 (m, 3H), -0.29 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 137.2, 136.6, 135.0, 134.8, 132.8, 132.6, 129.4, 129.2, 128.3, 127.5, 72.5, 71.1, 69.7, 69.2, 57.7, 56.9, 32.1, 29.8, 24.8, 23.9, 21.6, 20.0. ³¹P NMR (162 MHz, CDCl₃) δ -26.90. HRMS (ESI) calcd for C₃₇H₄₂FeN₂O₂PS [M+H]⁺: 665.2049, found: 665.2059.

N-(((1S,2S)-2-(((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-

methylbenzenesulfonamide (L4)

Orange solid, 65% yield, 431.7 mg, mp 146-147 °C, $[\alpha]^{20}_{D}$ = +60.1 (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 2H), 7.57 (s, 2H), 7.47 (s, 3H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 4.0 Hz, 1H), 7.15 (s, 4H), 5.97 (s, 1H), 4.60 (s, 1H), 4.44 (s, 1H), 4.15 (s, 5H), 4.09 (d, *J* = 7.2 Hz, 1H), 3.78 (s, 1H), 2.53 (s, 3H), 2.20 (s, 2H), 2.01-1.91 (m, 2H), 1.54 (t, *J* = 11.6 Hz, 2H), 1.44 (s, 3H), 1.15-1.06 (m, 2H), 0.94-0.87 (m, 1H), -0.24 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 139.8, 137.1, 136.6, 135.0, 134.8, 132.8, 132.6, 129.4, 129.2, 128.4, 128.2, 128.1, 127.5, 74.2, 71.1, 69.7, 69.3, 57.7, 56.9, 32.1, 29.7, 24.7, 23.9, 21.6, 20.0. ³¹P NMR (162 MHz, CDCl₃) δ -25.03. HRMS (ESI) calcd for C₃₇H₄₂FeN₂O₂PS [M+H]⁺: 665.2049, found: 665.2056.

N-((1R,2R)-2-(((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl)ferrocenylphosphanyl)ethyl)amino)cyclohexyl)-2,4,6-((R)-1-(2-(diphenylphosphanyl

trimethylbenzenesulfonamide (L5)

Orange solid, 60% yield, 415.3 mg, mp 162-163 °C, $[\alpha]^{20}_{D} = -124.8$ (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 2H), 7.42 (s, 3H), 7.19 (s, 1H), 7.08 (s, 4H), 6.96 (s, 2H), 5.96 (s, 1H), 4.53 (s, 1H), 4.38 (s, 1H), 4.10 (s, 6H), 3.74 (s, 1H), 2.63 (s, 6H), 2.36 (s, 3H), 2.14-2.09 (m, 2H), 1.94-1.91 (m, 1H), 1.79 (s, 1H), 1.47-1.45 (m, 5H), 1.07-0.90 (m, 2H), 0.86-0.79 (m, 1H), -0.40 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 140.1, 140.0, 139.1, 136.5, 136.4, 135.1, 134.9, 134.2, 132.7, 132.5, 131.8, 129.2, 128.41, 128.35, 128.2, 128.1, 98.0, 74.12, 74.07, 71.1, 69.7, 69.4, 69.2, 57.7, 57.0, 46.2,

32.0, 29.8, 24.9, 23.9, 23.1, 20.9, 19.9. ³¹P NMR (162 MHz, CDCl₃) δ -25.07. HRMS (ESI) calcd for C₃₉H₄₆FeN₂O₂PS [M+H]⁺: 693.2362, found: 693.2355.

N-((1R,2R)-2-(((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-

triisopropylbenzenesulfonamide (L6)

Orange solid, 48% yield, 372.6 mg, mp 148-149 °C, $[\alpha]^{20}_{D} = -56.1$ (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.2 Hz, 2H), 7.41 (s, 3H), 7.19 (s, 2H), 7.14 (s, 3H), 7.03 (d, J = 6.4 Hz, 2H), 5.98 (s, 1H), 4.54 (s, 1H), 4.32 (s, 1H), 4.11 (t, J = 7.2 Hz, 1H), 4.08 (s, 5H), 3.70 (s, 1H), 3.00-2.93 (m, 1H), 2.19-2.04 (m, 4H), 1.56-1.43 (m, 5H), 1.34-1.31 (m, 7H), 1.27 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.4 Hz, 6H), 1.10-1.00 (m, 2H), 0.92-0.86 (m, 2H), -0.13 (d, J = 12.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 150.3, 135.2, 135.0, 132.8, 132.6, 129.2, 128.3, 128.2, 128.1, 123.6, 97.5, 97.3, 71.2, 69.7, 69.1, 57.4, 57.3, 46.6, 34.1, 32.0, 29.9, 29.7, 25.2, 25.1, 23.9, 23.7, 23.6, 19.8. ³¹P NMR (162 MHz, CDCl₃) δ - 25.02. HRMS (ESI) calcd for C₄₅H₅₈FeN₂O₂PS [M+H]⁺: 777.3301, found: 777.3310.

N-((1R,2R)-2-(((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-3,5-

bis(trifluoromethyl)benzenesulfonamide (L7)

Orange solid, 52% yield, 408.8 mg, mp 106-108 °C, $[\alpha]^{20}_{D}$ = -138.6 (c = 0.6, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 2H), 8.11 (s, 1H), 7.56-7.52 (m, 2H), 7.43 (s, 3H), 7.26-7.24 (m, 1H), 7.21-7.19 (m, 4H), 4.51 (s, 1H), 4.38 (s, 1H), 4.13-4.09 (m, 6H), 3.76 (s, 1H), 2.17 (t, *J* = 8.4 Hz, 1H), 2.04 (d, *J* = 6.8 Hz, 3H), 1.55 (d, *J* = 11.2 Hz, 2H), 1.41 (d, *J* = 6.8 Hz, 3H), 1.06-0.94 (m, 3H), -0.03 (d, *J* = 12.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 144.0, 139.9, 139.8, 136.4, 136.3, 135.1, 134.9, 132.9, 132.7, 132.6 (q, ²*J*_{C-F} = 51.2 Hz), 129.2, 128.5, 128.4 (q, ³*J*_{C-F} = 9.6 Hz), 128.2 (q, ³*J*_{C-F} = 11.6 Hz), 127.4, 125.8, 122.5 (q, ¹*J*_{C-F} = 257.9 Hz), 97.5, 97.2, 74.3, 71.33, 71.29, 69.7, 69.5, 58.3, 57.1, 47.0, 46.9, 31.7, 30.0, 24.8, 23.8, 20.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.03. ³¹P NMR (162 MHz, CDCl₃) δ -25.42. HRMS (ESI) calcd for C₃₈H₃₈F₆FeN₂O₂PS [M+H]⁺: 787.1640, found: 787.1648.

N-((1*R*,2*R*)-2-(((*R*)-1-(2-(bis(3,5-dimethylphenyl)phosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-trimethylbenzenesulfonamide (L8)

Orange solid, 56% yield, 442.5 mg, mp 100-101 °C, $[\alpha]^{20}_{D} = -141.2$ (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 2H), 7.43 (s, 6H), 7.33-7.28 (m, 2H), 7.12 (d, *J* = 6.8 Hz, 1H), 7.05 (t, *J* = 7.2 Hz, 2H), 6.94 (t, *J* = 7.2 Hz, 1H), 6.82 (t, *J* = 7.2 Hz, 3H), 6.75 (s, 2H), 6.67 (d, *J* = 7.2 Hz, 2H), 6.46 (d, *J* = 6.8 Hz, 2H), 4.52 (s, 1H), 4.39 (s, 1H), 4.03 (s, 6H), 3.93 (d, *J* = 8.4 Hz, 1H), 3.77 (s, 1H), 3.70-3.63 (m, 2H), 2.44 (s, 6H), 2.26 (s, 3H), 1.72 (s, 1H), 1.37 (d, *J* = 3.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 140.9, 140.8, 139.0, 138.4, 137.8, 137.4, 135.5, 135.3, 134.6, 132.6, 132.4, 131.3, 129.1, 128.5, 128.3,

128.14, 128.09, 128.0, 127.6, 127.5, 127.2, 126.9, 98.6, 74.0, 73.9, 71.4, 70.0, 69.7, 69.5, 65.0, 63.4, 47.5, 22.8, 20.8, 19.9. ³¹P NMR (162 MHz, CDCl₃) δ -24.43. HRMS (ESI) calcd for C₄₇H₄₈FeN₂O₂PS [M+H]⁺: 791.2518, found: 791.2510.

N-((1*R*,2*R*)-2-(((*R*)-1-(2-(dicyclohexylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6trimethylbenzenesulfonamide (L9)

Orange solid, 62% yield, 446.5 mg, mp 216-217 °C, $[\alpha]^{25}_{D} = -439.6$ (c = 0.4, MeOH). ¹H NMR (400 MHz, DMSO- d_6) δ 9.53 (s, 1H), 7.82 (s, 2H), 7.64-7.60 (m, 2H), 7.47-7.44 (m, 5H), 7.04-7.03 (m, 4H), 6.70 (s, 1H), 5.49 (s, 1H), 4.79 (s, 1H), 4.50 (s, 1H), 4.15 (s, 5H), 3.71 (s, 1H), 1.72 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 184.0, 179.8, 167.8, 161.3, 141.6, 139.1, 136.7, 135.1, 134.9, 132.8, 132.6, 131.7 (q, ${}^2J_{C-F} = 32.8$ Hz), 129.6, 128.6, 128.3, 127.6, 123.6 (q, ${}^1J_{C-F} = 271.2$ Hz), 117.8, 114.6, 94.3, 94.0, 75.7, 72.2, 70.2, 69.7, 69.0, 55.3, 49.0, 22.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.10. ³¹P NMR (162 MHz, CDCl₃) δ -21.36. HRMS (ESI) calcd for C₃₆H₂₈F₆FeN₂O₂P [M+H]⁺: 721.1137, found: 721.1149.

N-((1*R*,2*R*)-2-(((*R*)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)-1,2-diphenylethyl)-2,4,6trimethylbenzenesulfonamide (L10)

Orange solid, 50% yield, 374.2 mg, mp 90-91 °C, $[\alpha]^{20}_{D} = -79.0$ (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 1H), 7.17 (s, 1H), 7.06 (s, 1H), 6.93 (s, 2H), 6.89 (s, 1H), 6.79 (s, 1H), 6.77 (s, 1H), 6.01 (s, 1H), 4.51 (s, 1H), 4.36 (s, 1H), 4.10-4.06 (m, 6H), 3.76 (s, 1H), 2.65 (s, 6H), 2.36 (s, 6H), 2.31 (s, 3H), 2.15 (s, 6H), 2.09-2.06 (m, 2H), 1.95 (s, 1H), 1.86-1.83 (m, 1H), 1.48-1.42 (m, 4H), 1.34-1.31 (m, 1H), 1.03-0.97 (m, 2H), 0.93-0.87 (m, 2H), -0.34 (d, J = 9.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 139.5, 139.4, 138.9, 137.93, 137.86, 137.5, 137.4, 136.3, 136.2, 134.7, 132.8, 132.6, 131.8, 130.9, 130.7, 130.5, 130.0, 75.0, 74.9, 71.1, 69.6, 69.3, 69.0, 57.8, 57.3, 31.3, 29.8, 29.7, 26.9, 25.0, 23.9, 22.9, 21.4, 21.1, 20.9, 20.4. ³¹P NMR (162 MHz, CDCl₃) δ -25.06. HRMS (ESI) calcd for C₄₃H₅₄FeN₂O₂PS [M+H]⁺: 749.2988, found: 749.3001.

(R)-3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-((1-(2-

(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclobut-3-ene-1,2-dione (L11)

Orange solid, 47% yield, 331.0 mg, mp 86-87 °C, $[\alpha]^{25}_{D}$ = -89.4 (c = 0.5, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 6.87 (s, 2H), 6.11 (s, 1H), 4.42 (s, 1H), 4.35 (s, 1H), 4.20 (s, 5H), 4.15 (s, 1H), 3.97 (s, 1H), 2.63 (s, 6H), 2.35-2.29 (m, 4H), 2.26 (s, 3H), 2.18 (d, *J* = 9.6 Hz, 2H), 2.12-2.07 (m, 1H), 1.96-1.87 (m, 2H), 1.80-1.78 (m, 2H), 1.72-1.65 (m, 4H), 1.56-1.53 (m, 2H), 1.49 (d, *J* = 6.4 Hz, 3H), 1.44-1.30 (m, 4H), 1.19-1.10 (m, 8H), 0.92-0.75 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 138.9, 134.0, 131.8,

70.7, 69.4, 68.7, 67.3, 58.3, 57.5, 37.5, 37.3, 35.4, 35.3, 33.7, 33.4, 32.3, 31.7, 31.4, 31.3, 31.2, 31.0, 29.7, 29.5, 28.4, 28.3, 27.73, 27.68, 27.3, 27.2, 27.0, 26.9, 26.4, 25.2, 24.3, 23.1, 21.0, 20.9. ³¹P NMR (162 MHz, CDCl₃) δ -17.85. HRMS (ESI) calcd for C₃₉H₅₈FeN₂O₂PS [M+H]⁺: 705.3301, found: 705.3296.

N-((1S,2S)-2-(((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-

trimethylbenzenesulfonamide (L12)

Orange solid, 60% yield, 415.3 mg, mp 159-160 °C, $[\alpha]^{20}_{D}$ = +67.9 (c = 0.63, EtOH). ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.51 (m, 2H), 7.41 (d, *J* = 4.4 Hz, 3H), 7.19 (t, *J* = 4.4 Hz, 1H), 7.07 (s, 4H), 6.96 (s, 2H), 5.97 (s, 1H), 4.53 (s, 1H), 4.38 (s, 1H), 4.10 (s, 6H), 3.74 (s, 1H), 2.63 (s, 6H), 2.35 (s, 3H), 2.13 (d, *J* = 9.6 Hz, 2H), 1.93 (d, *J* = 12.4 Hz, 1H), 1.79 (s, 1H), 1.51-1.44 (m, 5H), 1.07-1.01 (m, 2H), 0.86-0.79 (m, 1H), -0.40 (d, *J* = 10.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 140.1, 140.0, 139.1, 136.5, 136.4, 135.1, 134.9, 134.2, 132.7, 132.5, 131.8, 129.2, 128.4, 128.3, 128.2, 128.1, 97.7, 74.1, 71.12, 71.09, 69.7, 69.4, 69.2, 57.7, 57.0, 46.2, 32.0, 29.8, 24.9, 24.0, 23.1, 21.0, 19.9. ³¹P NMR (162 MHz, CDCl₃) δ -24.91. HRMS (ESI) calcd for C₃₉H₄₆FeN₂O₂PS [M+H]⁺: 693.2362, found: 693.2357.

III. General procedure for the asymmetric hydrogenation of 2-imidazolyl aryl

ketones

Condition A:

Under argon atomosphere, $[Ir(COD)Cl]_2$ (1.7 mg, 0.0025 mmol), L5 (3.8 mg, 0.0055 mmol), and anhydrous 'PrOH (1 mL) were added to an oven-dried vial (10 mL) and then stirred at 30 °C for 1.5 h to give a clear yellow solution. The mixture was concentrated to dryness, then 1 mL of dried Toluene was added to the crude Ir-L5 complex. An aliquot of the catalyst solution (0.2 mL, 0.0005 mmol) was transferred into a 10 mL hydrogenation vessel, and then ketones (1.0 mmol), HCO₂Na (3.4 mg, 0.05 mmol) and anhydrous Toluene (2 mL) were added. The vial was placed in an alloy plate which was then placed into the autoclave. And the autoclave was purged five times with hydrogen, then pressurized to 45 atm of H₂ and stirred at 70 °C for 12 h. Upon completion, the reaction mixture was cooled to room temperature. After the hydrogen pressure was slowly released, the solvent was removed, and the mixture was purifified by passing through a short column of silica gel to afford **2a-2r**. The *ee* values of all compounds were determined by HPLC with a chiral column.

Condition B:

Under argon atomosphere, $[Ir(COD)Cl]_2$ (1.7 mg, 0.0025 mmol), L1 (3.7 mg, 0.0055 mmol), and anhydrous 'PrOH (1 mL) were added to an oven-dried vial (10 mL) and then stirred at 30 °C for 1.5 h to give a clear yellow solution. The mixture was concentrated to dryness, then 1 mL of dried Toluene was added to the crude Ir-L1 complex. An aliquot of the catalyst solution (0.2 mL, 0.0005 mmol) was transferred into a 10 mL hydrogenation vessel, and then ketones (1.0 mmol), 'BuOLi (4 mg, 0.05 mmol) and anhydrous 'PrOH (2 mL) were added. The vial was placed in an alloy plate which was then placed into the autoclave. And the autoclave was purged five times with hydrogen, then pressurized to 30 atm of H₂ and stirred at 40 °C for 12 h. Upon completion, the reaction mixture was cooled to room temperature. After the hydrogen pressure was slowly released, the solvent was removed, and the mixture was purifified by passing through a short column of silica gel to afford **2s-2v**. The *ee* values of all compounds were determined by HPLC with a chiral column.

Condition C:

Under argon atomosphere, $[Ir(COD)Cl]_2$ (1.7 mg, 0.0025 mmol), L12 (3.8 mg, 0.0055 mmol), and anhydrous 'PrOH (1 mL) were added to an oven-dried vial (10 mL) and then stirred at 30 °C for 1.5 h to give a clear yellow solution. The mixture was concentrated to dryness, then 1 mL of dried Toluene was added to the crude Ir-L12 complex. An aliquot of the catalyst solution (0.2 mL, 0.0005 mmol) was transferred into a 10 mL hydrogenation vessel, and then ketones (1.0 mmol), HCO₂Na (3.4 mg, 0.05 mmol) and anhydrous Toluene (2 mL) were added. The vial was placed in an alloy plate which was then placed into the autoclave. And the autoclave was purged five times with hydrogen, then pressurized to 45 atm of H₂ and stirred at 70 °C for 12 h. Upon completion, the reaction mixture was cooled to room temperature. After the hydrogen pressure was slowly released, the solvent was removed, and the mixture was purifified by passing through a short column of silica gel to afford **3a** and **3h**. The *ee* values of all compounds were determined by HPLC with a chiral column.

(R)-phenyl(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2a)

White solid, 99% yield, 131.7 mg, mp 211-212 °C, $[\alpha]^{25}_{D} = +73.9$ (c = 0.66, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 9.83$ min (minor), $t_R(R) = 13.98$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.2 Hz, 3H), 7.35-7.29 (m, 3H), 6.94 (s, 1H), 6.17 (s, 1H), 3.47 (s, 3H), 2.38 (s,

3H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 140.2, 139.4, 134.8, 132.0, 130.9, 128.5, 127.7, 126.4, 119.1, 109.4, 69.6, 30.2, 20.5, 20.2. HRMS (ESI) calcd for C₁₇H₁₉N₂O [M+H]⁺: 267.1492, found: 267.1501.

(R)-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (2b)

White solid, 99% yield, 124.8 mg, mp 216-217 °C, $[\alpha]^{25}_{D} = -36.2$ (c = 0.9, MeOH); lit. ^[3] mp 210-211 °C, $[\alpha]^{21}_{D} = -82.7$ (c= 1.0, water, 99% ee). The ee was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R(*S*) = 9.10 min (minor), t_R(*R*) = 19.44 min (major). ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.16 (br, 1H), 7.51 (d, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.29-7.26 (m, 3H), 6.50 (s, 1H), 5.91 (s, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 156.5, 143.1, 130.1, 128.5, 127.7, 126.9, 70.4, 20.4. HRMS (ESI) calcd for C₁₆H₁₇N₂O [M+H]⁺: 253.1335, found: 253.1342.

(R)-(1-benzyl-5,6-dimethyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (2c)

White solid, 95% yield, 162.5 mg, mp 216-217 °C, $[\alpha]^{25}_{D} = +42.0$ (c = 0.35, MeOH). The *ee* was determined by HPLC on Chiralpak IA-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 25.72$ min (minor), $t_R(R) = 30.61$ min (major). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.42 (t, *J* = 7.6 Hz, 3H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.27-7.23 (m, 4H), 7.01 (d, *J* = 4.8 Hz, 3H), 6.61 (d, *J* = 4.8 Hz, 1H), 6.13 (d, *J* = 4.8 Hz, 1H), 5.47 (s, 2H), 2.29 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 155.0, 142.0, 137.4, 134.5, 131.4, 130.5, 128.8, 128.5, 127.6, 127.0, 126.5, 119.7, 111.2, 69.4, 47.2, 20.6, 20.3. HRMS (ESI) calcd for C₂₃H₂₃N₂O [M+H]⁺: 343.1805, found: 343.1816.

(R)-(5,6-dimethyl-1-phenyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (2d)

White solid, 90% yield, 147.7 mg, mp 145-146 °C, $[\alpha]^{25}_{D} = +20.9$ (c = 0.5, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 8.79$ min (minor), $t_R(R) = 10.04$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.44 (m, 4H), 7.22-7.16 (m, 5H), 7.09 (s, 2H), 6.87 (s, 1H), 5.90 (s, 1H), 4.75 (br, 1H), 2.41 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 132.5, 131.6, 129.6, 128.9, 128.3, 127.9, 127.7, 119.6, 110.4, 69.7, 20.4, 20.2. HRMS (ESI) calcd for C₂₂H₂₁N₂O [M+H]⁺: 329.1648, found: 329.1655.

(R)-(1-isopropyl-5,6-dimethyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (2e)

White solid, 99% yield, 145.6 mg, mp 201-202 °C, $[\alpha]^{25}_{D}$ = +66.4 (c = 0.7, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 85:15; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R(*R*) = 4.15 min (major), t_R(*S*) = 4.96 min (minor). ¹H NMR (400 MHz,

CDCl₃) δ 7.45 (s, 1H), 7.38 (d, *J* = 7.2 Hz, 2H), 7.33-7.26 (m, 4H), 6.21 (s, 1H), 2.40 (s, 3H), 2.35 (s, 3H), 1.38 (d, *J* = 6.8 Hz, 3H), 1.22 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 140.8, 140.6, 132.3, 131.4, 130.7, 128.3, 127.5, 126.2, 119.7, 112.6, 69.7, 48.1, 20.7, 20.6, 20.2, 20.1. HRMS (ESI) calcd for C₁₉H₂₃N₂O [M+H]⁺: 295.1805, found: 295.1800.

(R)-(1-methyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (2f)

White solid, 99% yield, 117.9 mg, mp 178-179 °C, $[\alpha]^{25}_{D} = +107.8$ (c = 0.34, MeOH); lit. ^[4] $[\alpha]_{D} = +119.1$ (*c*= 1.0, MeOH, 99% *ee*). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R(*S*) = 9.64 min (minor), t_R(*R*) = 11.76 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (t, *J* = 4.0 Hz, 1H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.37-7.30 (m, 3H), 7.28-7.24 (m, 2H), 7.17 (t, *J* = 4.0 Hz, 1H), 6.23 (s, 1H), 5.58 (br, 1H), 3.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 140.9, 140.0, 136.2, 128.5, 127.7, 126.2, 122.8, 122.1, 119.1, 109.2, 69.7, 30.3. HRMS (ESI) calcd for C₁₅H₁₅N₂O [M+H]⁺: 239.1179, found: 239.1188.

(R)-(5,6-difluoro-1-methyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (2g)

White solid, 95% yield, 130.2 mg, mp 203-204 °C, $[\alpha]^{25}_{D} = +108.1$ (c = 0.76, MeOH). The *ee* was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; t_R(*S*) = 8.00 min (minor), t_R(*R*) = 13.44 min (major). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.72-7.65 (m, 2H), 7.43 (d, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.28 (t, *J* = 7.2 Hz, 1H), 6.60 (s, 1H), 6.11 (s, 1H), 3.72 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 157.7, 147.5 (dd, ¹*J*_{C-F} = 237.5 Hz, ²*J*_{C-F} = 15.4 Hz), 147.0 (dd, ¹*J*_{C-F} = 235.4 Hz, ²*J*_{C-F} = 14.9 Hz), 141.4, 137.2 (d, ³*J*_{C-F} = 10.7 Hz), 132.3 (d, ³*J*_{C-F} = 11.2 Hz), 128.6, 127.8, 126.6, 106.8 (d, ²*J*_{C-F} = 19.2 Hz), 99.0 (d, ²*J*_{C-F} = 22.8 Hz), 69.2, 31.1. HRMS (ESI) calcd for C₁₅H₁₃F₂N₂O [M+H]⁺: 275.0990, found: 275.0999.

(R)-(1-methyl-1H-imidazol-2-yl)(phenyl)methanol (2h)

White solid, 99% yield, 93.1 mg, mp 140-141 °C, $[\alpha]^{25}_{D} = +66.7$ (c = 0.36, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 6.49$ min (minor), $t_R(R) = 12.50$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.32 (m, 4H), 7.31-7.26 (m, 1H), 6.84 (s, 1H), 6.73 (m, 1H), 6.55 (s, 1H), 5.99 (s, 1H), 3.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 141.0, 128.3, 127.3, 126.1, 126.0, 122.1, 68.8, 33.2. HRMS (ESI) calcd for C₁₁H₁₃N₂O [M+H]⁺: 189.1022, found: 189.1030.

(R)-p-tolyl(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2i)

White solid, 99% yield, 138.7 mg, mp 187-188 °C, $[\alpha]^{25}_{D} = +82.4$ (c = 0.6, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min;

UV detection at 254 nm; $t_R(S) = 8.00$ min (minor), $t_R(R) = 10.57$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.89 (s, 1H), 6.15 (s, 1H), 3.46 (s, 3H), 2.36 (s, 3H), 2.344 (s, 3H), 2.337 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 139.5, 137.5, 137.1, 134.7, 131.7, 130.7, 129.1, 126.2, 119.1, 109.4, 69.5, 30.3, 21.2, 20.6, 20.2. HRMS (ESI) calcd for C₁₈H₂₁N₂O [M+H]⁺: 281.1648, found: 281.1655.

(R)-(4-fluorophenyl)(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2j)

White solid, 99% yield, 140.6 mg, mp 188-189 °C, $[\alpha]^{25}_{D} = +67.8$ (c = 0.92, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 7.79$ min (minor), $t_R(R) = 10.32$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.31 (m, 3H), 6.99-6.92 (m, 3H), 6.13 (s, 1H), 3.48 (s, 3H), 2.38 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, ¹*J*_{C-F} = 244.4 Hz), 154.4, 139.4, 136.2, 134.7, 132.1, 131.0, 127.9 (d, ³*J*_{C-F} = 8.1 Hz), 119.0, 115.2 (d, ²*J*_{C-F} = 21.4 Hz), 109.4, 68.9, 30.2, 20.5, 20.1. HRMS (ESI) calcd for C₁₇H₁₈FN₂O [M+H]⁺: 285.1398, found: 285.1407.

(R)-(4-chlorophenyl)(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2k)

White solid, 95% yield, 142.6 mg, mp 191-192 °C, $[\alpha]^{25}_{D} = +43.0$ (c = 0.86, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 5.48$ min (minor), $t_R(R) = 6.47$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.24 (m, 5H), 6.93 (s, 1H), 6.10 (s, 1H), 3.48 (s, 3H), 2.38 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 139.3, 138.9, 134.7, 133.3, 132.2, 131.1, 128.5, 127.5, 119.0, 109.5, 68.9, 30.3, 20.5, 20.1. HRMS (ESI) calcd for C₁₇H₁₈ClN₂O [M+H]⁺: 301.1102, found: 301.1111.

(R)-(4-(trifluoromethyl)phenyl)(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2l)

White solid, 92% yield, 153.7 mg, mp 222-223 °C, $[\alpha]^{25}_{D} = +67.1$ (c = 0.8, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 7.10$ min (minor), $t_R(R) = 9.31$ min (major). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.42 (s, 1H), 6.98 (s, 1H), 6.21 (s, 1H), 3.51 (s, 3H), 2.37 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 144.0, 138.6, 134.5, 132.7, 131.7, 130.1, 126.6, 125.4 (q, ${}^4J_{C-F} = 2.6$ Hz), 124.0 (q, ${}^1J_{C-F} = 180.6$ Hz), 118.8, 109.6, 68.9, 30.4, 20.5, 20.2. HRMS (ESI) calcd for C₁₈H₁₈F₃N₂O [M+H]⁺: 335.1366, found: 335.1374.

(R)-m-tolyl(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2m)

White solid, 99% yield, 138.7 mg, mp 189-190 °C, $[\alpha]^{25}_{D} = +104.8$ (c = 0.6, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min;

UV detection at 254 nm; $t_R(S) = 7.45$ min (minor), $t_R(R) = 10.83$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 5.2 Hz, 1H), 7.22-7.18 (m, 3H), 7.10 (d, J = 6.8 Hz, 1H), 6.93 (s, 1H), 6.13 (s, 1H), 3.47 (s, 3H), 2.38 (s, 3H), 2.37 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 140.2, 139.5, 138.2, 134.8, 131.8, 130.8, 128.4, 128.3, 127.0, 123.4, 119.2, 109.4, 69.7, 30.2, 21.4, 20.5, 20.2. HRMS (ESI) calcd for C₁₈H₂₁N₂O [M+H]⁺: 281.1648, found: 281.1655.

(R)-o-tolyl(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2n)

White solid, 97% yield, 135.9 mg, mp 193-194 °C, $[\alpha]^{25}_{D} = +71.9$ (c = 0.8, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 9.09$ min (minor), $t_R(R) = 10.18$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 1H), 7.22-7.21 (m, 3H), 7.12-7.08 (m, 1H), 6.92 (s, 1H), 6.24 (s, 1H), 6.15 (br, 1H), 3.37 (s, 3H), 2.42 (s, 3H), 2.37 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 139.3, 138.2, 136.6, 134.4, 131.7, 130.7, 128.1, 127.0, 126.1, 119.1, 109.3, 67.5, 30.0, 20.6, 20.2, 19.4. HRMS (ESI) calcd for C₁₈H₂₁N₂O [M+H]⁺: 281.1648, found: 281.1659.

(R)-(3,5-dimethylphenyl)(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (20)

White solid, 99% yield, 145.6 mg, mp 197-198 °C, $[\alpha]^{25}{}_{D} = +77.0$ (c = 0.96, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 5.12$ min (minor), $t_R(R) = 6.41$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.02 (s, 2H), 6.93 (d, *J* = 4.0 Hz, 2H), 6.11 (s, 1H), 3.49 (s, 3H), 2.39 (s, 3H), 2.38 (s, 3H), 2.29 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 140.1, 139.5, 138.0, 134.8, 131.8, 130.8, 129.3, 124.1, 119.2, 109.4, 69.7, 30.3, 21.3, 20.5, 20.2. HRMS (ESI) calcd for C₁₉H₂₃N₂O [M+H]⁺: 295.1805, found: 295.1813.

(R)-[1,1'-biphenyl]-4-yl(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2p)

White solid, 90% yield, 154.0 mg, mp 204-205 °C, $[\alpha]^{25}_{D} = +35.6$ (c = 0.56, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 11.24$ min (minor), $t_R(R) = 13.73$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.6 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.48-7.43 (m, 5H), 7.38 (t, *J* = 7.6 Hz, 1H), 6.97 (s, 1H), 6.24 (s, 1H), 3.54 (s, 3H), 2.38 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 140.5, 139.3, 132.0, 131.0, 128.8, 127.3, 127.2, 127.1, 126.9, 119.2, 109.5, 69.5, 30.3, 20.5, 20.2. HRMS (ESI) calcd for C₂₃H₂₃N₂O [M+H]⁺: 343.1805, found: 343.1812.

(R)-pyridin-4-yl(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2q)

White solid, 85% yield, 113.5 mg, mp 212-213 °C, $[\alpha]^{25}_{D} = +43.7$ (c = 0.3, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 13.74$ min (minor), $t_R(R) = 18.43$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 6.4 Hz, 2H), 7.38 (s, 1H), 7.33 (t, *J* = 4.4 Hz, 2H), 6.96 (s, 1H), 6.16 (s, 1H), 3.53 (s, 3H), 2.38 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 149.8, 149.1, 134.5, 132.8, 131.7, 124.0, 120.9, 118.7, 109.7, 68.3, 30.4, 20.5, 20.2. HRMS (ESI) calcd for C₁₆H₁₈N₃O [M+H]⁺: 268.1444, found: 268.1450.

(R)-pyridin-3-yl(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2r)

White solid, 73% yield, 97.5 mg, mp 193-194 °C, $[\alpha]^{25}_{D} = +35.6$ (c = 0.5, MeOH). The *ee* was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 20.00$ min (minor), $t_R(R) = 25.78$ min (major). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.65 (s, 1H), 8.53 (d, *J* = 4.0 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 2.8 Hz, 1H), 7.38 (s, 1H), 7.32 (s, 1H), 6.63 (d, *J* = 5.2 Hz, 1H), 6.18 (d, *J* = 5.2 Hz, 1H), 3.77 (s, 3H), 2.36 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 154.1, 148.9, 148.5, 140.6, 137.5, 135.2, 134.8, 131.4, 130.2, 123.7, 119.6, 110.5, 67.1, 30.5, 20.6, 20.3. HRMS (ESI) calcd for C₁₆H₁₈N₃O [M+H]⁺: 268.1444, found: 268.1453.

(R)-1-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)ethan-1-ol (2s):

White solid, 99% yield, 204.0 mg, mp 197-198 °C, $[\alpha]^{25}_{D} = +87.8$ (c = 0.61, MeOH). The *ee* was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 10.96$ min (minor), $t_R(R) = 13.18$ min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 6.96 (d, J = 2.8 Hz, 1H), 5.14-5.10 (m, 1H), 4.61 (br, 1H), 3.75 (d, J = 1.2 Hz, 3H), 2.40 (s, 3H), 2.38 (s, 3H), 1.69 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 139.6, 134.5, 131.8, 130.8, 119.2, 109.4, 63.4, 30.0, 22.0, 20.5, 20.2. HRMS (ESI) calcd for C₁₈H₂₁N₂O₂ [M+H]⁺: 205.1335, found: 205.1341.

(R)-1-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)propan-1-ol (2t):

White solid, 99% yield, 218 mg, mp 191-192 °C, $[\alpha]^{25}_{D} = +52.2$ (c = 0.37, MeOH). The *ee* was determined by HPLC on Chiralpak IC-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(R) = 11.27$ min (major), $t_R(S) = 12.78$ min (minor). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (s, 1H), 6.92 (s, 1H), 4.81 (t, *J* = 6.6 Hz, 1H), 3.70 (s, 3H), 2.37 (s, 3H), 3.35 (s, 3H), 1.99 (t, *J* = 7.2 Hz, 2H), 0.98 (t, *J* = 7.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 155.1, 139.9, 134.5, 131.6,

130.7, 119.2, 109.4, 68.9, 30.0, 29.1, 20.5, 20.2, 10.1. HRMS (ESI) calcd for C₁₃H₁₉N₂O [M+H]⁺: 219.1492, found: 219.1499.

(R)-2-phenyl-1-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)ethan-1-ol (2u):

White solid, 99% yield, 280 mg, mp 195-196 °C, $[\alpha]^{25}_{D} = +62.8$ (c = 0.25, MeOH). The *ee* was determined by HPLC on Chiralpak IC-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(R) = 12.73$ min (major), $t_R(S) = 16.13$ min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.23 (d, *J* = 3.6 Hz, 3H), 7.13 (t, *J* = 4.0 Hz, 2H), 6.93 (s, 1H), 5.60 (br, 1H), 5.14 (t, *J* = 7.2 Hz, 1H), 3.44-3.33 (m, 5H), 2.40 (s, 3H), 2.38m (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 139.9, 137.4, 134.1, 131.7, 130.9, 129.5, 128.4, 126.5, 119.2, 109.5, 68.4, 43.4, 29.6, 20.6, 20.2. HRMS (ESI) calcd for C₁₈H₂₁N₂O₂ [M+H]⁺: 281.1648, found: 281.1652.

(R)-2-methyl-1-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)propan-1-ol (2v):

White solid, 99% yield, 232 mg, mp 199-201 °C, $[\alpha]^{25}_{D} = +64.7$ (c = 0.56, MeOH). The *ee* was determined by HPLC on Chiralpak IC-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(R) = 7.00$ min (major), $t_R(S) = 9.46$ min (minor). ¹H NMR (600 MHz, CDCl₃) δ 7.44 (s, 1H), 7.23 (d, *J* = 3.6 Hz, 3H), 7.13 (t, *J* = 4.0 Hz, 2H), 6.93 (s, 1H), 5.60 (br, 1H), 5.14 (t, *J* = 7.2 Hz, 1H), 3.44-3.33 (m, 5H), 2.40 (s, 3H), 2.38m (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 155.0, 139.8, 134.5, 131.7, 131.0, 119.3, 109.5, 72.8, 30.2, 29.7, 20.5, 20.2, 19.1, 18.0. HRMS (ESI) calcd for C₁₄H₂₁N₂O [M+H]⁺: 233.1648, found: 233.1652.

(S)-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (3a)

White solid, 98% yield, 130.4 mg, mp 207-208 °C, $[\alpha]^{25}_{D} = -105.1$ (c = 0.74, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 7.53$ min (major), $t_R(R) = 10.72$ min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.36 (d, *J* = 6.8 Hz, 2H), 7.32-7.27 (m, 2H), 7.25 (d, *J* = 6.8 Hz, 1H), 6.91 (s, 1H), 6.10 (s, 1H), 3.43 (s, 3H), 2.35 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 140.2, 139.7, 134.9, 131.9, 130.9, 128.5, 127.7, 126.5, 119.3, 109.4, 69.8, 30.1, 20.5, 20.1. HRMS (ESI) calcd for C₁₈H₂₁N₂O₂ [M+H]⁺: 281.1648, found: 281.1655.

(S)-(1-methyl-1H-imidazol-2-yl)(phenyl)methanol (3h)

White solid, 84% yield, 79.0 mg, mp 144-145 °C, $[\alpha]^{25}_{D} = -68.0$ (c = 0.43, MeOH). The *ee* was determined by HPLC on Chiralpak OD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 254 nm; $t_R(S) = 8.60$ min (major), $t_R(R) = 14.99$ min (minor). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.35 (d, *J* = 4.0 Hz, 4H), 7.27 (d, *J* = 4.0 Hz, 1H), 7.06 (s, 1H), 6.80 (m, 1H), 6.22 (s, 1H),

5.90 (s, 1H), 3.40 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 149.1, 142.6, 128.4, 127.3, 126.5, 122.8, 68.7, 33.2. HRMS (ESI) calcd for C₁₁H₁₃N₂O [M+H]⁺: 189.1022, found: 189.1031.

IV. Gram scale reaction

Under argon atomosphere, $[Ir(COD)Cl]_2$ (2.6 mg, 0.003 mmol), L5 (4.7 mg, 0.0066 mmol), and anhydrous 'PrOH (4 mL) were added to an oven-dried vial (25 mL) and then stirred at 30 °C for 1.5 h to give a clear yellow solution. The mixture was concentrated to dryness, and then 1a (6 mmol), HCO₂Na (20.4 mg, 0.3 mmol) and anhydrous Toluene (10 mL) were added. The vial was placed in an alloy plate which was then placed into the autoclave. And the autoclave was purged five times with hydrogen, then pressurized to 50 atm of H₂ and stirred at 70 °C for 24 h. Upon completion, the reaction mixture was cooled to room temperature. After the hydrogen pressure was slowly released, the solvent was removed, and the mixture was purifified by passing through a short column of silica gel to afford 2a in 1.55g, 97% yield with 96% *ee*. The *ee* values of all compounds were determined by HPLC with a chiral column.

V. References

- F. Ling, S. Nian, J. Chen, W. Luo, Z. Wang, Y. Lv and W. Zhong, J. Org. Chem., 2018, 83, 10749-10761.
- (2) S. Nian, F. Ling, J. Chen, Z. Wang, H. Shen, X. Yi, Y. F. Yang, Y. She and W. Zhong, Org. Lett., 2019, 21, 5392-5396.
- (3) S. B. Kadin, H. J. Eggers and I. Tamm, Nature, 1964, 201, 639-640.
- (4) A. Torrens, J. A. Castrillo, A. Claparols and J. Redondo, Synlett, 1999, 6, 765-767.

VI. Copies of ¹H and ¹³C NMR spectra

N-((1*R*,2*R*)-2-(((*R*)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-methylbenzenesulfonamide (L1)

N-((1S,2S)-2-(((R)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-methylbenzenesulfonamide (L2)

N-((1*R*,2*R*)-2-(((*S*)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-4-methylbenzenesulfonamide (L3)

N-((1*R*,2*R*)-2-(((*R*)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-trimethylbenzenesulfonamide (L5)

N-((1*R*,2*R*)-2-(((*R*)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-triisopropylbenzenesulfonamide (L6)

N-((1*R*,2*R*)-2-(((*R*)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-3,5-bis(trifluoromethyl)benzenesulfonamide (L7)

N-((1*R*,2*R*)-2-(((*R*)-1-(2-(bis(3,5-dimethylphenyl)phosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-trimethylbenzenesulfonamide (L8)

N-((1*R*,2*R*)-2-(((*R*)-1-(2-(dicyclohexylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-trimethylbenzenesulfonamide (L9)

N-((1*R*,2*R*)-2-(((*R*)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)-1,2-diphenylethyl)-2,4,6-trimethylbenzenesulfonamide (L10)

(*R*)-3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-((1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclobut-3-ene-1,2-dione (L11)

N-((1S,2S)-2-(((S)-1-(2-(diphenylphosphanyl)ferrocenyl)ethyl)amino)cyclohexyl)-2,4,6-trimethylbenzenesulfonamide (L12)

.10 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -13 fl (ppm)

(R)-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (2a)

VII. Copies of HPLC charts of chiral alcohols 2a-2v, 3a, 3h

(R)-phenyl(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2a)

(R)-(5,6-dimethyl-1-phenyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (2d)

(R)-(1-isopropyl-5,6-dimethyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (2e)

(R)-(1-methyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (2f)

(R)-(1-methyl-1H-imidazol-2-yl)(phenyl)methanol (2h)

(R)-(4-fluorophenyl)(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2j)

(R)-(4-chlorophenyl)(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2k)

(R)-(4-(trifluoromethyl)phenyl)(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2l)

(*R*)-*o*-tolyl(1,5,6-trimethyl-1*H*-benzo[*d*]imidazol-2-yl)methanol (2n)

(R)-(3,5-dimethylphenyl)(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (20)

(R)-pyridin-4-yl(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2q)

(R)-pyridin-3-yl(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)methanol (2r)

(R)-1-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)ethan-1-ol (2s)

(R)-2-phenyl-1-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)ethan-1-ol (2u)

(R)-2-phenyl-1-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)ethan-1-ol (2v)

(S)-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)(phenyl)methanol (3a)

(S)-(1-methyl-1H-imidazol-2-yl)(phenyl)methanol (3h)

