Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Multi-Fold Sonogashira Coupling, A New Convenient Approach to Tetraalkynyl Anthracenes with Tunable Photophysical Properties

Khadimul Islam,^a Himani Narjinari,^a Akshara Bisarya,^a Akshai Kumar^{*a,b,c}

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India.
 ^bCentre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India.
 ^cSchool of Health Science, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India

Email id: akshaikumar@iitg.ac.in

Contents	Page No.
1. Photophysical Properties	2-12
2. X-Ray Crystallographic Studies	13-18
3. NMR, HRMS and MALDI Spectra	19-74
4. IR spectra	75-83

1. Photophysical Properties:

Figure S1. (a) Normalized absorption spectra (293 K, 10^{-5} M) of 6-6i in CHCl₃ (b) Absorption spectra (293 K) of the compounds (6-6i) in solid powder state.

Figure S2. (a-f) Absorbance vs Concentration spectra for the compounds (6-6f) in CHCl₃.

Figure S3. (g-h) Absorbance vs Concentration spectra for the compounds (6g & 6i) in CHCl₃.

Figure S4. (a-f) Tauc's plot from the Absorption spectra (293 K, 10^{-5} M) of **6-6f** in CHCl₃ for energy band gap calculation.

Figure S5. (g-h) Tauc's plot from the Absorption spectra (293 K, 10⁻⁵ M) of 6g & 6i in CHCl₃ for energy band gap calculation.

Figure S6. (a-f) Tauc's plot from the Absorption spectra of 6-6f in solid powder state for energy band gap calculation.

Figure S7. (g-h) Tauc's plot from the Absorption spectra of 6g & 6i in solid powder state for energy band gap calculation.

Figure S8. Normalized emission spectra in (a) solution (CHCl₃, 293 K, 10⁻⁶ M), (b) thin-film, and (c) solid powder state for the compounds (6-6i).

Figure S9. Time-resolved Photoluminescence spectra for the compounds 6-6i.

Compound	B ₁ (%)	τ_1 (ns)	τ_1^2 (ns)	B ₂ (%)	τ_2 (ns)	τ_2^2 (ns)	$\tau_{av}(ns)$
6	99.738	4.434	19.660	0.262	15.825	250.43	4.54
ба	25.995	0.192	0.037	74.005	4.423	19.57	4.36
6b	99.824	4.714	22.222	0.176	19.922	396.886	4.83
6d	96.829	2.392	5.722	3.171	8.069	65.109	2.96
6e	96.989	4.085	16.687	3.011	6.246	39.013	4.18
6f	0	0	0	100	3.559	12.666	3.56
6g	36.844	0.327	0.107	63.156	6.879	47.323	6.70
61	99.877	4.562	20.812	0.123	31.450	989.103	4.79

 Table S1: Time-resolved Photoluminescence data.

Figure S10. Current vs Potential curve for the compounds **6-6i.**During cyclic voltammetry analysis; glassy carbon was used as working electrode, platinum wire was used as counter electrode, Ag/AgCl was used as reference electrode with acetonitrile as solvent. Scan rate is in 50 mV/s.

Scan direction:

6; Start voltage = 0.0 V, end voltage = 0.0 V, maximum voltage = +2V, minimum voltage = -1.5 V,

6a, **6b**, **6e**, and **6f**; Start voltage = 0.0 V, end voltage = 0.0 V, maximum voltage = +2 V, minimum voltage = -2 V,

6d; Start voltage = 0.0 V, end voltage = 0.0 V, maximum voltage = 0.0 V, minimum voltage = -2 V.

Figure S11. a) Titration of the **6e** ($c = 1 \times 10^{-5}$ M) by CF₃COOH in absorption spectra (b) titration of the **6e** by CF₃COOH and Et₃N in absorption spectra

Figure S12. a) Titration of the **6f** ($c = 1 \times 10^{-5}$ M) by CF₃COOH in absorption spectra (b) titration of the **6f** by CF₃COOH and Et₃N in absorption spectra

2. X-Ray Crystallographic studies:

Figure S13. ORTEP diagram of (a) **6** and (b) **6a**.

	6	6a
Identification code (CCDC No)	2070944	2070945
Empirical formula	C ₄₆ H ₂₆	$C_{50}H_{34}$
Formula weight	578.67	634.77
Temperature/K	296(2)	296(2)
Space group	P21/n	Рс
Crystal system	Monoclinic	Monoclinic
a/Å	9.8457(7)	14.929(3)
b/Å	19.1932(16)	11.922(3)
c/Å	17.0462(14)	10.529(2)
α/°	90.00	90.00
β/°	101.212(2)	92.393(7)
$\gamma/^{\circ}$	90.00	90.00
Volume/Å ³	3159.7(4)	1872.3(7)
Z	4	2
$\rho_{calc} g/cm^3$	1.216	1.126
µ/mm ⁻¹	0.069	0.064
F(000)	1208.0	668.0
Crystal size/mm ³	0.28 imes 0.26 imes 0.24	0.28 imes 0.25 imes 0.24
Radiation	MoK α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	4.24 to 50	5.16 to 50
Index ranges	$-11 \le h \le 11, -22 \le k \le 22, -20 \le l \le 20$	$-17 \le h \le 17, -14 \le k \le 14, -12 \le l \le 12$
Reflections collected	198842	45579
Independent reflections	5566 [$R_{int} = 0.1546$, $R_{sigma} = N/A$]	6588 [$R_{int} = 0.1745, R_{sigma} = N/A$]
Data/restraints/parameters	5566/0/415	6588/2/455
Goodness-of-fit on F ²	1.056	1.026
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0586, wR_2 = 0.1501$	$R_1 = 0.0836, wR_2 = 0.1984$
Final R indexes [all data]	$R_1 = 0.0911, wR_2 = 0.1746$	$R_1 = 0.1812, wR_2 = 0.2604$
Largest diff. peak/hole / e Å ⁻³	0.13/-0.24	0.24/-0.23

Table S2. Crystal data for the compounds (6) and (6a):

Alert level A of the crystal 6a.

SHFSU01_ALERT_2_A The absolute value of parameter shift to su ratio > 0.20 Absolute value of the parameter shift to su ratio given 0.326 Additional refinement cycles may be required. PLAT080_ALERT_2_A Maximum Shift/Error 0.33 Why? PLAT242_ALERT_2_A Low 'MainMol' Ueq as Compared to Neighbors of C47 Check

Author Response:

The crystal quality was very poor. The crystal was grown by multiple times in different possible ways but it decomposed during the data collection, but the reported data is the best than other collected data. These alerts are shown owing to nonconvergent refinement to one carbon in one of the phenyl ring.

Figure S14. ORTEP diagram of (c) 6b and (d) 6c'.

	6b	6c'
Identification code (CCDC No)	2070946	2086685
Empirical formula	C ₅₀ H ₃₄ O ₄	C ₃₂ H ₁₈
Formula weight	698.77	402.46
Temperature/K	296(2)	296(2)
Crystal system	triclinic	orthorhombic
Space group	P-1	P21/n
a/Å	4.6663(5)	11.162(3)
b/Å	14.0000(16)	11.978(3)
c/Å	14.5094(17)	15.916(4)
α/°	75.898(4)	90.00
β/°	83.094(4)	90.00
$\gamma/^{\circ}$	83.357(4)	90.00
Volume/Å ³	908.96(18)	2128.0(9)
Z	1	4
pcalcg/cm ³	1.254	1.256
μ/mm ⁻¹	0.079	0.071
F(000)	354.0	924.0
Crystal size/mm ³	0.28 imes 0.25 imes 0.23	0.30 imes 0.27 imes 0.25
Radiation	MoK α (λ = 0.71073)	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	4.64 to 50	4.98 to 50
Index ranges	$-5 \le h \le 5, -16 \le k \le 16, -17 \le l \le 17$	$-13 \le h \le 13, -14 \le k \le 14, -18 \le l \le 17$
Reflections collected	22015	12932
Independent reflections	3217 [$R_{int} = 0.0933$, $R_{sigma} = N/A$]	$3065 [R_{int} = 0.1000, R_{sigma} = N/A]$
Data/restraints/parameters	3217/0/246	3065/0/289
Goodness-of-fit on F ²	0.762	0.790
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0470, wR_2 = 0.1239$	$R_1 = 0.0719, wR_2 = 0.2009$
Final R indexes [all data]	$R_1 = 0.0978, wR_2 = 0.1609$	$R_1 = 0.1641, wR_2 = 0.2674$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.15	0.16/-0.12

Table S3. Crystal data for compounds (6b) and (6c').

Alert level A of the crystal 6c'.

PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full value Low. 0.815 Why?

Author Response:

The completeness was low due to weak diffraction quality of the crystal.

Figure S15. ORTEP diagram of (e) 6e and (f) 6g.

	6	(-
	be	og
Identification code (CCDC No)	2070947	2070948
Empirical formula	$C_{54}H_{60}N_4$	$C_{34}H_{42}Si_4$
Formula weight	765.105	563.054
Temperature/K	296.15	296.15
Crystal system	triclinic	triclinic
Space group	P-1	P-1
a/Å	9.2771(9)	6.0741(8)
b/Å	9.6139(8)	11.2759(16)
c/Å	14.3349(14)	14.146(2)
α/°	71.119(3)	99.128(5)
β/°	86.812(4)	96.304(5)
γ/°	61.782(3)	105.017(4)
Volume/Å ³	1058.66(18)	912.3(2)
Z	1	1
ρcalcg/cm ³	1.200	1.025
µ/mm ⁻¹	0.070	0.182
F(000)	412.1	302.4
Crystal size/mm ³	$0.29 \times 0.26 \times 0.24$	0.28 imes 0.26 imes 0.24
Radiation	Mo K α ($\lambda = 0.71073$)	Mo K α (λ = 0.71073)
2\Overlap range for data collection/°	4.98 to 50	3.82 to 50
Index ranges	$-12 \le h \le 12, -12 \le k \le 12, -18 \le l \le 18$	$-8 \le h \le 8, -14 \le k \le 15, -18 \le l \le 18$
Reflections collected	31337	32125
Independent reflections	3727 [$R_{int} = 0.1317$, $R_{sigma} = 0.0930$]	$3212 [R_{int} = 0.0810, R_{sigma} = 0.0558]$
Data/restraints/parameters	3727/0/266	3212/0/178
Goodness-of-fit on F ²	0.874	1.027
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0562, wR_2 = 0.1554$	$R_1 = 0.0437, wR_2 = 0.1168$
Final R indexes [all data]	$R_1 = 0.1111, wR_2 = 0.1949$	$R_1 = 0.0662, wR_2 = 0.1280$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.23	0.21/-0.22

Table S4. Crystal data for compounds (6e) and (6g).

3. NMR and MALDI spectra

Figure S16. ¹H NMR spectrum of 2 (400 MHz, CDCl₃).

Figure S17. ${}^{13}C{}^{1}H$ NMR spectrum of 2 (101 MHz, CDCl₃).

Figure S18. ¹H NMR spectrum of 3 (400 MHz, CDCl₃).

Figure S19. MALDI spectrum of 3.

Figure S20. ¹H NMR spectrum of 7 (400 MHz, CDCl₃).

•

Figure S21. ¹³C{¹H} NMR spectrum of 7 (151 MHz, CDCl₃)

Figure S22. ¹H NMR spectrum of 8 (600 MHz, CDCl₃).

Figure S23. ¹³C{¹H} NMR spectrum of 8 (151 MHz, CDCl₃)

Figure S24. ¹H NMR spectrum of 9 (600 MHz, CDCl₃).

Figure S25. ${}^{13}C{}^{1}H$ NMR spectrum of 9 (101 MHz, CDCl₃).

Figure S26. ¹H NMR spectrum of 10 (400 MHz, CDCl₃).

Figure S27. ¹H NMR spectrum of 11 (600 MHz, CDCl₃).

Figure S28. ¹H NMR spectrum of 12 (600 MHz, CDCl₃).

Figure S29. ${}^{13}C{}^{1}H$ NMR spectrum of 12 (151 MHz, CDCl₃).

Figure S30. ¹H NMR spectrum of 13 (600 MHz, CDCl₃).

Figure S31. ¹H NMR spectrum of 14 (600 MHz, CDCl₃).

Figure S32. ${}^{13}C{}^{1}H$ NMR spectrum of 14 (151 MHz, CDCl₃).

Figure S33. ¹H NMR spectrum of 15 (600 MHz, CDCl₃).

Figure S34. ${}^{13}C{}^{1}H$ NMR spectrum of 15 (151 MHz, CDCl₃).

Figure S35. ¹H NMR spectrum of 6 (400 MHz, CDCl₃).

Figure S36. ${}^{13}C{}^{1}H$ NMR spectrum of 6 (101 MHz, CDCl₃).

Figure S37. HRMS spectrum of 6.

Figure S38. MALDI spectrum of 6.

Figure S39. ¹H NMR spectrum of **6a** (400 MHz, CDCl₃).

Figure S40. ${}^{13}C{}^{1}H$ NMR spectrum of 6a (151 MHz, CDCl₃).

Figure S41. HRMS spectrum of 6a.

Figure S42. MALDI spectrum of 6a.

Figure S43. ¹H NMR spectrum of 6b (400 MHz, CDCl₃).

Figure S44. ${}^{13}C{}^{1}H$ NMR spectrum of **6b** (151 MHz, CDCl₃).

Figure S45. HRMS spectrum of 6b.

Figure S46. MALDI spectrum of 6b.

Figure S47. ¹H NMR spectrum of 6c' (500 MHz, CDCl₃).

Figure S48. ¹H NMR spectrum of 6d (400 MHz, CDCl₃).

Figure S49. ${}^{13}C{}^{1}H$ NMR spectrum of 6b (151 MHz, CDCl₃).

Figure S50. MALDI spectrum of 6d.

Figure S51. HRMS spectrum of 6d.

Figure S52. ¹H NMR spectrum of 6e (400 MHz, CDCl₃).

Figure S53. ${}^{13}C{}^{1}H$ NMR spectrum of **6e** (151 MHz, CDCl₃).

Figure S54. HRMS spectrum of 6e.

Figure S55. MALDI spectrum of 6e.

Figure S56. ¹H NMR spectrum of **6f** (400 MHz, CDCl₃).

Figure S57. ${}^{13}C{}^{1}H$ NMR spectrum **6f** (151 MHz, CDCl₃).

Figure S58. HRMS spectrum of 6f.

Figure S59. MALDI spectrum 6f

Figure S60. ¹H NMR spectrum of 6g (600 MHz, CDCl₃).

Figure S61. ${}^{13}C{}^{1}H$ NMR spectrum of 6g (151 MHz, CDCl₃).

Figure S62. HRMS spectrum of 6g.

Figure S63. MALDI spectrum of 6g.

Figure S64. ¹H NMR spectrum of 6h (600 MHz, CDCl₃).

Figure S65. ${}^{13}C{}^{1}H$ NMR spectrum of 6h (151 MHz, CDCl₃).

Figure S66. HRMS spectrum of 6h.

Figure S67. MALDI spectrum of 6h.

Figure S68 ¹H NMR spectrum of 6i (400 MHz, CDCl₃).

Figure S70. HRMS spectrum of 6i.

Figure S71. MALDI spectrum of 6i.

Figure S72. IR spectrum of 6 in KBr pellet.

Figure S73. IR spectrum of 6a in KBr pellet.

Figure S74. IR spectrum of 6b in KBr pellet

Figure S75. IR spectrum of 6d in KBr pellet.

Figure S76. IR spectrum of 6e in KBr pellet.

Figure S77. IR spectrum of 6f in KBr pellet.

Figure S78. IR spectrum of 6g in KBr pellet.

Figure S79. IR spectrum of 6h in KBr pellet.

Figure S80. IR spectrum of 6i in KBr pellet.