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Definition of zipper nomenclature. The following nomenclature is used to describe the relative 

arrangement between two monomers on opposing strands in a duplex. The number n describes the 

distance measured in number of base pairs and has a positive value if a monomer is shifted toward 

the 5′-side of its strand relative to a second reference monomer on the other strand. Conversely, n 

has a negative value if a monomer is shifted toward the 3′-side of its strand relative to a second 

reference monomer on the other strand.  
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Table S1. MS data of ONs used in this study.a 

ON Sequence 
Calculated  

m/z (M+H)+ 

Observed  

m/z (M+H)+ 

1b 5'-GGTAUAUATAGGC 4446.0 4447.5 

2b 3'-CCATAUAUATCCG 4326.0 4327.0 

3 5'-ACA-GGTAUAUATAGGC 5362.0 5362.0 

4 3'-CCATAUAUATCCG-GCG 5274.0 5274.0 

5 5'-ACA-GGTAUAUATA-GGC 5592.0 5591.0 

6 3'-CCATAUAUATCCG-GCG 5504.0 5505.5 

7 5'-TGCACA-GGTAUAUATAGGC 6284.5 6284.0 

8 3'-CCATAUAUATCCGGCG-TAT 6195.0 6195.0 

9 5'-UGCACA-GGTAUAUATAGGC 6731.0 6731.5 

10 3'-CCATAUAUATCCG-GCGTAU 6642.0 6642.5 

11 5'-UGCACA-GGTATATATAGGC 6298.5 6300.0 

12 3'-CCATATATATCCG-GCGTAU 6209.5 6210.0 

15 5'-GGTAUAUATAGGC-CGCAUA 6731.0 6732.0 

16 3'-ACGTGU-CCATAUAUATCCG 6642.0 6642.5 

17 5'-tGCAcA-GGTAUAUATAGGC 6354.0 6354.0 

18 3'-CCATAUAUATCCG-GcGTAt 6265.5 6266.0 

19 5'-tGcACa-GGUAUATAUAGGC 6598.5 6599.5 

20 3'-CCAUAUATAUCCG-gCGtAt 6495.5 6497.0 

DYZ-OPTu 5'-Cy3-TgTgTGTUAUATGCTGUTCTC' 7636.0 7637.0 

DYZ-OPTd 3'- AAUAUACGACAAGAGTCgGgA-Cy3  7738.0 7737.5 

a All reported data are determined from MALDI-MS except for DYZ-OPTu and DYZ-OPTd 

(LC-ESI-MS).  

b Data previously reported in reference S1. 
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Figure S1. MALDI-MS spectrum of ON3. 

 

 

 

 

Figure S2. MALDI-MS spectrum of ON4. 
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Figure S3. MALDI-MS spectrum of ON5. 

 

Figure S4. MALDI-MS spectrum of ON6. 
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Figure S5. MALDI-MS spectrum of ON7. 

 

 

Figure S6. MALDI-MS spectrum of ON8. 
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Figure S7. MALDI-MS spectrum of ON9. 

 

 

 

 

Figure S8. MALDI-MS spectrum of ON10. 
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Figure S9. MALDI-MS spectrum of ON11. 

 

 

 

 

 

 

Figure S10. MALDI-MS spectrum of ON12. 
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Figure S11. MALDI-MS spectrum of ON15. 

 

 

 

 

Figure S12. MALDI-MS spectrum of ON16. 
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Figure S13. MALDI-MS spectrum of ON17. 

 

 

Figure S14. MALDI-MS spectrum of ON18. 
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Figure S15. MALDI-MS spectrum of ON19. 

 

Figure S16. MALDI-MS spectrum of ON20. 
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Figure S17. LC-ESI-MS analysis of DYZ-OPTu. LC-trace (upper panel), unprocessed (middle 

panel) and deconvoluted (lower panel) MS spectrum. 
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Figure S18. LC-ESI-MS analysis of DYZ-OPTd. LC trace (upper panel), unprocessed (middle 

panel) and deconvoluted (lower panel) MS spectrum. 
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Figure S19. HPLC traces of ON3-ON10. 
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Figure S20. HPLC traces of ON11, ON12, ON15, ON16, and ON17-ON20. 
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Figure S21. Representative thermal denaturation curves of double-stranded probes (ON1:ON2-

ON13:ON14), duplexes between individual probe strands and single-stranded 33-mer DNA 

strands DNA1 or DNA2, and model dsDNA target DNA1:DNA2. For experimental conditions, 

see Table 1. 
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Figure S22. Representative thermal denaturation curves of Invader probes (ON15:ON10, 

ON9:ON16, ON17:ON18, and ON19:ON20), duplexes between individual probe strands and 

single-stranded 33-mer DNA strands DNA1 or DNA2, and model dsDNA target DNA1:DNA2 in 

medium salt buffer. For experimental conditions, see Table 1. 
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Figure S23. Representative thermal denaturation curves for Invader probes ON7:ON8 and 

ON9:ON10, mismatched duplexes between individual probe strands and single-stranded non-

target DNA strands, and DNA3:DNA4, DNA5:DNA6 and DNA7:DNA8, which differ in sequence 

at one, two and three positions respectively, relative to DNA1:DNA2 (for sequences of the 

mismatched dsDNA and tabulated data, see Tables S6 and S7). For experimental conditions, see 

Table 1. 
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Figure S24. Representative thermal denaturation curves for Invader probes ON17:ON18 and 

ON19:ON20, mismatched duplexes between individual probe strands and single-stranded non-

targeted DNA strands, and DNA3:DNA4, DNA5:DNA6 and DNA7:DNA8, which differ in 

sequence at one, two and three positions respectively, relative to DNA1:DNA2 (for sequences of 

the mismatched dsDNA and tabulated data, see Tables S10 & S11). For experimental conditions, 

see Table 1. 
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Figure S25. Representative thermal denaturation curves of individual Invader probe strands ON19 

and ON20 at different concentrations in medium salt buffer (upper and middle panels) and of probe 

strands ON19 and ON20 as compared to ON19:ON20 at 1 μM concentration (lower panel). For 

experimental conditions, see Table 1. 
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TA-based discussion of dsDNA-recognition potential of probes. The driving force for recognition 

of the 33-mer model dsDNA target DNA1:DNA2 by double-stranded probes can be estimated by 

the term thermal advantage, defined as TA = Tm (5'-probe vs DNA2) + Tm (3'-probe strand vs 

DNA1) - Tm (probe duplex) - Tm (DNA1:DNA2), with large positive values indicative of a probe 

that is strongly activated for dsDNA-recognition (Table 1).S2 The TA-based conclusions presented 

in the following generally align with the ΔG
310
rec 

-based conclusions discussed in the main 

manuscript (Table 2). Thus, the 13-mer conventional Invader probe ON1:ON2 is not sufficiently 

activated to facilitate recognition of the 33-mer model dsDNA target (TA = -6 C, Table 1). Invader 

probe ON3:ON4, which features unmodified 3-mer overhangs, is minimally activated for DNA 

recognition (TA = 3.5 C, Table 1), whereas Invader probes with modified 3-mer or unmodified 6-

mer overhangs are moderately activated (TA = 11-13 C, ON5:ON6 and ON7:ON8, Table 1). 

Invader probe ON9:ON10, which features modified 6-mer overhangs, is strongly activated for 

dsDNA-recognition (TA = 30 C, Table 1). This is the result of a highly destabilized probe duplex 

(ΔTm = -23 C, Table 1) and moderately stabilized probe-target duplexes (ΔTm = 3.5 C each, Table 

1) as compared to the 33-mer dsDNA target. The impact of the +1 interstrand zipper arrangements 

of 2'-O-(pyren-1-yl)methyl-RNA monomers (i.e., energetic hotspots) in activating Invader probes 

for dsDNA-recognition is underscored by the markedly lower TA value for control probe 

ON11:ON12 which lacks the energetic hotspots (TA = 6.5 C, Table 1). Along similar lines, 

ON13:ON14, which lacks hotspots and features unmodified overhangs, is not activated for 

dsDNA-recognition (TA = -1.5 C, Table 1). Conventional 19-mer Invader probes ON15:ON10 

and ON9:ON16 are only moderately activated for DNA recognition (TA ~ 14 C, Table 1), in large 

part due to the high probe stability. 
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Enthalpic and entropic parameters associated with formation of double-stranded probes and 

duplexes between individual probe strands and DNA1 or DNA2. Formation of the double-stranded 

probes is less enthalpically favorable than formation of DNA1:DNA2 (i.e., ΔΔH = 112-321 

kJ/mol, Table S2). This is expected for two reasons, i.e., i) the double-stranded regions of the 

probes have fewer base pairs (bps) than DNA1:DNA2 (i.e., 13 or 19 bps vis-à-vis 33 bps), and ii) 

the double-stranded regions of all probes – except for ON11:ON12 and ON13:ON14 - feature two 

or four +1 interstrand zipper arrangements of 2'-O-(pyren-1-yl)methyl-RNA monomers, which are 

known to destabilize duplexesS3,S4 due to violation of the nearest neighbor exclusion principle.S5,S6 

 Formation of duplexes between short individual probe strands and the corresponding 

single-stranded 33-mer DNA strands is generally less enthalpically favorable than formation of 

DNA1:DNA2 (e.g., ΔΔH for ON2/ON4/ON6:DNA1 = 150-239 kJ/mol, Table S2). Conversely, 

formation of duplexes between long individual probe strands and the corresponding 33-mer single-

stranded DNA target is generally more enthalpically favorable than formation of DNA1:DNA2, 

presumably due to the stabilizing effect of intercalating pyrenesS3,S4 (e.g., ΔΔH for 

ON8/ON10/ON12/ON14/ON16:DNA1 between -228 and -109 kJ/mol, Table S2). Consequently, 

the calculated change in reaction enthalpy upon probe-mediated recognition of the 33-mer target 

DNA1:DNA2 is enthalpically unfavorable for short Invader probes (e.g., see ΔHrec for ON3:ON4 

and ON5:ON6, Table S2), but enthalpically favorable for long Invader probes (e.g., ΔHrec for 

ON7:ON8/ON9:ON10/ON15:ON10/ON9:ON16 between -654 and -236 kJ/mol, Table S2). 

 Enthalpy-entropy compensation is observed, i.e., whenever formation of a given duplex is 

enthalpically favorable (Table S2), it is entropically unfavorable (Table S3). Accordingly, the 

calculated change in reaction entropy upon probe-mediated recognition of the 33-mer target 

DNA1:DNA2 is entropically favorable for short Invader probes (e.g., see -TΔS
310
𝑟𝑒𝑐

 for ON3:ON4 



S24 
 

and ON5:ON6, Table S3) and unfavorable for long Invader probes (e.g., -TΔS
310
𝑟𝑒𝑐

 for 

ON7:ON8/ON9:ON10 /ON15:ON10/ON9:ON16 between +220 and +567 kJ/mol, Table S3). 

 

Table S2. Change in enthalpy (ΔH) upon formation of probe duplexes and duplexes between 

individual probe strands and DNA1 or DNA2. Also shown is the calculated change in reaction 

enthalpy upon probe-mediated recognition of 33-mer target DNA1:DNA2 (ΔHrec).
a 

a ΔΔH is calculated relative to the unmodified 33-mer target DNA duplex DNA1:DNA2 (ΔH = -

518 kJ/mol). ΔHrec = ΔH (5'-probe:DNA2) + ΔH (3'-probe:DNA1) - ΔH (probe duplex) - ΔH 

(DNA1:DNA2). For experimental conditions, see Table 1.  

  ΔH [ΔΔH] (kJ/mol)  

Probe Sequence 
probe 

duplex 

5'-probe  

vs DNA2 

3'-probe 

vs DNA1 

ΔHrec 

(kJ/mol) 

ON1 

ON2 

                   5'-GGTAUAUATAGGC 

                   3'-CCATAUAUATCCG 

-406  

[+112] 

-564 

[-46] 

-368 

[+150] 
-8 

ON3 

ON4 

         5'-ACA-GGTAUAUATAGGC 

                   3'-CCATAUAUATCCG-GCG 

-270 

[+248] 

-264 

[+254] 

-279 

[+239] 
+245 

ON5 

ON6 

          5'-ACA-GGTAUAUATAGGC  

                    3'-CCATAUAUATCCG-GCG 

-261 

[+257] 

-360 

[+158] 

-299 

[+219] 
+120 

ON7 

ON8 

 5'-TGCACA-GGTAUAUATAGGC 

                    3'-CCATAUAUATCCG-GCGTAT 

-277 

[+241] 

-361 

[+157] 

-670 

[-152] 
-236 

ON9 

ON10 

 5'-UGCACA-GGTAUAUATAGGC 

                    3'-CCATAUAUATCCG-GCGTAU 

-197 

[+321] 

-718 

[-200] 

-647 

[-129] 
-650 

ON11 

ON12 

 5'-UGCACA-GGTATATATAGGC 

                    3'-CCATATATATCCG-GCGTAU 

-259 

[+259] 

-506 

[+12] 

-627 

[-109] 
-356 

ON13 

ON14 

  5'-TGCACA-GGTATATATAGGC 

                     3'-CCATATATATCCG-GCGTAT 

-523 

[-5] 

-639 

[-121] 

-629 

[-111] 
-227 

ON15 

ON10 

                    5'-GGTAUAUATAGGC-CGCAUA  

                     3'-CCATAUAUATCCG-GCGTAU 

-307 

[+211] 

-712 

[-194] 

-647 

[-129] 
-534 

ON9 

ON16 

  5'-UGCACA-GGTAUAUATAGGC 

  3'- ACGTGU-CCATAUAUATCCG 

-364 

[+154] 

-718 

[-200] 

-746 

[-228] 
-582 

https://pubs.rsc.org/en/content/articlelanding/2019/ob/c9ob02111f#tab2fna


S25 
 

Table S3. Change in entropy at 310 K (-TΔS310) upon formation of probe duplexes and duplexes 

between individual probe strands and DNA1 or DNA2. Also shown is the calculated change in 

reaction entropy upon probe-mediated recognition of 33-mer target DNA1:DNA2 (-TΔS
310
𝑟𝑒𝑐

).a 

a Δ(TΔS310) is calculated relative to the unmodified 33-mer target DNA duplex DNA1:DNA2 (-

TΔS310 = 424 kJ/mol). -TΔS
310
𝑟𝑒𝑐

= Δ(TΔS310) (5'-probe:DNA2) + Δ(TΔS310) (3'-probe:DNA1) - 

Δ(TΔS310) (probe duplex). For experimental conditions, see Table 1.  

  -TΔS310 [Δ(TΔS310)] (kJ/mol)  

Probe Sequence 
probe 

duplex 

5'-probe  

vs DNA2 

3'-probe 

vs DNA1 

-TΔS
𝟑𝟏𝟎
𝒓𝒆𝒄

 

(kJ/mol) 

ON1 

ON2 

                   5'-GGTAUAUATAGGC 

                   3'-CCATAUAUATCCG 

+357  

[-67] 

+493 

[+69] 

+310 

[-114] 
+22 

ON3 

ON4 

         5'-ACA-GGTAUAUATAGGC 

                   3'-CCATAUAUATCCG-GCG 

+226 

[-198] 

+210 

[-214] 

+218 

[-206] 
-222 

ON5 

ON6 

          5'-ACA-GGTAUAUATAGGC  

                    3'-CCATAUAUATCCG-GCG 

+215 

[-209] 

+294 

[-130] 

+235 

[-189] 
-110 

ON7 

ON8 

 5'-TGCACA-GGTAUAUATAGGC 

                    3'-CCATAUAUATCCG-GCGTAT 

+229 

[-195] 

+294 

[-130] 

+579 

[+155] 
+220 

ON9 

ON10 

 5'-UGCACA-GGTAUAUATAGGC 

                    3'-CCATAUAUATCCG-GCGTAU 

+150 

[-274] 

+599 

[+175] 

+536 

[+112] 
+561 

ON11 

ON12 

 5'-UGCACA-GGTATATATAGGC 

                    3'-CCATATATATCCG-GCGTAU 

+207 

[-217] 

+426 

[+2] 

+535 

[+111] 
+330 

ON13 

ON14 

  5'-TGCACA-GGTATATATAGGC 

                     3'-CCATATATATCCG-GCGTAT 

+477 

[+53] 

+563 

[+139] 

+554 

[+130] 
+216 

ON15 

ON10 

                    5'-GGTAUAUATAGGC-CGCAUA  

                     3'-CCATAUAUATCCG-GCGTAU 

+243 

[-181] 

+593 

[+169] 

+536 

[+112] 
+462 

ON9 

ON16 

  5'-UGCACA-GGTAUAUATAGGC 

  3'- ACGTGU-CCATAUAUATCCG 

+294 

[-130] 

+599 

[+175] 

+623 

[+199] 
+504 

https://pubs.rsc.org/en/content/articlelanding/2019/ob/c9ob02111f#tab2fna
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Table S4. Quantification of DNA1:DNA2-recognition at 37 ℃ using a 5-fold molar excess of 

different double-stranded probes.a 

aExperiments were performed in triplicate. Conditions are described in Fig. 2. 

  

Probe Sequence % Recognition  

1:2 
                   5'-GGTAUAUATAGGC-3' 

                   3'-CCATAUAUATCCG-5' 
<5 

3:4 
          5'-ACA-GGTAUAUATAGGC-3' 

                    3'-CCATAUAUATCCG-GCG-5' 
<5 

5:6 
         5'-ACA-GGTAUAUATAGGC-3' 

                   3'-CCATAUAUATCCG-GCG-5' 
<5 

7:8 
 5'-TGCACA-GGTAUAUATAGGC-3' 

                   3'-CCATAUAUATCCG-GCGTAT-5' 
30 ± 6 

9:10 
 5'-UGCACA-GGTAUAUATAGGC-3' 

                    3'-CCATAUAUATCCG-GCGTAU-5' 
45 ± 6 

11:12 
 5'-UGCACA-GGTATATATAGGC-3' 

                     3'-CCATATATATCCG-GCGTAU-5' 
39 ± 4 

13:14 
 5'-TGCACA-GGTATATATAGGC-3' 

                    3'-CCATATATATCCG-GCGTAT-5' 
<5 

15:10 
                   5'-GGTAUAUATAGGC-CGCAUA-3' 

                   3'- CCATAUAUATCCG-GCGTAU-5' 
<5 

9:16 
 5'-UGCACA-GGTAUAUATAGGC-3' 

 3'-ACGTGU-CCATAUAUATCCG-5' 
<5 

17:18 
   5'-tGCAcA-GGTAUAUATAGGC-3' 

                   3'-CCATAUAUATCCG-GcGTAt-5' 
46 ± 5 

19:20 
   5'-tGcACa-GGUAUATAUAGGC-3' 

                  3'-CCAUAUATAUCCG-gCGtAt-5' 
43 ± 6 
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Supplemental discussion of dsDNA-targeting properties of ON7:ON8-ON13:ON14. We were 

initially surprised to observe that ON7:ON8, ON11:ON12 and – to a lesser extent ON13:ON14 – 

result in recognition of DNA1:DNA2 given that a net loss of eight base pairs ensues, i.e., the 13 

bps of the double-stranded probes and 33 bps of DNA1:DNA2 denature to form two 19-mer probe-

target duplexes, each featuring a 4-mer and a 10-mer overhang (Fig. S26 - left). We speculate that 

i) the 1-3 outermost base pairs at each end of DNA1:DNA2 are subject to end-fraying effectsS7 

and thus only contribute minimally to the overall duplex stability, whereas ii) the overhangs in the 

probe duplexes and probe-target duplexes reduce fraying due to capping effects, such that the 

actual energy loss upon recognition of DNA1:DNA2 more closely corresponds to a loss of 2-6 

bps. We further speculate that this net loss of base pairs is negated using affinity-enhancing 

modifications and/or an excess of probe.   

Analogously, recognition of DNA1:DNA2 by ON3:ON4 or ON5:ON6 would entail a net 

loss of 14 bps, i.e., the 13 bps of the double-stranded probes and the 33 bps of DNA1:DNA2 being 

denatured to form two 16-mer duplexes, each encompassing a 7-mer and a 10-mer single-stranded 

overhang (Fig. S26 - right). Taking end-fraying effects into account, the loss in energy likely 

corresponds more closely to 8-12 bps, which, in contrast, cannot be negated using an excess of 

probe and/or by incorporating 2-3 affinity-enhancing modifications in each probe strand.  

To test this hypothesis, ON7:ON8-ON13:ON14 were incubated with an extended version 

of DNA1:DNA2, i.e., a 39-mer dsDNA target in which three additional base pairs are added to 

each end (Fig. S27). Recognition is expected to result in a net loss of 14 bps (and 8-12 bps if end-

fraying effects as discussed above are considered). Indeed, recognition of DNA1:DNA2 is not 

observed with ON7:ON8, ON11:ON12 or ON13:ON14, while less efficient recognition 
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(compared to recognition of DNA1:DNA2) is observed with ON9:ON10, thus supporting the 

hypothesis (Fig. S27). 

 

 

Figure S26. Conceptual illustration of dsDNA-recognition using toehold probes.  

 

   

 

 

Net loss of base pairs: 

13 + 33 – 19 – 19 = 8 bps 

Net loss of base pairs: 

13 + 33 – 16 – 16 = 14 

bps 

6 6  13  13 3 3

  

33 33 

4

  

4 10 19 

19 10 16 

7 

7 10 

10 16 

= 2'-O-(pyren-1-yl)methyl-RNA monomers. 
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Figure S27. (a) Representative gel electrophoretograms from recognition experiments in which 

39-mer dsDNA target DNA1#:DNA2# was incubated with a 5-fold molar excess of various 

probes. DNA1# = 5'-TCA AAG CTG CAC AGG TAT ATA TAG GCC GCA TAT GCA AGT and 

DNA2# = 3'-AGT TTC GAC GTG TCC ATA TAT ATC CGG CGT ATA CGT TCA. PTD = probe-

target duplex. (b) Histogram depicting averaged results from at least three independent recognition 

experiments with error bars representing standard deviation. Conditions: 3'-DIG-labeled 

DNA1#:DNA2# (50 nM) was incubated with a 5-fold molar excess of the specified probe in 

HEPES buffer (50 mM HEPES, 100 mM NaCl, 5 mM MgCl2, pH 7.2, 10% sucrose, 1.44 mM 

spermine tetrahydrochloride) for 17 h at 37 C.  

 

(a) 

(b) 

DNA1#:DNA2# |        +        |        +         |         +         |        +        | 

PTDs 

dsDNA 
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Figure S28. (a) Representative gel electrophoretograms from experiments in which DNA1:DNA2 

was incubated with different Invader probes under heat-shock conditions. PTD = probe-target 

duplexes. (b) Histogram depicting averaged results from at least three independent recognition 

experiments with error bars representing standard deviation. DIG-labeled 33-mer target 

DNA1:DNA2 (50 nM) was mixed with a 5-fold molar excess of different double-stranded probes 

in HEPES buffer (100 mM NaCl, 5 mM MgCl2, 10% sucrose, 1.4 mM spermine 

tetrahydrochloride, pH 7.2), briefly heated (3 min, 90 °C), then cooled to 37 C and incubated at 

37 C for 17 h. Results are tabulated in Table S5. 

 

  

 

(a) 

(b) 
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Table S5. Quantification of DNA1:DNA2-recognition using a 5-fold molar excess of various 

double-stranded probes under heat-shock conditions.a 

aExperiments were performed in triplicate. Conditions are described in Fig. S28. 

  

Probe Sequence % Recognition  

1:2 
                   5'-GGTAUAUATAGGC-3' 

                   3'-CCATAUAUATCCG-5' 
<5 

3:4 
          5'-ACA-GGTAUAUATAGGC-3' 

                    3'-CCATAUAUATCCG-GCG-5' 
<5 

5:6 
         5'-ACA-GGTAUAUATAGGC-3' 

                   3'-CCATAUAUATCCG-GCG-5' 
<5 

7:8 
 5'-TGCACA-GGTAUAUATAGGC-3' 

                   3'-CCATAUAUATCCG-GCGTAT-5' 
38 ± 4 

9:10 
 5'-UGCACA-GGTAUAUATAGGC-3' 

                    3'-CCATAUAUATCCG-GCGTAU-5' 
67 ± 4 

11:12 
 5'-UGCACA-GGTATATATAGGC-3' 

                     3'-CCATATATATCCG-GCGTAU-5' 
22± 1 

13:14 
 5'-TGCACA-GGTATATATAGGC-3' 

                    3'-CCATATATATCCG-GCGTAT-5' 
<5 

15:10 
                   5'-GGTAUAUATAGGC-CGCAUA-3' 

                   3'- CCATAUAUATCCG-GCGTAU-5' 
76± 5 

9:16 
 5'-UGCACA-GGTAUAUATAGGC-3' 

 3'-ACGTGU-CCATAUAUATCCG-5' 
75± 1 

17:18 
   5'-tGCAcA-GGTAUAUATAGGC-3' 

                   3'-CCATAUAUATCCG-GcGTAt-5' 
55 ± 4 

19:20 
   5'-tGcACa-GGUAUATAUAGGC-3' 

                  3'-CCAUAUATAUCCG-gCGtAt-5' 
100 
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Figure S29. Representative gel electrophoretograms from recognition experiments in which 

DNA1:DNA2 (dsDNA, 50 nM) was incubated with a 5-fold molar excess of individual probe 

strands ON7-ON16 at 37 °C. Experimental conditions are as described in Fig. 2. PTD = probe-

target duplex. 

 

 

 

 

  

dsDNA 

  PTDs 

ssDNA  

DNA1:DNA2 |      +      |      +      |      +      |      +      |      +       |      +      |      +      |      +      |      +      |      +      |     +     |     -     |     -     |  
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Figure S30. Representative electrophoretograms from dose-response experiments in which 

DNA1:DNA2 (50 nM) was incubated with a variable excess of a) ON7:ON8 or b) ON9:ON10 at 

37 C. Experimental conditions are as described in Fig. 2.  

  

(a) ON7:ON8 

(b) ON9:ON10 

dsDNA 

PTDs 

dsDNA 

PTDs 
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Figure S31. Time-course experiments in which DNA1:DNA2 (50 nM) was incubated with a 5-

fold excess of toehold Invader probes ON7:ON8 or ON9:ON10 at 37 °C in HEPES buffer (100 

mM NaCl, 5 mM MgCl2, 10% sucrose, 1.44 mM spermine tetrahydrochloride, pH 7.2). Aliquots 

were taken at the specified time-points, flash-frozen and stored in liquid N2 until electrophoresis 

was performed as described in Fig. 2. 
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Figure S32. Histogram depicting averaged results from at least three experiments in which pre-

annealed 3'-DIG-labelled MM1-MM3 were incubated with a 5-fold molar excess of various pre-

annealed Invader probes at 37 C for 17 h in HEPES buffer as outlined in Fig. 2. Error bars 

represent standard deviation. For representative electrophoretograms, see Figs. 4 and 5. Sequences 

of MM1-MM3 are shown in Table S6.  

 

 

 

 

 

 

 

  

ON7:ON8              ON9:ON10          ON17:ON18           ON19:ON20 
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Table S6. Thermal denaturation temperatures (Tms) of MM1-MM3, as well as duplexes between 

individual probe strands ON7 or ON8 and the corresponding mismatched DNA strands. TA values 

for recognition of MM1-MM3 by ON7:ON8 are also shown.a 

a Position of mismatched base pairs relative to ON7:ON8 highlighted in yellow. TA is calculated 

for ON7:ON8 (Tm = 44.0 °C). Experimental conditions are as described in Table 1. For a definition 

of TA, see the main manuscript. MM1 = DNA3:DNA4, MM2 = DNA5:DNA6, and MM3 = 

DNA7:DNA8. For the corresponding thermal denaturation curves, see Fig S23. 

 

 

Table S7. Thermal denaturation temperatures (Tms) of MM1-MM3, as well as, duplexes between 

individual probe strands ON9 or ON10 and the corresponding mismatched DNA strands. TA 

values for recognition of MM1-MM3 by ON9:ON10 are also shown.a 

a Position of mismatched base pairs relative to probe highlighted in yellow. TA is calculated for 

ON9:ON10 (Tm = 49.0 °C). Experimental conditions are as described in Table 1. For a definition 

of TA, see the main manuscript. MM1 = DNA3:DNA4, MM2 = DNA5:DNA6, and MM3 = 

DNA7:DNA8. For the corresponding thermal denaturation curves, see Fig. S23. 

 

  Tm (°C)  

DNA Sequence dsDNA  
5'-DNA 

vs ON8 

3'-DNA 

vs ON7  

TA 

(°C) 

DNA1 

DNA2 

  5'-AAGCTG CAC AGG TAT ATA TAG GCC GCA TATGCA-3' 

  3'-TTCGAC  GTG TCC ATA TAT ATC  CGG CGT ATACGT-5' 
72.0 67.0 60.0 11.0 

DNA3 

DNA4 

  5'-AAGCTG CAC AGG TAT TTA TAG GCC GCA TATGCA-3' 

  3'-TTCGAC  GTG TCC ATA AAT ATC CGG CGT  ATACGT-5' 
74.0 64.5 57.5 4.0 

DNA5 

DNA6 

  5'-AAGCTG GAC AGG TAT ATA TAG GCC GCT TATGCA-3' 

  3'-TTCGAC  CTG TCC ATA TAT  ATC CGG CGA ATACGT-5' 
72.0 66.0 58.0 8.0 

DNA7 

DNA8 

  5'-AAGCTG GAC AGG TAT TTA TAG GCC GCT TATGCA-3' 

  3'-TTCGAC  CTG TCC  ATA AAT ATC CGG CGA ATACGT-5' 
72.5 62.5 49.0 -5.0 

  Tm (°C)  

DNA Sequence dsDNA  
5'-DNA 

vs ON10 

3'-DNA 

vs ON9 

TA 

(°C) 

DNA1 

DNA2 

  5'-AAGCTG CAC AGG TAT ATA TAG GCC GCA TATGCA-3' 

  3'-TTCGAC  GTG TCC ATA TAT ATC  CGG CGT ATACGT-5' 
72.0 75.5 75.5 30.0 

DNA3 

DNA4 

  5'-AAGCTG CAC AGG TAT TTA TAG GCC GCA TATGCA-3' 

  3'-TTCGAC  GTG TCC ATA AAT ATC  CGG CGT ATACGT-5' 
74.0 72.0 67.5 16.5 

DNA5 

DNA6 

  5'-AAGCTG GAC AGG TAT ATA TAG GCC GCT TATGCA-3' 

  3'-TTCGAC  CTG  TCC ATA TAT ATC CGG CGA ATACGT-5' 
72.0 72.0 68.0 19.0 

DNA7 

DNA8 

  5'-AAGCTG GAC AGG TAT TTA TAG GCC GCT TATGCA-3' 

  3'-TTCGAC  CTG TCC  ATA AAT ATC CGG CGA ATACGT-5' 
72.5 72.0 59.0 9.5 
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Additional discussion of enthalpic and entropic parameters observed for ON17:ON18. The 

favorable ΔG
310
rec 

 value for recognition of DNA1:DNA2 using probe ON17:ON18 (Table 2) is a 

consequence of a highly favorable change in enthalpy (ΔHrec = -342 kJ/mol), Table S8), which only is 

partially offset by an unfavorable change in entropy (-TΔS
310
𝑟𝑒𝑐

 +279 kJ/mol, Table S9). 

 

Table S8. Change in enthalpy (ΔH) upon formation of probe duplexes and duplexes between 

individual probe strands and DNA1 or DNA2. The calculated change in reaction enthalpy upon 

probe-mediated recognition of 33-mer target DNA1:DNA2 (ΔHrec) is also shown.a 

a ΔΔH is calculated relative to the unmodified 33-mer target DNA duplex DNA1:DNA2 (ΔH = -

518 kJ/mol). ΔHrec = ΔH (5'-probe:DNA2) + ΔH (3'-probe:DNA1) - ΔH (probe duplex) - ΔH 

(DNA1:DNA2). For experimental conditions, see Table 1. 

 

 

Table S9. Change in entropy at 310 K (-TΔS310) upon formation of probe duplexes and duplexes 

between individual probe strands and DNA1 or DNA2. The calculated change in reaction entropy 

upon probe-mediated recognition of 33-mer target DNA1:DNA2 (-TΔS
310
𝑟𝑒𝑐

) is also shown.a 

a Δ(TΔS310) is calculated relative to the unmodified 33-mer target DNA duplex DNA1:DNA2 (-

TΔS310 = 424 kJ/mol). -TΔS
310
𝑟𝑒𝑐

= Δ(TΔS310) (5'-probe:DNA2) + Δ(TΔS310) (3'-probe:DNA1) - 

Δ(TΔS310) (probe duplex). For experimental conditions, see Table 1. 

  ΔH [ΔΔH] (kJ/mol)  

Probe Sequence 
probe 

duplex 

5'-probe  

vs DNA2 

3'-probe 

vs DNA1 

ΔHrec 

(kJ/mol) 

ON17 

ON18 

5'-tGCAcA-GGTAUAUATAGGC 

                3'-CCATAUAUATCCG-GcGTAt 

-394 

[+124] 

-608 

[-90] 

-646 

[-128] 
-342 

ON19 

ON20 

5'-tGcACa-GGUAUATAUAGGC 

               3'-CCAUAUATAUCCG-gCGtAt 
-b 

-743 

[-225] 

-524 

[-6] 
nd 

  -TΔS310 [Δ(TΔS310)] (kJ/mol)  

Probe Sequence 
probe 

duplex 

5'-probe  

vs DNA2 

3'-probe 

vs DNA1 

-TΔS
𝟑𝟏𝟎
𝒓𝒆𝒄

 

(kJ/mol) 

ON17 

ON18 

5'-tGCAcA-GGTAUAUATAGGC 

                3'-CCATAUAUATCCG-GcGTAt 

+339 

[-85] 

+504 

[+80] 

+538 

[+114] 
+279 

ON19 

ON20 

5'-tGcACa-GGUAUATAUAGGC 

               3'-CCAUAUATAUCCG-gCGtAt 
-b 
 

+620 

[+196] 

+420 

[-4] 
nd 
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Figure S33. Quantification of at least three independent recognition experiments using model 

dsDNA target DNA1:DNA2 (50 nM) and a 5-fold molar excess of various Invader probes. Error 

bars represent standard deviation. Experimental conditions are as outlined in Fig. 2.  

 

 

 

 

 

 

  ON7:ON8    ON9:ON10  ON17:ON18 ON19:ON20 
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Figure S34. Representative electrophoretograms from experiments in which DNA1:DNA2 (50 

nM) was incubated with a variable excess of LNA-modified toehold Invader probes: a) 

ON17:ON18 and b) ON19:ON20. Experimental conditions are as described in Fig. 2.   

  

(a) ON17:ON18 

(b) ON19:ON20 

dsDNA 

PTDs 

dsDNA 

PTDs 
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Figure S35. Dose-response curves for recognition of DNA1:DNA2 by LNA-modified Invader 

probes ON17:ON18 or ON19:ON20. Curves are constructed based on the electrophoretograms 

shown in Fig. S34. Experimental conditions are as in Fig. 2. 

 

 

Figure S36. Time-course for recognition of DNA1:DNA2 using LNA-modified toehold Invader 

probes. DNA1:DNA2 (50 nM) was incubated with 5-fold molar excess of ON17:ON18 or 

ON19:ON20 at 37 °C in HEPES buffer (100 mM NaCl, 5 mM MgCl2, 10% sucrose, 1.44 mM 

spermine tetrahydrochloride, pH 7.2). Aliquots were taken at the specified time-points, flash-

frozen, and stored in liquid N2 until being resolved by gel electrophoresis as described in Fig. 2. 
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Figure S37. Representative gel eletrophoretograms from recognition experiments in which a 5-

fold molar excess of single-stranded probes ON17-ON20 was incubated with DNA1:DNA2. 

Experimental conditions are as described in Fig. 2. PTDs = probe-target duplexes.  

  

  

DNA1:DNA2 |     +     |      +      |      +      |      +      |      +       |     -     |    -    |  

dsDNA 

 
PTDs 

ssDNA  
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Table S10. Thermal denaturation temperatures (Tms) of MM1-MM3 as well as duplexes between 

individual probe strands ON17 or ON18 and the corresponding mismatched DNA strands. TA 

values for recognition of MM1-MM3 by ON17:ON18 are also shown.a 

a Position of mismatched base pairs relative to probe highlighted in yellow. TA values are 

calculated relative to ON17:ON18 (Tm = 47.5 °C). Experimental conditions are as described in 

Table 1. For a definition of TA, see the main manuscript. MM1 = DNA3:DNA4, MM2 = 

DNA5:DNA6, and MM3 = DNA7:DNA8. For representative denaturation curves, see Fig. S24. 

 

 

Table S11. Thermal denaturation temperatures (Tms) of MM1-MM3 as well as duplexes between 

individual probe strands ON19 or ON20 and the corresponding mismatched DNA strands.a 

a Position of mismatched base pairs relative to probe highlighted in yellow. Experimental 

conditions are as described in Table 1. TA values could not be calculated since ON19:ON20 did 

not display a transition. MM1 = DNA3:DNA4, MM2 = DNA5:DNA6, and MM3 = DNA7:DNA8. 

For representative denaturation curves, see Fig. S24. 

  Tm (°C)  

DNA Sequence dsDNA 
5'-DNA 

vs ON18 

3'-DNA 

vs ON17 

TA 

(°C) 

DNA1 

DNA2 

  5'-AAG CTG CAC AGG TAT ATA TAG GCC GCA TAT GCA -3' 

  3'-TTC  GAC GTG TCC ATA TAT ATC CGG CGT ATA CGT -5' 
72.0 73.0 71.5 25.0 

DNA3 

DNA4 

  5'-AAG CTG CAC AGG TAT TTA TAG GCC GCA TAT GCA -3' 

  3'-TTC  GAC GTG TCC ATA AAT ATC CGG CGT ATA CGT -5' 
74.0 70.0 66.0 14.5 

DNA5 

DNA6 

  5'-AAG CTG GAC AGG TAT ATA TAG GCC GCT TAT GCA -3' 

  3'-TTC  GAC CTG TCC ATA TAT ATC CGG CGA ATA CGT -5' 
72.0 71.5 65.0 17.0 

DNA7 

DNA8 

  5'-AAG CTG GAC AGG TAT TTA TAG GCC GCT TAT GCA -3' 

  3'-TTC  GAC CTG TCC ATA AAT ATC CGG CGA ATA CGT -5' 
72.5 68.5 56.0 4.5 

  Tm (°C) 

DNA Sequence dsDNA  
5'-DNA 

vs ON20 

3'-DNA 

vs ON19 

DNA1 

DNA2 

  5'-AAG CTG CAC AGG TAT ATA TAG GCC GCA TAT GCA -3' 

  3'-TTC  GAC GTG TCC ATA TAT ATC CGG CGT ATA CGT -5' 
72.0 79.5 78.0 

DNA3 

DNA4 

  5'-AAG CTG CAC AGG TAT TTA TAG GCC GCA TAT GCA -3' 

  3'-TTC  GAC GTG TCC ATA AAT ATC CGG CGT ATA CGT -5' 
74.0 76.5 71.0 

DNA5 

DNA6 

  5'-AAG CTG GAC AGG TAT ATA TAG GCC GCT TAT GCA -3' 

  3'-TTC  GAC CTG TCC ATA TAT ATC CGG CGA ATA CGT -5' 
72.0 76.5 68.5 

DNA7 

DNA8 

  5'-AAG CTG GAC AGG TAT TTA TAG GCC GCT TAT GCA -3' 

  3'-TTC  GAC CTG TCC ATA AAT ATC CGG CGA ATA CGT -5' 
72.5 73.5 59.5 
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Table S12. Sequence and Tm of DNA hairpin DH1 used in this study.a 

 

 

 

a Experimental conditions are as stated in Table 1. Representative thermal denaturation curves 

are shown in Fig. S38.  

 

 

 

Figure S38. Representative thermal denaturation profiles of 33-mer dsDNA hairpin DH1 recorded 

in medium salt buffer at strand concentrations of 0.5 μM, 1.0 μM and 5 μM. The observation of 

near-identical concentration-independent Tm values suggests that an intramolecular unimolecular 

hairpin structure is formed. Experimental conditions are as described in Table 1. 

 

 

 

DNA target sequence Tm (°C) 

DH1 

 

81 

DH1 (5 µM) 

DH1 (1.0 µM) 

DH1 (0.5 µM) 
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Figure S39. Representative electrophoretograms from recognition experiments in which DH1 (50 

nM) was incubated with a variable excess of a) ON9:ON10, b) ON17:ON18 or c) ON19:ON20. 

Experimental conditions are as described in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

(a)  ON9:ON10 

(b)  ON17:ON18 

(c)  ON19:ON20 

RC 

DH1 

    -      1x       5x     10x    50x  100x 200x  500x 

-       1x      5x     10x    50x  100x  200x 500x 

-       1x     5x     10x    50x 100x  200x  500x 

RC 

DH1 

RC 

DH1 
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Table S13. Sequences of probes used in FISH experiments, as well as Tms of probe duplexes and 

duplexes between individual probe strands and DNA targets.a 

a ∆Tm is calculated relative to the unmodified DNA9:DNA10 duplex (Tm = 66.0 °C). For the 

sequence of DNA9:DNA10, see Table S14. Conditions are as described in Table 1.  

b Values are based on a single measurement, due to limited probe access.   

 nd = not determinable; nt = no transition 

 

 

Table S14. Thermal denaturation temperatures (Tms) of complementary DNA9:DNA10 and non-

complementary target DNA11:DNA12, as well as duplexes between individual DNA strands and 

individual probe strands.a 

a Conditions are as described in Table 1. The 27-mer mixed-sequence target region within 

DNA9:DNA10 is italicized. Positions highlighted in yellow denote the position of mismatched 

base pairs relative to DYZ-OPTu:DYZ-OPTd.      

  

  Tm [ΔTm] (C)  

Probe Sequence 
probe 

duplex 

5'-probe  

vs DNA10 

3'-probe 

vs DNA9 

TA 

(°C) 

DYZ-OPTu 

DYZ-OPTd 

  5'-Cy3-TgTgTG-TUAUATGCTGUTCTC-3' 

                        3'-AAUAUACGACAAGAG-TCgGgA-Cy3-5' 
nt 66.0 

[0.0] 

69.0 

[+3.0] 
nd 

DYZ-REFu 

DYZ-REFd 

                  5'-Cy3-TUA UAT GCT GUT CTC-3'  

                        3'- AAU AUA CGA CAA GAG-Cy3-5' 56.0b 61.0b 68.0b +7.0 

  Tm (°C) 

DNA Sequence dsDNA 
5'-DNA: 

DYZ-OPTd 

3'-DNA:  

DYZ-OPTu 

DNA9 

DNA10 

5'-TGAC TGT GTG TTA TAT GCT GTT CTC AGC CCT TGAC 

3'-ACTG ACA CAC AAT ATA CGA CAA GAG TCG GGA ACTG 
66.0 69.0 66.0 

DNA11 

DNA12 

5'-TGAC TGT GTC TTA TAT GGT GTT CTC TGC CCT TGAC 

3'-ACTG ACA CAG AAT ATA CCA CAA GAG ACG GGA ACTG 
66.0 56.0 51.0 
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Figure S40. (a) Representative thermal denaturation curves for toehold Invader probe DYZ-OPT 

(DYZ-OPTu:DYZ-OPTd), duplexes between individual probe strands and single-stranded (non-

)complementary DNA targets, as well as DNA9:DNA10 and DNA11:DNA12 (the latter of which 

differs in sequence at three positions relative to DNA9:DNA10). (b) Representative thermal 

denaturation curves for toehold Invader probe DYZ-REFu:DYZ-REFd, and duplexes between 

individual probe strands and single-stranded complementary DNA targets, DNA9:DNA10. For 

sequences see Table S14. Conditions are as outlined in Table 1. 

 

  

(a) 

(b)  
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Table S15. Illustration of matched or mismatched probe-target duplexes that would ensue upon 

recognition of complementary target DNA9:DAN10 or triply-mismatched target DNA11:DNA12 

using DYZ-OPT. Positions highlighted in yellow denote the position of mismatched base pairs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

DNA Sequence 

DYZ-OPTu 

DNA10 

 5'-Cy3-TgT gTG-TUA UAT GCT GUT CTC 

3'-ACTG ACA CAC AAT ATA CGA CAA GAG TCG GGA ACTG 

DNA9 

DYZ-OPTd 

5'-TGAC TGT GTG TTA TAT GCT GTT CTC AGC CCT TGAC 

             3'-AAU AUA CGA CAA GAG-TCg GgA-Cy3-5' 

DYZ-OPTu 

DNA12 

 5'-Cy3-TgT gTG-TUA UAT GCT GUT CTC 

3'-ACTG ACA CAG AAT ATA CCA CAA GAG ACG GGA ACTG 

DNA11 

DYZ-OPTd 

5'-TGAC TGT GTC TTA TAT GGT GTT CTC TGC CCT TGAC 

             3'-AAU AUA CGA CAA GAG-TCg GgA-Cy3-5' 
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Figure S41. Representative electrophoretograms from experiments in which a 5-fold molar excess 

of DYZ-OPT was incubated with complementary DNA9:DNA10 or non-complementary dsDNA 

target DNA11:DNA12 (see Table S14 for sequences of DNA9:DNA10, and DNA11:DNA12). 

Pre-annealed 3'-DIG-labeled targets (50 nM) were incubated with pre-annealed Invader probes at 

37 °C for 17 h in HEPES buffer as described in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

dsDNA 

PTDs 

DNA9:DNA10 | +DYZ-OPT   DNA11:DNA12 | +DYZ-OPT 
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Figure S42. Concentration dependence of DYZ-OPT-produced FISH signals under non-

denaturing conditions. Images from FISH experiments using fixed male bovine kidney cells and 

varying quantities of LNA-modified toehold Invader probe DYZ-OPT, i.e., 30 ng (top left), 15 ng 

(top right), 6 ng (bottom left), and 3 ng (bottom right) per 200 µL of 1X PCR buffer. Conditions 

are otherwise as specified in Fig. 8. Substantial amounts of background signals were observed 

when using 6-30 ng DYZ-OPT. Accordingly, 3 ng of DYZ-OPT per 200 µL of 1X PCR buffer 

was selected as an appropriate concentration.  
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Figure S43. Concentration dependence of DYZ-OPT-produced FISH signals under denaturing 

conditions. Images from FISH experiments using fixed male bovine kidney cells and varying 

amounts of LNA-modified toehold Invader probe DYZ-OPT, i.e., 30 ng (top left), 15 ng (top 

right), 6 ng (bottom left), and 1.5 ng (bottom right) per 200 µL of 1X PCR buffer. Substantial 

levels of background signal was observed when DYZ-OPT was used in amounts ≥6 ng per 200 

μL of 1X PCR buffer. Fixed isolated nuclei from male bovine kidney cells were incubated with 

DYZ-OPT for 5 min at 80 °C in a Tris buffer (20 mM Tris-Cl, 100 mM KCl, pH 8.0) and 

counterstained with DAPI. Images were obtained by overlaying images from Cy3 (red) and DAPI 

(blue) channels and adjusting the exposure. Nuclei were viewed at 60X magnification using a 

Nikon Eclipse Ti-S inverted microscope.  
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Figure S44. Images from FISH experiments in which LNA-modified toehold Invader probe DYZ-

OPT was incubated with isolated nuclei from a female bovine endothelial cell line (which lacks 

the DYZ-1 target region) under non-denaturing using 15 ng of DYZ-OPT per 200 µL of incubation 

buffer. Conditions are as specified in Fig. 8. 
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