Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Enhanced Synthesis of oxo-Verdazyl Radicals Bearing Sterically-and Electronically-Diverse C3-Substitents

Rebecca O. Fuller, *^a Madeleine R. Taylor,^a Margot Duggin,^a Alex C. Bissember,^a Allan J. Canty,^a Martyna M. Judd, ^b Nicholas Cox, ^b Stephen A. Moggach,^c and Gemma F. Turner^c

a School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia

E-mail: rebecca.fuller@utas.edu.au

b Research School of Chemistry, The Australia National University, Australian Capital Territory, Australia

c School of Molecular Sciences - Chemistry, The University of Western Australia, Crawley, Western Australia, Australia

Supporting Information

Table of Contents

Ι.	X-ray Crystallography	S–2
II.	EPR Spectra and Thin Layer Chromatography Analysis	S–5
III.	NMR Spectra	S- 13
IV.	Computational Details	S- 62

I. X-ray Crystallography

	1b	2b	7b	9b	9c
Chemical formula	$C_{19}H_{22}N_4O_3$	C ₁₉ H ₂₂ N ₄ O ₃	C ₁₉ H ₂₂ N ₄ O	C ₁₅ H ₁₆ N ₆ O	C ₉ H ₁₃ N ₅ O
Mr	354.40	354.40	322.40	296.34	207.24
Crystal system,	Triclinic, <i>P</i> 1	Orthorhombic, Pbca	Triclinic, <i>P</i> 1	Monoclinic, P2 ₁ /c	Monoclinic, C2/c
space group	400	100	100	100	100
Temperature (K)		100		100	100
a, b, c (Å)	8.5045 (3), 9.7970 (4),	10.9788 (1), 14.7369	7.5570 (2), 9.8051 (3),	11.4529 (3), 10.4903	19.7981 (3), 7.6021 (1),
	11.9453 (5)	(1), 22.0879 (2)	12.9529 (3)	(3), 12.3136 (3)	16.1604 (3)
<i>α, β,</i> γ (°)	108.084 (4), 100.023 (3), 101.754 (3)	90, 90, 90	103.486 (2), 91.205 (2), 111.252 (2)	90 98.940 (2), 90	90, 124.601 (2), 90
V (Å ³)	895.65 (7)	3573.68 (5)	863.92 (4)	1461.44 (7)	2002.05 (7)
Ζ	2	8	2	4	8
Radiation type	Cu <i>K</i> α	Cu <i>K</i> α	Cu Kα	Cu <i>K</i> α	Cu <i>K</i> α
µ (mm⁻¹)	0.74	0.75	0.63	0.74	0.79
Crystal	Clear, colourless block	Clear, colourless block	Clear, colourless plate	Clear, colourless block	Clear, colourless block
Crystal size (mm)	0.16 × 0.09 × 0.06	0.19 × 0.16 × 0.13	0.12 × 0.06 × 0.04	0.21 × 0.19 × 0.08	0.19 × 0.17 × 0.11
Diffractometer	XtaLab Synergy S	XtaLab Synergy S	XtaLab Synergy S	XtaLab Synergy S	XtaLab Synergy S
Absorption correction	Multi-scan (CrysAlis Pro)	Gaussian (CrysAlis Pro)	Multi-scan (CrysAlis Pro)	Multi-scan (CrysAlis Pro)	Multi-scan (CrysAlis Pro)
T _{min} , T _{max}	0.498, 1.000	0.804, 1.000	0.806, 1.000	0.538, 0.681	0.683, 1.000
No. of measured,					
independent and	31657, 3558, 2984	31632, 3642, 3296	30689, 3408, 2965	25448, 2957, 2593	28970, 2042, 1937
	0 126	0.042	0.043	0 101	0.064
Amor	73.0	75.6	74 7	74 7	74 0
$(\sin A/\lambda)$ (Å ⁻¹)	0.628	0.628	0.627	0.630	0.628
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.067, 0.201, 1.07	0.033, 0.085, 1.06	0.039, 0.097, 1.05	0.065, 0.210, 1.12	0.039, 0.105, 1.08
No. of reflections	3558	3642	3408	2957	2042
No. of parameters	239	0	221	202	139
No. of restraints	0.067, 0.201, 1.07	0	0	0	0
	H-atom parameters	H-atom parameters	H-atom parameters	H-atom parameters	H-atom parameters
H-atom treatment	constrained	constrained	constrained	constrained	constrained
$\Delta\rho_{max},\Delta\rho_{min}\;(e\; {\rm \AA}^{-3})$	0.46, -0.48	0.19, -0.21	0.19, -0.18	0.41, -0.42	0.28, -0.28

Table S1. Single crystal X-ray crystallographic data for **1b**, **2b**, **7b**, **9b** and **9c**. All data are collected at T = 100 K on a XtaLAB Synergy diffractometer using Cu $K\alpha$ radiation.

Computer programs: *CrysAlis PRO* 1.171.41.104a (Rigaku OD, 2021), SHELXT 2018/2 (Sheldrick, 2018), *SHELXL* 2018/3 (Sheldrick, 2015), Olex2 1.5 (Dolomanov *et al.*, 2009).

	11b	12b	12c	13c
Chemical formula	C13H14N4OS2	C ₂₅ H ₂₂ N ₄ OS ₂	$C_{20}H_{22}N_4OS\cdot H_2O$	C ₈ H ₁₁ N ₅ O ₃ S
<i>M</i> _r	306.40	458.58	382.49	257.28
Crystal system, space	Monoclinic, C2/c	Monoclinic, C2/c	Orthorhombic, Pnma	Monoclinic, P21/c
group	100	100	100	100
Temperature (K)	100	100	100	100
a, b, c (Å)	7.3232 (1), 19.6029 (2),	18.9089 (3), 11.6130 (2),	4.9308 (1), 19.1358 (5),	8.7388 (1), 8.7377 (1),
	10.4905 (2)	10.5619 (2)	20.4329 (5)	15.3935 (3)
<i>α, β</i> , γ (°)	90, 107.845 (2), 90	90, 90.812 (2), 90	90, 90, 90	90, 105.809 (2), 90
V (Å ³)	1433.52 (4)	2319.05 (7)	1927.94 (8)	1130.94 (3)
Ζ	4	4	4	4
Radiation type	Cu Ka	Cu <i>Κ</i> α	Cu <i>Κ</i> α	Cu Kα
µ (mm⁻¹)	3.38	2.28	1.68	2.64
Crystal	Clear, colourless block	Clear, colourless block	Clear, colourless needle	Clear, colourless block
Crystal size (mm)	0.26 × 0.12 × 0.09	0.35 × 0.24 × 0.18	0.29 × 0.05 × 0.03	0.03 × 0.03 × 0.03
Diffractometer	XtaLab Synergy S	XtaLab Synergy S	XtaLab Synergy S	XtaLab Synergy S
Absorption correction	Multi-scan (CrysAlis Pro)	Multi-scan (CrysAlis Pro)	Multi-scan (CrysAlis Pro)	Multi-scan (CrysAlis Pro)
T _{min} , T _{max}	0.644, 1.000	0.797. 1.000	0.850, 1.000	0.950, 1.000
No. of measured,				
independent and	21491, 1468, 1426	10618, 2302, 2154	13320, 1736, 1534	20676, 2293, 2078
observed reflections				
Rint	0.075	0.030	0.070	0.053
θ_{max}	75.1	74.9	67.3	73.1
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.628	0.628	0.598	0.627
$R[F^2 > 2\sigma(F^2)], wR(F^2),$				
S	0.032, 0.123, 1.14	0.033, 0.094, 1.06	0.136, 0.265, 1.28	0.050, 0.134, 1.09
No. of reflections	1468	2302	1736	2293
No. of parameters	93	146	121	156
No. of restraints	0	0	30	0
	H-atom parameters	H-atom parameters	H-atom parameters	H-atom parameters
H-atom treatment	constrained	constrained	constrained	constrained
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	0.280.39	0.32 -0.26	0.58 -0.40	0.80 0.80

Table S2. Single crystal X-ray crystallographic data for 11b, 12b, 12c and 13c. All data are collected at T = 100 K on a XtaLAB Synergy diffractometer using Cu $K\alpha$ radiation.

Computer programs: CrysAlis PRO 1.171.41.104a (Rigaku OD, 2021), SHELXT 2018/2 (Sheldrick, 2018), SHELXL 2018/3 (Sheldrick, 2015), Olex2 1.5 (Dolomanov et al., 2009).

Fig. S1: Structural representations of **1b**, **2b**, **11b** and **12b**. Thermal ellipsoids are set to 30 % probability. Nitrogen (blue); oxygen (red), carbon (grey) For clarity, hydrogen atoms and lattice solvent are omitted. Displacement of the ring systems are highlighted when looking side on to the N1-C6-N5 plane (lower). Centroids have been used to measure the distance from the ring system to the N1-C6-N5 plane. **1b** 2.425 Å and 2.108 Å; **2b** 0.661 Å and 2.348 Å; **9b** 2.285 Å and 1.525 Å (Fig. 6); **11b** 1.322 Å and 1.322 Å; **12b** 1.487 Å and 1.844 Å. Values are given for the orientation shown below, with the above the plane distance is reported first.

II. EPR spectra

Fig. S2: The first derivative X-band (CW) EPR spectrum (v = 9.696 GHz) of 1,5-dimethyl-3-(2-methoxyphenyl)-6-oxoverdazyl (**1d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 10 mW (18 dB attenuation) was used. The spectroscopic data matched previously reported [1]

[1] F. A. Neugebauer, H. Fischer and R. Siegel Chem. Ber. 121 815-822 1988

Fig. S3: The first derivative X-band (CW) EPR spectrum (v = 9.691 GHz) of 1,5-dimethyl-3-(3-methoxyphenyl)-6-oxoverdazyl (**2d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 10 mW (18 dB attenuation) was used.

Fig. S4: The first derivative X-band (CW) EPR spectrum (v = 9.699 GHz) of 1,5-dimethyl-3-(4-methoxyphenyl)-6-oxoverdazyl (**3d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 10 mW (12 dB attenuation) was used. Matched previously reported spectra [2].

[2] F. A. Neugebauer, H. Fischer, R. Siegel and C. Krieger, Chem. Ber. 116, 3461-3481 (1983);

Fig. S5: The first derivative X-band (CW) EPR spectrum (v = 9.688 GHz) of 1,5-dimethyl-3-(2-trifluoromethylphenyl)-6-oxoverdazyl (**4d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 3 mW (18 dB attenuation) was used.

Fig. S6: he first derivative X-band (CW) EPR spectrum (v = 9.682 GHz) of 1,5-dimethyl-3-(3-trifluoromethylphenyl)-6-oxoverdazyl (**5d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 6 mW (12 dB attenuation) was used.

Fig. S7: The first derivative X-band (CW) EPR spectrum (v = 9.695 GHz) of 1,5-dimethyl-3-(4-trifluoromethylphenyl)-6-oxoverdazyl (**6d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 6 mW (12 dB attenuation) was used.

Fig. S8: The first derivative X-band (CW) EPR spectrum (v =9.687 GHz) of 1,5-dimethyl-3-(2-methylphenyl)-6-oxoverdazyl (**7d**) in degassed chloroform at 298 K (blue trace) together with simulation (black trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 10 mW (18 dB attenuation) was used. Matched previously reported spectra [2].

Fig. S9: The first derivative X-band (CW) EPR spectrum (v = 9.669 GHz) of 1,5-dimethyl-3-(2-nitrobenzyl)-6-oxoverdazyl (**8d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 8 mW (18 dB attenuation) was used.

Fig. S10: The first derivative X-band (CW) EPR spectrum (v = 9.693 GHz) of 1,5-dimethyl-3-(2-pyridine)-6-oxoverdazyl (**9d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 6 mW (12 dB attenuation) was used. The spectroscopic data matched previously reported [3].

[3] C. L. Barr., P. A. Chase, R. G. Hicks, M. T. Lemaire and C. L. Stevens, *J. Org. Chem.*, **1999**, *64*, 8893-8897.

Fig. S11: The first derivative X-band (CW) EPR spectrum (v = 9.691 GHz) of 1,5-dimethyl-3-(2-methoxy-4-trifluoromethylphenyl)-6-oxoverdazyl (**10d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 10 mW (18 dB attenuation) was used.

Fig. S12: The first derivative X-band (CW) EPR spectrum (v = 9.686 GHz) of 1,5-dimethyl-3-(2-thiophene)-6-oxoverdazyl (**11d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 2 G and power of 6 mW (12 dB attenuation) was used.

Table S3. Linewidths (lw) and g -value (g) for the EPR simulations shown in Fig. S2-S12. Spectra were recorded with a modulation amplitude of 2 G. Simulations used hyperfine coupling constants $a(N_{2,4}) = 6.5$ G (18.2 MHz); $a(N_{1,5}) = 5.3$ G (14.9 MHz); $a(H_{CH}) = 5.3$ G (14.9 MHz) from the hyperfine coupling of the unpaired electron with four nitrogen atoms of the verdazyl ring (¹⁴N, I=1 abundance 99.6 %) with six hydrogen atoms (¹H, I=1/2, Natural abundance=99.98 %) on the methyl groups.

Entry	g	lw (G)	ν (GHz)
1d	2.0023	0.51	9.696
2d	2.0036	0.52	9.691
3d	2.0044	0.46	9.699
4d	2.0028	0.43	9.688
5d	2.0022	0.43	9.682
6d	2.0031	0.38	9.695
7d	2.0038	0.52	9.687
8d	2.0032	0.40	9.669
9d	2.0043	0.49	9.693
10d	2.0021	0.40	9.694
11d	2.0037	0.44	9.686

Fig. S13: The first derivative X-band (CW) EPR spectrum (v = 9.686 GHz) of 1,5-dimethyl-3-(2-methoxyphenyl)-6-oxoverdazyl (**9d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 0.1 G was used.

Fig. S14: The first derivative X-band (CW) EPR spectrum (v = 9.686 GHz) of 1,5-dimethyl-3-(2-pyridine)-6-oxoverdazyl (**9d**) in degassed chloroform at 298 K (black trace) together with simulation (blue trace) using EasySpin garlic package in MATLAB. A field modulation of 0.1 G was used.

Table S4. Hyperfine (a) and linewidth (lw) fitting parameters for EPR simulations of spectra of **1d**, **9d** and **11d**, which were measured degassed with N_2 in chloroform, and recorded with a modulation amplitude of 0.1 G to resolve the narrow features of the hyperfine. (lower) table is reproduced with hyperfine values given in SI units.

	Hyperfine (G)					lw (G)
	a(N _{2,4})	a(N _{1,5})	а(Н _{СН})	а(Н _{сн})	а(Н _{СН})	
1d	6.6	5.3	3.0	-	-	0.6
9d	6.5	5.6	5.2			0.8
11d	6.5	5.3	5.3	5.1	5.0	0.2

	Hyperfine (MHz)					lw (G)
	a(N _{2,4})	a(N _{1,5})	а(Н _{СН})	а(Н _{сн})	а(Н _{СН})	
1d	18.6	14.8	8.4	-	-	0.6
9d	18.2	15.7	14.6			0.8
11d	18.2	14.8	14.9	14.3	14.0	0.2

Table S5. Thin layer Chromatography Rf analysis of the verdazyl and leucoverdazyl compounds. The eluent used in most cases is 100% EtOAc. One exception is compound **9d**, the radical did not elute in 100 % EtOAc, and 1% MeOH in EtOAc was used instead.

	Rf		Rf
1d	0.85	leuco-1d	0.79
2d	0.82	leuco-2d	0.66
3d	0.79	leuco-3d	0.68
4d	0.86	leuco-4d	0.70
5d	0.86	leuco-5d	0.77
6d	0.86	leuco-6d	0.78
7d	0.83	leuco-7d	0.68
8d	0.86	leuco-8d	0.76
9d	0.73	leuco-9d	0.63
10d	0.83	leuco-10d	0.70
11d	0.85	leuco-11d	0.79

III. NMR spectra

Fig. S15: ¹H NMR of 1a

Fig. **S17:** ¹H NMR of **1b**

Fig. **S18:** ¹³C NMR of **1b**

Fig. S19: ¹H NMR 1b (crude) - used directly in ring closure

The crude **1b** contains a small amount of the monomethylated product and can be used directly in the synthesis of **1c** with little impact on the yield.

Spectrum of **1b** crystals (lower trace) on the day of collection; (upper trace) crystals two months later after storage in air.

Spectrum of in wet CDCl₃ **1b** (lower trace) and remeasured after 3 days **1b** (lower trace) ;

Fig. S22: ¹H NMR of **1**c

Fig. S23: ¹³C NMR of 1c

Fig. S24: ¹H NMR of 2a

Fig. S25: ¹³C NMR of 2a

Fig. S27: ¹³C NMR of 2b

Fig. S28: ¹H NMR of 2c

Fig. S31: ¹H NMR of 3b

Fig. S32: ¹³C NMR of 3b

Fig. S33: ¹H NMR 3b (crude) – used directly in ring closure

The crude 3b contains a small amount of the monomethylated product and can be used directly in the synthesis of 3c with little impact on the yield.

[le] 1.4 [rel] 0 <: 7,4431 5.6255 A.8580 12 3.7515 2.9439 ΗŃ NH 0.8 0.6 0.4 ĠМе 2 0.0 200 2 7.5 6.5 6.0 5.5 7.0 0 5.9493 2.0463 1.00003.0552 2.0262 1.9962 2 10 8 ò [ppm]

Fig. S34: ¹H NMR of 3c

Fig. **S35**: ¹³C NMR of **3**c

Fig. S36: ¹H NMR of 4a

Fig. S37: ¹³C NMR of 4a

Fig. S38: ¹⁹F NMR of 4a

Fig. S40: ¹³C NMR of 4b

Fig. S41: ¹⁹F NMR of 4b

Fig. S42: ¹H NMR of 4c

Fig. **S43**: ¹³C NMR of **4**c

Fig. S44: ¹⁹F NMR of 4c

Fig. S45: ¹H NMR of 5a

Fig. S46: ¹³C NMR of 5a

S-28

Fig. S47: ¹⁹F NMR of 5a

Fig. S48: ¹H NMR of 5b

Fig. S49: ¹³C NMR of 5b

Fig. S51: ¹H NMR of 5c

Fig. S53: ¹H NMR of 6a

Fig. S54: ¹³C NMR of 6a

Fig. S55: ¹⁹F NMR of 6a

Fig. S56: ¹H NMR of 6b

Fig. S57: ¹³C NMR of 6b

Fig. S58: ¹⁹F NMR of 6b

Fig. S59: ¹H NMR of 6c

Fig. S60: ¹³C NMR of 6c

Fig. S61: ¹⁹F NMR of 6c

Fig. S62: ¹H NMR of 7a

Fig. S63: ¹³C NMR of 7a

Fig. S65: ¹³C NMR of 7b

Fig. S66: ¹H NMR of 7c

Fig. S67: ¹³C NMR of 7c

Fig. S68: ¹H NMR of 8a

Fig. S69: ¹³C NMR of 8a

Fig. S70: ¹H NMR of 8b

Fig. S71: ¹³C NMR of 8b

Fig. S72: ¹H NMR of 8c

Fig. S73: ¹³C NMR of 8c

Fig. S74: ¹H NMR of 9a

Fig. S75: ¹³C NMR of 9a

Fig. S76: ¹H NMR of 9b

Fig. S77: ¹³C NMR of **9b**

Fig. S78: ¹H NMR of 9b decomposition

Fig. S79: ¹³C NMR of 9b decomposition

Fig. S80: ¹H NMR of 9c

Fig. S81: ¹³C NMR of 9c

Fig. S82: ¹H NMR of **10a**

Fig. S83: ¹³C NMR of **10**a

Fig. S84: ¹⁹F NMR of **10a**

Fig. S85: ¹H NMR of **10b**

Fig. S86: ¹³C NMR of **10b**

Fig. S87: ¹⁹F NMR of **10b**

Fig. S88: ¹H NMR of **10**c

Fig. S89: ¹³C NMR of **10c**

Fig. S90: ¹⁹F NMR of **10**c

Fig. S91: ¹H NMR of 11a

Fig. S92: ¹³C NMR of **11a**

Fig. S93: ¹H NMR of **11b**

Fig. S94: ¹³C NMR of **11b**

Fig. S95: ¹H NMR of **11c**

Fig. S96: ¹³C NMR of **11c**

¹H NMR (δ / ppm, DMSO-d₆): 7.93 (s, 1H NH), 7.52 (d, 1H J=4.97 Hz, ArH), 7.41(d, 1H, J= 2.83 Hz ArH), 7.11(t, 1H, J= 2.85 Hz ArH'), 6.93(d, br J=4.05 Hz CH), 3.24(s, 3H, CH'₃) 2.74(d, 3H, J=4.65 Hz, CH₃).

Fig. S98:¹³C HMR 1,5-dimethyl-3-(2-thiophene)-6-oxo-leucoverdazyl

¹³C NMR (δ / ppm, DMSO-*d*₆): 155.5(C=O), 140.1(C), 132.1(CH), 128.6(ArCH), 127.7(ArCH), 127.1(ArCH), 28.5(CH₃), 27.0(CH₃).

Fig. S99: ¹H NMR of **12b**

Fig. S100: ¹³C HMR 12b

Fig. S101: ¹H NMR of 12c

Fig. S102: ¹³C NMR of 12c

Fig. S103: ¹H NMR of 13a

Fig. S104: ¹³C NMR of 13a

Fig. S105: ¹H NMR of 13b

Fig. S106: ¹³C NMR of **13b**

Fig. S107: ¹H NMR of 13c

Fig. S108: ¹³C NMR of 13c

Fig. S109: ¹H NMR of 14b

Fig. S110: ¹³C NMR of 14b

Fig. S111: ¹H NMR of 14c

Fig. S112: ¹³C NMR of 14c

IV. Computational Details

Fig. S113: Gaussview diagrams and Energy parameters and Cartesian coordinates for calculated species

Energy parameters and Cartesian coordinates for calculated species

All calculations related to thermodynamic effects are obtained using B3LYP/BS1; single-point data, listed immediately after BS1 data and before coordinates, are calculated using BS2 and M06-2X incorporating Grimme's D3 computation as discussed in the manuscript.

Va E(RB3LYP) = -1579.04154272 Zero-point correction= 0.385986 (Hartree/Particle) Thermal correction to Energy= 0.412851 Thermal correction to Enthalpy= 0.413795 Thermal correction to Gibbs Free Energy= 0.323830 Sum of electronic and zero-point Energies= -1578.655557 Sum of electronic and thermal Energies= -1578.628692 Sum of electronic and thermal Enthalpies= -1578.627748 Sum of electronic and thermal Free Energies= -1578.717712 E(RM062X) = -684.024151901

C -0.45977 -5.24439 2.40165 C 0.82502 -5.75219 2.58147 C 1.88685 -4.87826 2.82703 C 1.67183 -3.49179 2.88187

C 0.39574 -2.97501 2.69778 C -0.68428 -3.85123 2.46877 H -1.28944 -5.91475 2.21558 H 0.99892 -6.81932 2.53421 H 2.8921 -5.27256 2.96958 H 2.50514 -2.81987 3.05869 H 0.23374 -1.90123 2.73445 C -2.04991 -3.41022 2.30377 H -1.84429 -1.34109 2.47344 N -2.47893 -2.17554 2.402 C -4.21622 -1.86806 0.67282 0 -5.26241 -1.26787 0.42394 C -4.45632 -0.99845 2.97902 H -3.98171 -0.00934 3.00009 H -5.49598 -0.89226 2.67085 H -4.40826 -1.44929 3.97215 C -3.96675 -2.34897 -1.69256 H -3.77138 -3.26284 -2.26101 H -5.03093 -2.12218 -1.73098 H -3.40034 -1.52103 -2.14237 N -3.78952 -1.89398 2.02756 N -3.55372 -2.56912 -0.3053 N -2.25011 -3.09427 -0.13456 H -1.56759 -2.36159 -0.35669 H -2.14704 -3.87367 -0.78569 C 1.61475 0.46408 -0.53728 C 1.04598 0.68598 0.71889 C 1.85552 1.03067 1.80045 C 3.23394 1.1453 1.62386 C 3.82727 0.92283 0.37163 C 2.99523 0.58316 -0.70501 H 0.98241 0.19112 -1.37561 H 1.41042 1.19633 2.77609 H 3.85948 1.41165 2.47245 H 3.43308 0.40726 -1.68461 C 5.32456 1.01873 0.19602 H 5.80934 0.06011 0.42405 H 5.5906 1.2812 -0.83295 H 5.75862 1.76837 0.8658 S-0.73856 0.61225 0.91194 0 -1.23085 -0.34654 -0.12371 O -0.95121 0.09182 2.31877 0 -1.25487 1.99296 0.74581 H -2.81997 -4.15448 2.13389

Vb

E(RB3LYP) = -1579.03833913 Zero-point correction= 0.385463 (Hartree/Particle) Thermal correction to Energy= 0.412623 Thermal correction to Enthalpy= 0.413567 Thermal correction to Gibbs Free Energy= 0.321736 Sum of electronic and zero-point Energies= -1578.652876 Sum of electronic and thermal Energies= -1578.625716 Sum of electronic and thermal Enthalpies= -1578.624772 Sum of electronic and thermal Free Energies= -1578.716603 E(RM062X) = -1578.96660998

C 0.03248 -3.05909 2.85982 C 1.3571 -3.40976 3.1052 C 2.29379 -3.34371 2.06862 C 1.90723 -2.93427 0.7858 C 0.58646 -2.58657 0.52981 C -0.36425 -2.63699 1.57125 H -0.69682 -3.10178 3.66191 H 1.66108 -3.73107 4.09704 H 3.32957 -3.6127 2.25545 H 2.6387 -2.89186 -0.01306 H 0.29111 -2.27346 -0.4669 C -1.75243 -2.26323 1.40282 H -1.88785 -1.60177 -0.56505 N -2.33001 -1.82449 0.32648 C -4.62918 -2.55073 0.76626 0 -5.67721 -2.2405 1.32632 C -4.03645 -0.15826 0.67967

H -3.38596 0.47615 0.0739 H -5.0804 0.01615 0.40839 H -3.89274 0.07304 1.74295 C -5.25663 -4.90276 0.82577 H -4.71537 -5.8444 0.94989 H -5.75 -4.64309 1.76762 H -6.02222 -5.02669 0.04989 N -3.71309 -1.56 0.38142 N -4.29428 -3.86116 0.474 N -3.45261 -4.09948 -0.63344 H -4.02136 -4.40989 -1.42199 H -2.82263 -4.86163 -0.39246 C 0.96253 -0.28967 -4.07968 C 0.50272 0.04855 -2.80966 C 1.40183 0.42915 -1.8074 C 2.76934 0.45582 -2.08716 C 3.2598 0.11043 -3.35925 C 2.33353 -0.25735 -4.34626 H 0.25618 -0.57173 -4.85427 H 1.03944 0.70785 -0.82749 H 3.46746 0.75034 -1.31184 H 2.6922 -0.52861 -5.33903 C 4.73502 0.1676 -3.66126 H 5.01842 -0.56666 -4.422 H 5.02257 1.15729 -4.03991 H 5.33746 -0.02627 -2.76539 S-1.25404-0.04599-2.42912 0 -1.44387 -1.43631 -1.80785 0 -1.52843 1.01264 -1.41723 0 -1.97239 0.0897 -3.7138 H -2.3926 -2.36633 2.28434

VI

E(RB3LYP) = -684.099370935 Zero-point correction = 0.257129 (Hartree/Particle) Thermal correction to Energy= 0.271229 Thermal correction to Enthalpy= 0.272173 Thermal correction to Gibbs Free Energy= 0.215410 Sum of electronic and zero-point Energies= -683.842242 Sum of electronic and thermal Energies= -683.828142 Sum of electronic and thermal Energies= -683.827198 Sum of electronic and thermal Free Energies= -683.883961 E(RM062X) = -684.031413942

C -0.46514 -5.18833 2.52142 C 0.85523 -5.58826 2.76774 C 1.88836 -4.65169 2.7058 C 1.60309 -3.31377 2.41356 C 0.28664 -2.91326 2.16089 C -0.7542 -3.84991 2.20715 H -1.26553 -5.91882 2.57625 H 1.06438 -6.62447 3.00986 H 2.91203 -4.96158 2.89136 H 2.4021 -2.5839 2.36985 H 0.09997 -1.87008 1.91528 C -2.19366 -3.48421 1.93803 H -1.96637 -1.47249 2.31203 N -2.61559 -2.24742 2.49409 C -4.1118 -1.68279 0.74885 0 -5.03716 -1.03268 0.2861 C -4.79497 -1.31903 3.08386 H -4.49447 -0.28485 3.28324 H -5.81691 -1.33002 2.71253 H -4.72741 -1.90755 3.99998 C -3.25337 -2.06022 -1.53999 H -3.98868 -2.76448 -1.94841 H -3.58798 -1.0387 -1.72455 H -2.28374 -2.21338 -2.02197 N -3.92745 -1.94258 2.08386 N -3.09269 -2.20689 -0.08188 N -2.47551 -3.43014 0.33761 H -1.59425 -3.54512 -0.16796 H -3.06218 -4.26585 0.16624 H -2.89332 -4.27214 2.25923

VI.p-TsO E(RB3LYP) = -1579.04878569 Zero-point correction= 0.389073 (Hartree/Particle) Thermal correction to Energy= 0.414914 Thermal correction to Enthalpy= 0.415858 Thermal correction to Gibbs Free Energy= 0.327784 Sum of electronic and zero-point Energies= -1578.659712 Sum of electronic and thermal Energies= -1578.633872 Sum of electronic and thermal Enthalpies= -1578.632928 Sum of electronic and thermal Free Energies= -1578.721001 E(RM062X) = -1578.98415492 C -0.76977 -5.33777 2.39045 C 0.45748 -5.92008 2.70937 C 1.58269 -5.11464 2.89788 C 1.47646 -3.72756 2.76653 C 0.25237 -3.14003 2.44363 C -0.87995 -3.94678 2.25555 H -1.64591 -5.96561 2.25068 H 0.53127 -6.99838 2.81435 H 2.5386 -5.56555 3.14854 H 2.34887 -3.09783 2.91429 H 0.18577 -2.0607 2.34824 C -2.22889 -3.3696 1.89989 H -1.92085 -1.42542 2.47419 N -2.59533 -2.1913 2.61463 C -4.32669 -1.79201 0.92717 0 -5.38397 -1.29088 0.55377 C -4.66835 -1.11401 3.27056 H -4.1958 -0.18466 3.60832 H -5.65719 -0.89164 2.87305 H -4.74754 -1.80379 4.11539 C -3.71258 -2.335 -1.41961 H -3.58175 -3.27788 -1.95858 H -4.72055 -1.96241 -1.58692 H -2.97858 -1.59988 -1.76797 N -3.87822 -1.73631 2.21724 N -3.58125 -2.57834 0.01913 N -2.26428 -3.02007 0.39409 H -1.54509 -2.26359 0.1551 H -2.05415 -3.85882 -0.16119 C 1.96651 0.50312 -0.81367 C 1.26839 0.60707 0.39455 C 1.9217 1.03573 1.55018 C 3.28009 1.35603 1.49409 C 4.00068 1.25702 0.29695 C 3.32045 0.82595 -0.85442 H 1.45804 0.16258 -1.71008 H 1.37404 1.10954 2.48336 H 3.7861 1.68735 2.39744 H 3.86026 0.74079 -1.79448 C 5.47413 1.58483 0.24199 H 6.07748 0.67286 0.14599 H 5.70968 2.21718 -0.6215 H 5.80184 2.10558 1.14677 S-0.49181 0.25944 0.43304 0 -0.65361 -1.00528 -0.38366 0 -0.835 0.02598 1.87312 0 -1.18783 1.41825 -0.17148

VII

H -3.01441 -4.11914 2.01292

E(RB3LYP) = -683.662036318 Zero-point correction= 0.240051 (Hartree/Particle) Thermal correction to Energy= 0.254918 Thermal correction to Enthalpy= 0.255862 Thermal correction to Gibbs Free Energy= 0.197270 Sum of electronic and zero-point Energies= -683.421985 Sum of electronic and thermal Energies= -683.407118 Sum of electronic and thermal Enthalpies= -683.406174 Sum of electronic and thermal Free Energies= -683.464766 E(RM062X) = -683.598954138

C 0.45048 -2.03299 -0.21007 C 1.83648 -1.94411 -0.19517 C 2.46306 -0.71393 0.04527 C 1.69823 0.43291 0.2707 C 0.30848 0.35272 0.25739 C -0.33109 -0.8809 0.02076 H -0.01429 -2.99384 -0.4078 H 2.4335 -2.83249 -0.37493 H 3.54713 -0.65297 0.05265 H 2.18224 1.38668 0.45477 H -0.29005 1.2419 0.43268 C -1.77918 -0.87869 0.03543 H -2.28579 0.06983 0.16926 N -2.51077 -1.94425 -0.097 C -4.59202 -3.17807 0.15554 0 -5.79795 -3.099 0.34921 C -4.60565 -0.72046 -0.19973 H -4.50457 -0.16837 0.74206 H -4.22976 -0.11755 -1.03102 H -5.65306 -0.95846 -0.36107 C -4.69039 -5.59531 0.47986 H -4.05501 -6.30499 1.01579 H -5.56041 -5.35351 1.08719 H -5.01878 -6.04348 -0.46598 N -3.88089 -1.98642 -0.16002 N -3.9178 -4.37379 0.24399 N -2.62829 -4.52696 -0.32052 H -2.69541 -4.98666 -1.23218 H -2.07643 -5.1233 0.29656

VIII

E(RB3LYP) = -684.108729219 Zero-point correction= 0.254162 (Hartree/Particle) Thermal correction to Energy= 0.268910 Thermal correction to Enthalpy= 0.269854 Thermal correction to Gibbs Free Energy= 0.211485 Sum of electronic and zero-point Energies= -683.854568 Sum of electronic and thermal Energies= -683.839819 Sum of electronic and thermal Enthalpies= -683.838875 Sum of electronic and thermal Free Energies= -683.897245 E(RM062X) = -684.029882824

C 0.40917 -2.02128 0. C 1.80433 -2.02128 0. C 2.50186 -0.81353 0. C 1.80421 0.39498 -0.0012 C 0.40938 0.39491 -0.00168 C -0.28822 -0.8133 -0.00068 H -0.14059 -2.97359 0.00045 H 2.35383 -2.97379 0.00132 H 3.60154 -0.81345 0.00063 H 2.35441 1.34713 -0.00126 H -0.14074 1.34719 -0.00263 C -1.82822 -0.81304 -0.00093 H -2.36122 0.11277 -0.06166 H -1.9777 -2.9066 0.14474 N -2.51067 -1.98137 0.07549 C -4.73307 -3.15027 0.13943 0 -6.16004 -3.13723 0.23149 C -4.81769 -0.6503 -0.03666 H -4.7304 -0.11837 0.88763 H -4.40583 -0.05984 -0.82826 H -5.84979 -0.84747 -0.23861 C -4.65956 -5.66024 0.2039 H -3.97005 -6.47815 0.18194 H -5.2174 -5.68841 1.11655 H -5.33007 -5.7366 -0.62645 N -4.05062 -1.98194 0.06301 N -3.97711 -4.49191 0.12747 N -2.44037 -4.50595 0.02833 H -2.04655 -4.45042 -0.75667 H -1.93964 -5.35974 0.17082

E(RB3LYP) = -684.098583939 Zero-point correction = 0.253779 (Hartree/Particle) Thermal correction to Energy= 0.268935 Thermal correction to Enthalpy= 0.269879 Thermal correction to Gibbs Free Energy= 0.210581 Sum of electronic and zero-point Energies= -683.844805 Sum of electronic and thermal Energies= -683.829649 Sum of electronic and thermal Enthalpies= -683.828705 Sum of electronic and thermal Free Energies= -683.88003 E(RM062X) = -684.024151901

C -0.43454 -5.19853 2.63362 C 0.88583 -5.60866 2.76774 C 1.91896 -4.67209 2.665 C 1.63369 -3.32397 2.41356 C 0.31724 -2.90306 2.28329 C -0.7338 -3.83971 2.41115 H -1.24513 -5.91882 2.70885 H 1.11538 -6.65507 2.94866 H 2.95283 -4.99218 2.76896 H 2.4429 -2.6043 2.31885 H 0.11017 -1.85988 2.06828 C -2.12226 -3.47401 2.33583 H -1.96637 -1.44189 2.47523 N -2.59519 -2.24742 2.44309 C -4.1016 -1.71339 0.68765 O -5.02696 -0.99188 0.3371 C -4.74397 -1.32923 3.04306 H -4.43327 -0.28485 3.18124 H -5.77611 -1.35042 2.69213 H -4.66621 -1.86675 3.98978 C -3.36557 -1.90723 -1.63179 H -4.12128 -2.55028 -2.10141 H -3.66958 -0.8653 -1.72455 H -2.40614 -2.05018 -2.13417 N -3.91725 -2.02418 2.05326 N -3.18449 -2.23749 -0.21448 N -2.58771 -3.49134 0.05201 H -1.69625 -3.53492 -0.44336 H -3.18458 -4.25565 -0.28256 H -2.88312 -4.25174 2.36123

p-TsO

E(RB3LYP) = -894.914558301 Zero-point correction = 0.131088 (Hartree/Particle) Thermal correction to Energy= 0.141189 Thermal correction to Enthalpy= 0.142133 Thermal correction to Gibbs Free Energy= 0.093379 Sum of electronic and zero-point Energies= -894.783470 Sum of electronic and thermal Energies= -894.773370 Sum of electronic and thermal Energies= -894.772426 Sum of electronic and thermal Free Energies= -894.821179 E(RM062X) = -894.918341257

C 2.11538 0.71497 0.31235 C 1.16756 1.0075 1.29923 C 1.50528 0.92429 2.6499 C 2.7987 0.54218 3.01222 C 3.76419 0.24038 2.04328 C 3.40034 0.33394 0.68921 H 1.84776 0.77459 -0.73777 H 0.76212 1.15138 3.40653 H 3.05881 0.47745 4.06571 H 4.13439 0.10411 -0.07923 C 5.15579 -0.19546 2.4364 H 5.28945 -1.27311 2.27572 H 5.9179 0.31527 1.83722 H 5.35598 0.0095 3.49239 S-0.46561 1.57656 0.82782 0 -0.89153 0.62844 -0.31863 0 -1.33851 1.42324 2.01298 0 -0.32518 2.94526 0.28932

E(RB3LYP) = -895.358735877 Zero-point correction = 0.142395 (Hartree/Particle) Thermal correction to Energy= 0.153138 Thermal correction to Enthalpy= 0.154082 Thermal correction to Gibbs Free Energy= 0.103997 Sum of electronic and zero-point Energies= -895.216341 Sum of electronic and thermal Energies= -895.205598 Sum of electronic and thermal Enthalpies= -895.204654 Sum of electronic and thermal Free Energies= -895.254739 E(RM062X) = -895.351074943

H -1.61259 -0.51779 0.12538 C 2.11538 0.71497 0.31235 C 1.16756 1.0075 1.29923 C 1.50528 0.92429 2.6499 C 2.7987 0.54218 3.01222 C 3.76419 0.24038 2.04328 C 3.40034 0.33394 0.68921 H 1.84776 0.77459 -0.73777 H 0.76212 1.15138 3.40653 H 3.05881 0.47745 4.06571 H 4.13439 0.10411 -0.07923 C 5.15579 -0.19546 2.4364 H 5.28945 -1.27311 2.27572 H 5.9179 0.31527 1.83722 H 5.35598 0.0095 3.49239 S-0.46561 1.57656 0.82782 0 -0.89153 0.62844 -0.31863 0-1.33851 1.42324 2.01298 0 -0.32518 2.94526 0.28932

TS-Va/VI.p-TsO

E(RB3LYP) = -1579.03548109 Zero-point correction = 0.386175 (Hartree/Particle) Thermal correction to Energy= 0.412220 Thermal correction to Enthalpy= 0.413164 Thermal correction to Gibbs Free Energy= 0.324615 Sum of electronic and zero-point Energies= -1578.649306 Sum of electronic and thermal Energies= -1578.623261 Sum of electronic and thermal Enthalpies= -1578.622317 Sum of electronic and thermal Free Energies= -1578.710866 E(RM062X) = -1578.96264713

C -0.46764 -5.24002 2.34511 C 0.80842 -5.7469 2.57477 C 1.86558 -4.87206 2.84082 C 1.6453 -3.49031 2.87574 C 0.3733 -2.97441 2.6465 C -0.69743 -3.85154 2.38284 H -1.29269 -5.91565 2.13781 H 0.97817 -6.81866 2.54718 H 2.86196 -5.26566 3.01951 H 2.4693 -2.81313 3.07849 H 0.21538 -1.90071 2.66829 C -2.06338 -3.39782 2.159 H -1.85392 -1.36441 2.49428 N -2.49719 -2.18573 2.44246 C -4.21174 -1.85771 0.70527 0 -5.25647 -1.27722 0.41167 C-4.4842-0.991993.00309 H -4.00013 -0.00951 3.06435 H -5.51237 -0.8687 2.67232 H -4.46096 -1.47172 3.98388 C -3.89696 -2.39659 -1.65221 H -3.65997 -3.3104 -2.20436 H -4.96463 -2.20061 -1.7187 H -3.33925 -1.55679 -2.08537 N -3.79528 -1.86063 2.04684 N -3.53223 -2.59922 -0.24671 N -2.21231 -3.06176 -0.02513 H -1.54518 -2.30465 -0.22572 H -2.04895 -3.86489 -0.63044 C 1.61561 0.4614 -0.54229 C 1.04574 0.68436 0.71318

C 1.85423 1.03078 1.79968 C 3.23271 1.14609 1.624 C 3.82714 0.92261 0.37247 C 2.99614 0.58121 -0.70442 H 0.98408 0.1871 -1.38079 H 1.40829 1.19725 2.77479 H 3.85743 1.41379 2.47277 H 3.43484 0.4045 -1.68349 C 5.3245 1.01935 0.19787 H 5.80982 0.06148 0.4279 H 5.59115 1.28031 -0.83131 H 5.75745 1.77044 0.86674 S-0.73893 0.60964 0.90955 0 -1.22515 -0.35992 -0.12055 O -0.95222 0.09985 2.31688 0 -1.26061 1.98522 0.72325 H -2.83316 -4.15171 2.04108

TS-VI/IX

E(RB3LYP) = -684.094787739 Zero-point correction = 0.254615 (Hartree/Particle) Thermal correction to Energy= 0.268580 Thermal correction to Enthalpy= 0.269525 Thermal correction to Gibbs Free Energy= 0.213187 Sum of electronic and zero-point Energies= -683.840173 Sum of electronic and thermal Energies= -683.826207 Sum of electronic and thermal Energies= -683.825263 Sum of electronic and thermal Free Energies= -683.881601 E(RM062X) = -684.019209276

C -0.4293 -5.19948 2.62741 C 0.89047 -5.60754 2.79713 C 1.9234 -4.66988 2.71369 C 1.63971 -3.32249 2.45695 C 0.32439 -2.90675 2.28791 C -0.72436 -3.84429 2.38218 H -1.23703 -5.92279 2.69073 H 1.11335 -6.65157 2.99172 H 2.95362 -4.98792 2.84247 H 2.44644 -2.60045 2.38327 H 0.1239 -1.86265 2.0676 C -2.12369 -3.48233 2.24674 H -1.96128 -1.45142 2.42522 N -2.58818 -2.25486 2.43262 C -4.10716 -1.70829 0.69259 0 -5.02665 -0.98482 0.33717 C -4.73327 -1.33245 3.04865 H -4 42498 -0 28865 3 1843 H -5.76863 -1.35728 2.71197 H -4.64007 -1.87263 3.99188 C -3.38153 -1.93952 -1.62971 H -4.14092 -2.58797 -2.08384 H -3.68865 -0.89965 -1.73046 H -2.42622 -2.08565 -2.14017 N -3.91229 -2.02161 2.04947 N -3.19271 -2.24232 -0.20783 N -2.58153 -3.487 0.08862 H -1.69706 -3.53741 -0.41683 H -3.17291 -4.26567 -0.21798 H -2.86901 -4.26292 2.32703

TS for deprotonation of Vb to give VII

E(RB3LYP) = -1579.02904653 Zero-point correction= 0.381161 (Hartree/Particle) Thermal correction to Energy= 0.407774 Thermal correction to Enthalpy= 0.408719 Thermal correction to Gibbs Free Energy= 0.318770 Sum of electronic and zero-point Energies= -1578.647885 Sum of electronic and thermal Energies= -1578.621272 Sum of electronic and thermal Enthalpies= -1578.620328 Sum of electronic and thermal Free Energies= -1578.710277 E(RM062X) = -1578.96306489

C 1.40313 -3.53298 3.04045 C 2.31269 -3.43621 1.9847 C 1.88546 -2.98747 0.72881 C 0.5563 -2.63163 0.52404 C -0.36716 -2.7183 1.58496 H -0.63964 -3.25467 3.66056 H 1.73001 -3.88472 4.01424 H 3.35191 -3.71352 2.13616 H 2.59223 -2.91747 -0.09262 H 0.2325 -2.29868 -0.45522 C -1.77339 -2.35003 1.46283 H -1.79017 -1.50417 -0.90093 N -2.30994 -1.80137 0.42647 C -4.63294 -2.53813 0.81632 0 -5.69787 -2.23719 1.35761 C -4.03403 -0.15512 0.74082 H -3.37699 0.46387 0.12633 H -5.07343 0.01438 0.45998 H -3.90024 0.11176 1.79805 C -5.28931 -4.88382 0.809 H -4.76182 -5.83809 0.89779 H -5.77347 -4.64754 1.75652 H -6.06063 -4.97433 0.03041 N -3.70027 -1.55578 0.49107 N -4.31501 -3.84604 0.48578 N -3.48874 -4.06174 -0.64075 H -4.0753 -4.36131 -1.42319 H -2.85427 -4.83014 -0.42697 C 0.97161 -0.20265 -4.07358 C 0.51349 0.12147 -2.79469 C 1.40866 0.45854 -1.77602 C 2.77552 0.46601 -2.04842 C 3.26442 0.14454 -3.32432 C 2.34229 -0.18989 -4.32754 H 0.26573 -0.45358 -4.85786 H 1.04113 0.71886 -0.78911 H 3.47345 0.72951 -1.25804 H 2.70081 -0.44203 -5.3221 C 4.74482 0.18708 -3.61755 H 5.0144 -0.51133 -4.41599 H 5.04812 1.19038 -3.94459 H 5.33554 -0.05772 -2.72911 S -1.2378 0.07513 -2.44734 O -1.47675 -1.40916 -1.94731 0 -1.51815 1.01534 -1.34744 0 -1.95768 0.25225 -3.71564 H -2.4062 -2.56651 2.32541