Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Azomethine Ylide Cycloaddition of 1,3- dienyl esters: Highly regio- and diastereoselective synthesis of functionalized pyrrolidinochromenes

Manickam Bakthadoss,*^a Mohammad Mushaf,^a Vishal Agarwal,^a Tadiparthi Thirupathi Reddy^a and Duddu S. Sharada^b

^{*a}Department of Chemistry, Pondicherry University, Pondicherry-605 014, India ^bDepartment of Chemistry, Indian Institute of Technology, Hyderabad, Telangana-502285, India

E-mail: bhakthadoss@yahoo.com

Supporting Information

Table of Contents

1. General Experimental Information	2
2. Typical experimental procedure for the synthesis of compounds 8, 10 and 11	2-3
3. Analytical Data of the Products	3-17
4. ¹ H and ¹³ C NMR spectra for the compounds (8a-v, 10 and 11)	18-66

EXPERIMENTAL SECTION

General Information and Materials

Commercial reagents were used without further purification. IR spectra were recorded on a Perkin Elmer-FTIR spectrometer using solid samples as KBr plates. For compounds ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra were recorded in deuterochloroform (CDCl₃) on a Bruker 400 MHz spectrometer using tetramethylsilane (TMS, $\delta = 0$) as an internal standard at room temperature. Mass spectra were recorded on Agilent 1200 LC/MS-6110 mass spectrometer. The structures of all compounds (**8a-v**, **10** and **11**) were confirmed by ¹H NMR, ¹³C NMR spectrometry, and ESI-HRMS spectrometry. Spectral data of ¹H, ¹³C NMR and ESI-HRMS of all compounds (**8a-v**, **10 and 11**) are listed below.

Starting material **3a-c** and **4a-c** prepared by known procedure^{1,2}

General Procedure for the Synthesis of compound (6a-o):

To a 25mL round bottom flask was added 2-hydroxyarylaldehyde 4 (1 mmol), K₂CO₃ (3.0 mmol), methyl (2*Z*,4*E*)-2-(bromomethyl)-5-phenylpenta-2,4-dienoate 5 (1 mmol) and acetonitrile (5 mL). The RB was stirred at room temperature for 3 hours. After the completion of the reaction as indicated by the TLC, EtOAc (10 mL) was added to the reaction mixture which was extracted with EtOAc and water (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure, and the crude product was purified by silica gel chromatography (2:8; Ethyl Acetate/Hexane) to afford the product **6a-o** as solids.

General Procedure for the Synthesis of compounds (8a-v):

To a 25mL round bottom flask was added 1,3-diolefin aldehyde **6a** (0.3 mmol), N-methyl glycine ester **7a** (1.2 mmol), Et₃N (30 mol %) and toluene (5 mL) and the RB was kept under N₂ balloon at reflux for 8 hours. After the completion of the reaction as indicated

by the TLC, EtOAc (10 mL) was added to the reaction mixture which was extracted with EtOAc and water (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure, and the crude product was purified by silica gel chromatography (1:8; Ethyl Acetate/Hexane) to afford the product **8a** as white color solid.

Typical experimental procedure for the synthesis of compound (10):

To a 25mL round bottom flask was added 1,3-diolefin aldehyde **8n** (0.2 mmol), pipecolinic acid **9** (0.8 mmol) and ethanol (5 mL) and the RB was kept at reflux for 12 hours. After the completion of the reaction as indicated by the TLC, EtOAc (10 mL) was added to the reaction mixture which was extracted with EtOAc and water (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure, and the crude product was purified by silica gel chromatography (4:6; Ethyl Acetate/Hexane) to afford the product **10** as white color solid.

Typical experimental procedure for the synthesis of compound (8):

To a 25mL round bottom flask was added tricyclic compound **8a** (0.2 mmol), NaBH₄ (3 equiv.) in a mixture of THF: Methanol solvent system (5 mL, 1:1) and the RB were kept at reflux for 12 hours under N₂ balloon. After the completion of the reaction as indicated by the TLC, EtOAc (10 mL) was added to the reaction mixture which was extracted with EtOAc and water (3×10 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and filtered. The solvent was removed under reduced pressure, and the crude product was purified by silica gel chromatography (4:6; Ethyl Acetate/Hexane) to afford the product **11** as colorless oil

Dimethyl (E)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8a)

Physical state :White solid, yield : 91% (107 mg), M. P: 126-128 °C ; ¹H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 4.3 Hz, 4H), 7.29 – 7.23 (m, 2H), 7.24 – 7.18 (m, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 6.55 (d, J = 15.4 Hz, 1H), 5.83 (dd, J = 15.4, 10.9 Hz, 1H), 4.58 (s, 1H), 4.51 (d, J = 11.3 Hz, 1H), 4.24 (d, J = 9.7 Hz, 1H), 4.00 (d, J = 11.2 Hz, 1H), 3.72 (s, 3H), 3.68 (d, J = 9.9 Hz, 1H), 3.63 (s, 3H).¹³C NMR (CDCl₃, 100 MHz): δ 173.1, 172.2, 154.3, 136.4, 136.0, 130.8, 129.3, 128.8, 128.2, 126.6, 121.4, 121.2, 120.7, 117.3, 64.3, 63.7, 59.5, 55.7, 55.3, 52.8, 52.4. HRMS (ESI): Calc. For C₂₃H₂₄NO₅ [M+H]+ 394.1654, measured 394.1647.

3a-Ethyl 2-methyl (E)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8b)

Physical state: White solid, Yield: 89% (111 mg), M. P (°C) :124-126 ,¹H NMR (CDCl₃, 400 MHz): δ 7.63 – 7.11 (m, 7H), 7.13 – 6.65 (m, 2H), 6.56 (d, *J* = 15.4 Hz, 1H), 5.84 (dd, *J* = 15.4, 10.9 Hz, 1H), 4.61 (s, 1H), 4.53 (d, *J* = 11.2 Hz, 1H), 4.23-4.28 (m, 3H), 4.01 (d, *J* = 11.2 Hz, 1H), 3.72 (d, *J* = 10.5 Hz, 1H).3.67 (s, 3H), 2.44 (s, 1H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.4, 172.2, 154.3, 136.4, 136.0, 130.8, 129.3, 128.8, 128.2, 126.5, 121.4, 121.2, 120.6, 117.2, 64.3, 63.5, 61.6, 59.2, 55.6, 55.2, 52.5, 14.3. HRMS (ESI): Calc. for C₂₄H₂₆NO₅ [M+H]⁺ 408.1811, measured 408.1807.

Dimethyl (*E*)-6,8-dichloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8c):

Physical state: White solid, Yield: 90% (125 mg), M. P (°C) :140-142, ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 7H), 6.55 (d, *J* = 15.4 Hz, 1H), 5.78 (dd, *J* = 15.4, 10.8 Hz, 1H), 4.65 (dd, *J* = 11.3, 1.5 Hz, 1H), 4.53 (s, 1H), 4.21 (d, *J* = 9.7 Hz, 1H), 4.03 (d, *J* = 11.4 Hz, 1H), 3.73 (s, 3H), 3.69 (d, *J* = 2.6 Hz, 1H), 3.64 (s, 3H), 2.69 (s, 1H). ¹³C NMR (100 MHz, CDCl3) δ 172.5, 172.1, 149.1, 136.4, 136.2, 129.6, 129.0, 128.9, 128.4, 126.6, 126.1, 123.6, 123.0, 120.5, 65.2, 63.4, 58.9, 55.2, 54.9, 53.0, 52.6. HRMS (ESI): Calc. For C₂₃H₂₂Cl₂NO₅ [M+H]⁺ 462.0875, measured 462.0876.

Dimethyl (E)-6-ethoxy-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8d)

Physical state: White solid, Yield: 82 % (108 mg), M. P (°C) :128-130, ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 6.82 (m, 7H), 6.55 (d, *J* = 15.4 Hz, 1H), 5.78 (dd, *J* = 15.4, 10.8 Hz, 1H), 4.67 (s, 1H), 4.65 (d, *J* = 1.3 Hz, 1H), 4.21 (d, *J* = 9.7 Hz, 1H), 4.03 (d, *J* = 11.4 Hz, 1H), 3.74 – 3.72 (m, 4H). 3.65 (s, 3H) 3.63 (d, *J* = 5.7 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.8, 171.8, 148.0, 144.2, 136.3, 136.2, 128.8, 128.2, 126.6, 122.3, 121.3, 121.2, 120.8, 112.5, 64.8, 64.5, 63.3, 59.0, 55.1, 55.0, 52.9, 52.6, 14.9, HRMS (ESI): Calc. for C₂₅H₂₈NO₆ [M+H]⁺ 438.1917, measured 438.1916

Dimethyl (E)-8-bromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8e):

Physical state: White solid, Yield: 85% (120 mg), M. P (°C) :132-134, ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 2.5 Hz, 2H), 7.33 – 7.27 (m, 6H), 6.79 (d, *J* = 8.8 Hz, 1H), 6.54 (d, *J* = 15.4 Hz, 1H), 5.79 (dd, *J* = 15.4, 10.8 Hz, 1H), 4.52 (s, 1H), 4.49 (d, *J* = 1.5 Hz, 1H), 4.22 (d, *J* = 9.8 Hz, 1H), 3.97 (d, *J* = 11.2 Hz, 1H), 3.72 (s, 3H), 3.68 (d, *J* = 3.3 Hz, 1H), 3.64 (s, 3H) 2.54 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.7, 172.2, 153.4, 136.3, 136.2, 133.4, 132.2, 128.8, 128.3, 126.6, 122.8, 120.8, 119.1, 113.5, 64.4, 63.5, 59.0, 55.4, 55.0, 52.9, 52.5. HRMS (ESI): Calc. for C₂₃H₂₃BrNO₅ [M+H]⁺ 472.0760, measured 472.0753, 474.0736.

Dimethyl (E)-3-styryl-1,2,3,11c-tetrahydrobenzo[5,6]chromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8f):

Physical state: White solid, Yield: 87 % (115 mg), M. P (°C): 140-142, ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.5 Hz, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.41 – 7.34 (m, 5H), 7.31 – 7.28 (m, 1H), 7.12 (d, J = 12.0 Hz 1H), 6.59 (d, J = 15.4 Hz, 1H), 5.85 (dd, J = 15.4, 10.9 Hz, 1H), 5.02 (s, 1H), 4.70 – 4.61 (m, 1H), 4.38 (d, J = 10.1 Hz, 1H), 4.18 (d, J = 11.1 Hz, 1H), 3.69 (s, 3H), 3.65 (s, 3H), 2.887 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.9, 172.7, 152.1, 136.4, 136.1, 133.5,

130.0, 129.4, 128.9, 128.4, 128.2, 127.1, 126.6, 124.0, 123.7, 121.1, 118.7, 112.7, 63.8, 63.7, 57.6, 55.6, 54.9, 52.8, 52.5. HRMS (ESI): Calc. for C₂₇H₂₆NO₅ [M+H]⁺ 444.1811, measured 444.1812

2-Ethyl 3a-methyl (*E*)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8g)

Physical state: White solid, Yield: 84% (103 mg), M. P (°C) :124-126, ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.37 – 7.19 (m, 6H), 7.04 – 6.89 (m, 2H), 6.56 (d, *J* = 15.4 Hz, 1H), 5.86 (dd, *J* = 15.4, 10.9 Hz, 1H), 4.60 (d, *J* = 1.5 Hz, 1H), 4.54 (dd, *J* = 11.3, 1.5 Hz, 1H), 4.23 (d, *J* = 9.7 Hz, 1H), 4.12 (q, *J* = 7.2 Hz, 2H), 4.02 (d, *J* = 11.2 Hz, 1H), 3.74 (s, 3H), 3.71 (d, *J* = 10.3 Hz, 1H), 2.70 (s, 1H), 1.10 (t, *J* = 7.1 Hz, 3H).¹³C NMR (CDCl₃, 100 MHz): δ 173.1, 171.8, 154.3, 136.4, 135.9, 130.9, 129.3, 128.8, 128.2, 126.5, 121.5, 121.3, 120.8, 117.3, 64.3, 63.7, 61.6, 59.5, 55.8, 55.4, 52.8, 14.3. HRMS (ESI): Calc. for C₂₄H₂₆NO₅ [M+H]⁺ 408.1811, measured 408.1807.

Dimethyl (E)-6,8-dibromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8h)

Physical state: White solid, Yield: 95% (153 mg), M. P (°C) :142-144, ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 2.3 Hz, 1H), 7.51 (d, *J* = 2.3 Hz, 1H), 7.38 – 7.25 (m, 5H), 6.57 (d, *J* = 15.4 Hz, 1H), 5.80 (dd, *J* = 15.4, 10.8 Hz, 1H), 4.66 (dd, *J* = 11.3, 1.5 Hz, 1H), 4.56 (s, 1H), 4.23 (d, *J* = 9.6 Hz, 1H), 4.06 (d, *J* = 11.3 Hz, 1H), 3.75 (s, 3H), 3.71 (d, *J* = 10.2 Hz, 1H), 3.66 (s, 3H), 2.73 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.5, 172.1, 150.5, 136.4, 136.3, 135.1, 132.6, 128.9, 128.3, 126.6, 124.0, 120.6, 113.4, 112.1, 65.3, 63.4, 58.9, 55.2, 55.0, 53.0, 52.6. HRMS (ESI): Calc. for C₂₃H₂₂Br₂NO₅ [M+H]⁺ 551.9844, measured 551.9852.

2-Ethyl 3a-methyl (E)-6,8-dibromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8i)

Physical state: White solid, Yield: 93 % (157 mg), M. P (°C) :144-146, ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 2.3 Hz, 1H), 7.52 (d, *J* = 2.3 Hz, 1H), 7.57 (d, *J* = 15.4 Hz, 1H), 5.81 (dd, *J* = 15.5, 10.9 Hz, 1H), 4.67 (dd, *J* = 11.3, 1.5 Hz, 1H), 4.56 (d, *J* = 1.4 Hz, 1H), 4.20 (d, *J* = 9.7 Hz, 1H), 4.12 (dd, *J* = 7.1, 2.8 Hz, 2H), 4.06 (d, *J* = 11.3 Hz, 1H), 3.75 (s, 3H) 3.69 (d, *J* = 10.2 Hz, 1H), 1.09 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃,100 MHz): δ 172.5, 171.5, 150.5, 136.3, 136.2, 135.1, 132.6, 128.8, 128.6, 126.5, 124.0, 120.7, 113.4, 112.0, 65.3, 63.3, 61.7, 58.9, 55.2, 55.0, 53.0, 14.2. HRMS (ESI): Calc. for C₂₃H₂₂Br₂NO₅ [M+H]⁺ 564.0021, measured 564.0030.

2-Ethyl 3a-methyl (E)-3-styryl-1,2,3,11c-tetrahydrobenzo[5,6]chromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8j)

Physical state: White solid, Yield: 83% (114 mg), M. P (°C) :130-132, ¹H NMR (CDCl₃, 400 MHz): δ 8.34 (d, *J* = 8.4 Hz, 1H), 7.82 – 7.73 (m, 2H), 7.61 – 7.28 (m, 6H), 7.15 (d, *J* = 8.9 Hz, 1H), 6.63 (d, *J* = 15.4 Hz, 1H), 5.91 (dd, *J* = 15.4, 11.0 Hz, 1H), 5.06 (s, 1H), 4.70 (dd, *J* = 11.2, 1.6 Hz, 1H), 4.39 (d, *J* = 10.2 Hz, 1H), 4.23 (d, *J* = 11.2 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.86 (t, *J* = 10.6 Hz, 1H), 3.72 (s, 3H), 2.95 (s, 1H), 1.12 (t, *J* = 7.1 Hz, 3H).¹³C NMR (CDCl₃, 100 MHz): δ 172.9, 172.2, 152.1, 136.3, 136.0, 133.5, 130.0, 129.3, 128.8, 128.3, 128.2, 127.1, 126.5, 124.0, 123.7, 121.3, 118.6, 112.7, 63.8, 63.7, 61.6, 57.6, 55.7, 54.9, 52.8, 14.3. HRMS (ESI): Calc. for C₂₈H₂₈NO₅ [M+H]⁺ 458.1967, measured 458.1969.

2-Ethyl 3a-methyl (E)-8-chloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8k):

Physical state: White solid, Yield: 79% (105 mg), M. P (°C) :128-130, ¹H NMR (CDCl₃, 400 MHz): δ 7.42 (d, J = 2.6 Hz, 1H), 7.37 – 7.25 (m, 5H), 7.18 (dd, J = 8.8, 2.5 Hz, 1H), 6.86 (d, J = 8.8 Hz, 1H), 6.57 (d, J = 15.4 Hz, 1H), 5.83 (dd, J = 15.4, 10.9 Hz, 1H), 4.56 (s, 1H), 4.53 (d, J = 11.3 Hz, 1H), 4.23 (d, J = 9.8 Hz, 1H), 4.13 (qd, J = 7.1, 1.2 Hz, 2H), 4.00 (d, J = 11.2 Hz, 1H), 3.74 (s, 3H), 3.70 (d, J = 10.3 Hz, 1H). 2.71 (s, 1H), 1.10 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.7, 171.6, 152.9, 136.2,

136.2, 130.4, 129.4, 128.8, 128.3, 126.5, 126.3, 122.1, 120.9, 118.7, 64.5, 63.4, 61.8, 59.0, 55.4, 55.0, 52.9, 14.3. HRMS (ESI): Calc. for C₂₄H₂₅ClNO₅ [M+H]⁺ 442.1421, measured 442.1419.

2-Ethyl 3a-methyl (E)-6,8-dichloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8l)

Physical state: White solid, Yield: 86 % (123 mg), M. P (°C) :134-136, ¹H NMR (CDCl₃, 400 MHz): δ 7.36 – 7.28 (m, 7H), 6.58 (d, *J* = 15.5 Hz, 1H), 5.82 (dd, *J* = 15.4, 10.9 Hz, 1H), 4.67 (dd, *J* = 11.3, 1.4 Hz, 1H), 4.57 (s, 1H), 4.21 (d, *J* = 9.6 Hz, 1H), 4.12 (qd, *J* = 7.1, 2.2 Hz, 2H), 4.06 (d, *J* = 11.3 Hz, 1H), 3.75 (s, 3H), 3.70 (d, J = 10.2 Hz, 1H) 2.64 (s, 1H), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.5, 171.5, 149.1, 136.3, 136.2, 129.6, 129.0, 128.8, 128.3, 126.5, 126.1, 123.5, 122.9, 120.6, 65.2, 63.3, 61.8, 58.9, 55.2, 54.9, 53.0, 14.3. HRMS (ESI): Calc. for C₂₄H₂₄Cl₂NO₅ [M+H]⁺ 476.1032, measured 476.1031

2-Ethyl 3a-methyl (E)-6-methoxy-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8m)

Physical state: White solid, Yield: 88% (115 mg), M. P (°C) : 122-124, ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.1 Hz, 1H), 7.30 (d, *J* = 11.0 Hz, 5H), 7.25 - 7.18 (m, 1H), 7.02 - 6.88 (m, 2H), 6.55 (d, *J* = 15.4 Hz, 1H), 5.82 (dd, *J* = 15.4, 10.9 Hz, 1H), 4.68 (s, 1H), 4.53 (d, *J* = 11.1 Hz, 1H), 4.28 (d, *J* = 9.7 Hz, 1H), 4.23 - 4.09 (m, 4H), 3.99 (d, *J* = 11.3 Hz, 1H), 3.72 (t, *J* = 10.3 Hz, 1H),

2.87s, 1H), 1.21 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 173.0, 171.6, 148.6, 143.9, 136.4, 136.0, 128.8, 128.1, 126.5, 122.4, 121.7, 121.2, 121.2, 110.9, 64.8, 63.6, 61.6, 59.2, 56.0, 55.6, 55.2, 52.8, 14.3 HRMS (ESI): Calc. for C₂₅H₂₈NO₆ [M+H]⁺ 438.1917, measured 438.1918.

Diethyl (E)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8n)

Physical state: White solid, Yield: 80% (100 mg), M. P (°C) :122-124,¹H NMR (CDCl₃, 400 MHz): δ 7.47 (d, J = 7.1 Hz, 1H), 7.40 – 7.20 (m, 5H), 7.00 – 6.90 (m, 2H), 6.55 (d, J = 15.4 Hz, 1H), 4.68 (s, 1H), 4.53 (d, J = 11.1 Hz, 1H), 4.28 (d, J = 9.7 Hz, 1H), 4.24-4.09 (m, 4H), 3.99 (d, J = 11.3 Hz, 1H), 3.72 (t, J = 10.3 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.0, 171.4, 154.33, 136.3, 136.2, 129.6, 128.8, 128.3, 126.3, 121.6, 120.9, 119.9, 117.3, 64.2, 63.1, 62.00, 61.90, 61.7, 59.1, 55.2, 55.03, 29.84, 14.9. HRMS (ESI): Calc. for C₂₅H₂₇NO₅ [M+H]⁺ 422.1967, measured 422.1965.

Ethyl 2-methyl (E)-8-bromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (80)

Physical state: White solid, Yield: 89 % (124 mg), M. P (°C) : 130-132, ¹H NMR (CDCl₃, 400 MHz): δ 7.48 (d, J = 2.4 Hz, 1H), 7.28 – 7.21 (m, 6H), 6.74 (d, J = 8.7 Hz, 1H), 6.49 (d, J = 15.4 Hz, 1H), 5.74 (dd, J = 15.4, 10.9 Hz, 1H), 4.45 (dd, J = 13.2, 2.0 Hz,

2H), 4.20 – 4.09 (m, 2H), 3.91 (d, *J* = 11.1 Hz, 1H), 3.63 (d, *J* = 12 Hz, 1H), 3.60 (s, 3H), 2.52 (s, 1H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz):δ 172.2, 172.1, 153.5, 136.3, 136.2, 133.4, 132.2, 128.9, 128.3, 126.5, 122.8, 120.9, 119.1, 113.5, 64.5, 63.4, 61.7, 58.8, 55.3, 54.9, 52.5, 14.3. HRMS (ESI): Calc. for C₂₄H₂₄BrNO₅ [M+H]⁺ 486.0916, measured 486.0909. **Ethyl 2-methyl (***E***)-6,8-dichloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8p)**

Physical state: White solid, Yield: 87 % (127 mg), M. P (°C) : 134-136, ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 7H), 6.56 (d, *J* = 15.4 Hz, 1H), 5.78 (dd, *J* = 15.4, 10.9 Hz, 1H), 4.64 (d, *J* = 11.3 Hz, 1H), 4.53 (s, 1H), 4.24 - 415 (m, 3H), 4.03 (d, *J* = 11.3 Hz, 1H), 3.69 (d, *J* = 10.3 Hz, 1H), 3.65 (s, 3H), 2.64 (s, 1H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 171.7, 149.0, 136.4, 136.1, 129.5, 128.9, 128.8, 128.2, 126.4, 125.9, 123.5, 122.8, 120.5, 65.1, 63.2, 61.7, 58.7, 55.0, 54.7, 52.5, 14.2. HRMS (ESI): Calc. for C₂₄H₂₃Cl₂NO₅ [M+H]⁺ 476.1031 measured 476.1029.

Diethyl (E)-6,8-dichloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8q)

Physical state: White solid, Yield: 84 % (111 mg), M. P (°C) : 134-136, ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 7H), 6.56 (d, *J* = 15.4 Hz, 1H), 5.79 (dd, *J* = 15.4, 10.9 Hz, 1H), 4.65 (dd, *J* = 11.3, 1.0 Hz, 1H), 4.54 (s, 1H), 4.25 – 4.09 (m, 4H), 4.03 (d, *J* = 11.3 Hz, 1H), 3.69 (t, *J* = 10.3 Hz, 1H), 2.56 (bs, 1H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 171.6, 149.1, 136.4, 136.2, 129.6, 129.0, 128.8, 128.3, 126.5, 126.0, 123.5, 122.9, 120.7, 65.2, 63.2, 61.8, 61.8, 58.7, 55.1, 54.8, 14.3. HRMS (ESI): Calc. for C₂₅H₂₅ClNO₅ [M+H]⁺ 490.1188, measured 490.1186.

Diethyl (E)-8-chloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8r)

Physical state: White solid, Yield: 87 % (139 mg), M. P (°C) :128-130, ¹H NMR (CDCl₃, 400 MHz): δ 7.40 (d, *J* = 2.5 Hz, 1H), 7.32 – 7.27 (m, 5H), 7.15 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.84 (d, *J* = 8.8 Hz, 1H), 6.54 (d, *J* = 15.4 Hz, 1H), 5.80 (dd, *J* = 15.4, 10.9 Hz, 1H), 4.51 (dd, *J* = 13.6, 2.3 Hz, 2H), 4.30 – 4.05 (m, 5H), 3.96 (d, *J* = 11.2 Hz, 1H), 3.68 (t, *J* = 10.3 Hz, 1H), 2.59 (s, 1H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H).¹³C NMR (CDCl₃, 100 MHz): δ 172.1, 171.7, 153.0, 136.3, 136.1, 130.4, 129.4, 128.8, 128.2, 126.5, 126.2, 122.2, 121.0, 118.7, 64.5, 63.4, 61.7, 61.7, 58.9, 55.4, 54.9, 14.4. HRMS (ESI): Calc. for C₂₅H₂₆ClNO₆ [M+H]⁺ 456.1578, measured 456.1581.

Butyl 2-methyl (*E*)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8s)

Physical state: White solid, Yield: 87% (112 mg), M. P (°C) :130-132, ¹H NMR (CDCl₃, 400 MHz): δ 7.41 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.33 – 7.27 (m, 5H), 7.23 – 7.16 (m, 1H), 6.97 (td, *J* = 7.5, 1.0 Hz, 1H), 6.90 (d, *J* = 8.2 Hz, 1H), 6.54 (d, *J* = 15.4 Hz, 1H), 5.82 (dd, *J* = 15.4, 10.9 Hz, 1H), 4.58 (s, 1H), 4.51 (dd, *J* = 11.2, 1.2 Hz, 1H), 4.25 (d, *J* = 9.8 Hz, 1H), 4.19 – 4.06 (m, 2H), 4.00 (d, *J* = 11.2 Hz, 1H), 3.70 (t, *J* = 10.3 Hz, 1H), 3.64 (s, 3H), 2.48 (s, 1H), 1.55 (dd, *J* = 9.7, 6.6 Hz, 2H), 1.31 – 1.22 (m, 2H), 0.82 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.3, 172.1, 154.2, 136.3, 136.0, 130.8, 129.2, 128.7, 128.1, 126.4, 121.3, 121.1, 120.4, 117.1, 65.3, 64.2, 63.4, 59.2, 55.5, 55.1, 52.4, 30.5, 19.0, 13.6. HRMS (ESI): Calc. for C₂₆H₂₉NO₅ [M+H]⁺ 436.2124, measured 436.2120. **Butyl 2-ethyl (***E***)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4***H***)-dicarboxylate (8t)**

Physical state: White solid, Yield: 92% (124 mg), M. P (°C) :128-130, ¹H NMR (CDCl₃, 400 MHz): δ 8.18 – 7.17 (m, 4H), 7.17 – 6.87 (m, 1H), 6.57 (d, *J* = 15.4 Hz, 1H), 5.86 (dd, *J* = 15.5, 10.9 Hz, 1H), 4.60 (s, 1H), 4.54 (dd, *J* = 11.2, 1.4 Hz, 1H), 4.34 – 4.00 (m, 4H), 3.73 (t, *J* = 10.4 Hz, 1H), 2.61 (s, 1H), 1.80 – 1.49 (m, 2H), 1.42 – 1.25 (m, 2H), 1.11 (t, *J* = 7.1 Hz, 3H), 0.84 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.4, 171.7, 154.2, 136.2, 135.9, 130.8, 129.2, 128.7, 128.1, 126.4, 121.3, 121.2, 120.5, 117.1, 65.3, 64.2, 63.4, 61.6, 59.3, 55.5, 55.2, 30.6, 19.0, 14.2, 13.6. HRMS (ESI): Calc. for C₂₇H₃₁NO₅ [M+H]⁺ 450.2280, measured 450.2279.

Butyl 2-methyl (*E*)-8-bromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole 2,3a(4*H*)- dicarboxylate (8u)

Physical state: White solid, Yield: 82% (121 mg), M. P (°C) :134-136, ¹H NMR (CDCl₃, 400 MHz): δ 7.56 (d, *J* = 2.2 Hz, 1H), 7.37 – 7.26 (m, 6H), 6.79 (d, *J* = 8.8 Hz, 1H), 6.55 (d, *J* = 15.4 Hz, 1H), 5.78 (dd, *J* = 15.4, 10.9 Hz, 1H), 4.56 (s, 1H), 4.50 (d, *J* = 11.3 Hz, 1H), 4.26 (d, *J* = 9.9 Hz, 1H), 4.20 – 4.05 (m, 2H), 3.98 (d, *J* = 11.3 Hz, 1H), 3.71 (d, *J* = 10.4 Hz, 1H), 3.66 (s, 3H), 1.64 – 1.49 (m, 2H), 1.36 – 1.21 (m, 2H), 0.83 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.1, 161.9, 153.5, 145.2, 136.3, 134.8, 132.4, 128.9, 127.8, 126.6, 123.4, 122.4, 119.1, 113.8, 113.5, 68.1, 65.6, 55.2, 54.9, 52.7, 30.6, 19.2, 13.7. HRMS (ESI): Calc. for C₂₆H₂₈BrNO₅ [M+H]⁺ 514.1222, measured 514.1232.

Dimethyl (E)-2-methyl-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole 2,3a(4H)-dicarboxylate (3v)

Physical state : Colorless liquid, yield : 64% (78 mg),¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 8, 1.4 Hz, 1H), 7.26-7.25 (m, 4H), 7.22 – 7.18 (m, 2H), 7.15 – 7.09 (m, 1H), 6.88 (td, J = 7.5, 1.1 Hz, 1H), 6.83 (d, J = 8 Hz, 1H), 6.42 (d, J = 16 Hz, 1H), 5.73 (dd, J = 16, 12 Hz, 1H), 4.60 (s, 1H), 4.46 (d, J = 12 Hz, 1H), 4.04 (d, J = 12 Hz, 1H), 3.61 (s, 3H), 3.57 (s, 3H), 3.18 (d, J = 12 Hz, 1H), 1.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.67, 172.85, 154.22, 136.35, 135.55, 130.98, 129.19, 128.77, 128.10, 126.46, 121.38,

121.21, 120.28, 117.16, 69.69, 64.94, 63.29, 58.17, 56.82, 52.74, 52.69, 26.33. HRMS (ESI): Calc. For $C_{24}H_{25}NO_5$ [M+Na]⁺ 430.1630, measured 430.1602.

Butyl 2-methyl (E)-8-bromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole 2,3a(4H)- dicarboxylate (10)

Physical state: White solid, Yield: 81% (83 mg), M. P (°C) :148-150, ¹H NMR (CDCl₃, 400 MHz): δ δ 7.39 – 7.27 (m, 6H), 6.90 – 6.88 (m, 2H), 6.77 (dd, *J* = 6.5, 3.1 Hz, 1H), 6.45 (d, *J* = 15.8 Hz, 1H), 6.11 (dd, *J* = 15.8, 8.6 Hz, 1H), 4.82 (dd, *J* = 10.9, 1.2 Hz, 1H), 4.34 – 4.24 (m, 1H), 3.84 (s, 3H), 3.67 (s, 3H), 3.20-3.26 (m, 1H), 3.16-3.10 (m, 1H), 2.95 (t, *J* = 9.1 Hz, 1H), 2.15 – 1.93 (m, 4H), 1.71 – 1.57 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 172.4, 148.6, 142.9, 136.7, 134.1, 129.6, 128.8, 128.0, 126.6, 123.6, 121.2, 121.1, 115.5, 110.9, 77.5, 77.2, 76.8, 68.0, 65.9, 65.1, 57.2, 56.9, 56.1, 55.7, 52.7, 31.3, 29.8, 26.8. HRMS (ESI): Calc. for C₂₆H₂₉NO₄ [M+H]⁺ 420.2175, measured 420.2180.

Methyl (E)-3a-(hydroxymethyl)-3-styryl-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]pyrrole-2-carboxylate (11)

Physical state: colorless oil, Yield: 89% (65 mg), ¹H NMR (CDCl₃, 400 MHz): δ 7.47 (dd, J = 7.7, 1.3 Hz, 1H), 7.32 (d, J = 4.4 Hz, 4H), 7.28 – 7.20 (m, 4H), 6.98 (td, J = 7.5, 1.1 Hz, 1H), 6.92 – 6.89 (m, 1H), 6.64 (d, J = 15.4 Hz, 1H), 4.30 (d, J = 10.0 Hz, 1H),

4.24 (s, 1H), 4.04 (d, J = 11.6 Hz, 1H), 3.95 (d, J = 10.6 Hz, 1H), 3.76 (dd, J = 19.1, 8.7 Hz, 2H), 3.68 (s, 2H), 3.66 (s, 3H), 2.51 (s, 1H). ¹³C NMR (100 MHz, CDCl3) δ 172.3, 154.1, 136.4, 135.9, 131.4, 129.9, 128.9, 128.2, 126.5, 121.9, 121.8, 119.8, 117.4, 65.0, 62.5, 62.4, 57.5, 52.8, 51.4, 49.5. HRMS (ESI): Calc. for C₂₂H₂₃NO₄ [M+H]⁺ 366.1705, measured 366.1706

References:

1. K. H. Kim, H. S. Lee, Y. M. Kim, J. N. Kim. Remarkable Rate Acceleration of Baylis-Hillman Reaction of Notorious α,β -Unsaturated Aldehydes Catalyzed by Proton Donor. *Bull. Korean Chem. Soc.* **2011**, *32*, 1087-1090

2. K. H. Kim, S. H. Kim, S. Park, J. N. Kim. Palladium-catalyzed synthesis of indane and cyclobuta[a]indenes fromhomoallylic alcohols derived from BayliseHillman adducts: base-dependentstereoselectivity for the benzylidene group in cyclobuta[a]indene. *Tetrahedron*, **2011**, *67*, 3328-3336

¹H and ¹³C spectrums of the compounds

VA-VV-F-1.2.1.1r — C13CPD CDCl3 {D:\MB} CIF_NMR 1

3a-Ethyl 2-methyl (*E*)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8b)

VA-VB-F-2.6.1.1r — C13CPD CDCl3 {D:\MB} CIF_NMR 1

Dimethyl (*E*)-6,8-dichloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8c):

Dimethyl (E)-6-ethoxy-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8d)

VA-VB-F-5.1.1.1r PROTON CDCl3 {D:\MB} CIF_NMR 1	7.33 7.234 7.037 7.09 6.957 6.84 6.955 6.84 6.82 5.88 5.58 5.88 5.88 5.88 5.88 5.88 5	4.67 4.65 4.65	4.29 3.65 3.65 3.65 3.65 3.65 3.65 3.65 3.65	1.47 1.45
		\leq		\searrow

Dimethyl (*E*)-8-bromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8e):

2-Ethyl 3a-methyl (E)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8g)

Dimethyl (*E*)-6,8-dibromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8h)

2-Ethyl 3a-methyl (*E*)-6,8-dibromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8i)

2-Ethyl 3a-methyl (*E*)-3-styryl-1,2,3,11c-tetrahydrobenzo[5,6]chromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8j)

VA-VB-F-12.2.1.1r — C13CPD CDCl3 {D:\MB} CIF_NMR 1

2-Ethyl 3a-methyl (*E*)-8-chloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8k):

2-Ethyl 3a-methyl (*E*)-6,8-dichloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8l)

2-Ethyl 3a-methyl (*E*)-6-methoxy-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8m)

Diethyl (*E*)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8n)

Ethyl 2-methyl (*E*)-8-bromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (80)

Ethyl 2-methyl (*E*)-6,8-dichloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8p)

Diethyl (*E*)-6,8-dichloro-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8q)

Butyl 2-methyl (*E*)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4*H*)-dicarboxylate (8s)

Butyl 2-ethyl (E)-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole-2,3a(4H)-dicarboxylate (8t)

Butyl 2-methyl (*E*)-8-bromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole 2,3a(4*H*)- dicarboxylate (8u)

Dimethyl (E)-2-methyl-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole 2,3a(4H)-dicarboxylate (8v)

Butyl 2-methyl (*E*)-8-bromo-3-styryl-1,2,3,9b-tetrahydrochromeno[4,3-b]pyrrole 2,3a(4*H*)- dicarboxylate (10)

Butvl 2	-methyl (E)-8-broi	mo-3-stvrvl-1.2.3.9b-t	tetrahvdroch	romeno[4.3-b]pvri	ole 2.3a(4H)-	dicarboxvlate ((10)
) ()		· · /

172.36	148.64	142.91	136.65 134.12 129.60 128.78 128.03 128.03 128.03 128.03 128.03 128.03 128.03 128.03 128.03 128.03	115.50	110.94	77.47 77.16.84	67.96 65.91 65.07	57.18 56.85 56.07 55.69 52.73	31.25 29.81 26.83
			11-21-1V			\checkmark	- 532	V22	12.1

Methyl (*E*)-3a-(hydroxymethyl)-3-styryl-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]pyrrole-2-carboxylate (11)

Methyl (*E*)-3a-(hydroxymethyl)-3-styryl-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]pyrrole-2-carboxylate (11)

