Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

SUPPORTING INFORMATION

Enantioselective organocatalytic syntheses of α -selenated α - and β -amino acid derivatives

Victoria Haider^a, Paul Zebrowski^a, Jessica Michalke^b, Uwe Monkowius^c and Mario Waser^{*a}

a) Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria. Fax: +43 732 2468 5411; Tel: +43 732 2468 5402; E-mail: mario.waser@jku.at

b) Institute of Catalysis, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.

c) School of Education, Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.

Table of Contents

1.	General Information1
2.	Synthesis of α-Selenated Azlactones 3
	2.1 General Racemic Procedure
	2.2 General Enantioselective Procedure
3.	Characterization Data of α-Selenated Azlactones 33
	4-Benzyl-2-phenyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3a):
	4-Methyl-2-phenyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3c):
	4-Isopropyl- 2-phenyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3d):
	4-Isobutyl- 2-phenyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3e):
	4-(Cyclohexylmethyl)-2-phenyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3f):
	4-(2-(Methylthio)ethyl)-2-phenyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3g):
	4-(4-Chlorobenzyl)- 2-phenyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3h):
	4-(4-Nitrobenzyl)- 2-phenyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3i):
	4-Benzyl-4-(phenylselanyl)-2-(4-(trifluoromethyl)phenyl)oxazol-5(4 <i>H</i>)-one (3j):7
	4-Benzyl-2-(4-nitrophenyl)-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3k):
	4-Benzyl-2-(4-methoxyphenyl)-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (31):
	4-Benzyl-2-(4-chlorophenyl)-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3m):
	4-Benzyl-2-(naphthalen-2-yl)-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3n):
	4-Benzyl-2-ethyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3o):
	4-Benzyl-2-cyclohexyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3p):10
	4-(4-Chlorobenzyl)-2-(4-methoxyphenyl)-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3q): 10
	2-(4-Methoxyphenyl)-4-(4-nitrobenzyl)-4-(phenylselanyl)oxazol-5(4H)-one (3r): 11
	2-(4-Methoxyphenyl)-4-methyl-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3s):
	4-Isobutyl-2-(4-methoxyphenyl)-4-(phenylselanyl)oxazol-5(4 <i>H</i>)-one (3t):
	2-(4-Methoxyphenyl)-4-(2-(methylthio)ethyl)-4-(phenylselanyl)oxazol-5(4H)-one (3u):12
	4-Benzyl-2-phenyl-4-(<i>o</i> -tolylselanyl)oxazol-5(4 <i>H</i>)-one (3v):
	4-Benzyl-2-phenyl-4-(<i>p</i> -tolylselanyl)oxazol-5(4 <i>H</i>)-one (3w):
	4-Benzyl-4-(benzylselanyl)-2-phenyloxazol-5(4 <i>H</i>)-one (3x):
	<i>tert</i> -Butyl- ((1 <i>S</i>)-1-(4-benzyl-5-oxo-4-(phenylselanyl)-4,5-dihydrooxazol-2-yl)ethyl)carbamate (8):
4.	Further Transformations of 4-Benzyl-2-phenyl-4-(phenylselanyl)oxazol-5(4H)-one 3a 15
	Methyl 2-benzamido-2-methoxy-3-phenylpropanoate (6):15
5.	Synthesis of α -Selenated α -Aryl-Isoxazolidin-5-ones 4
	5.1 General Racemic Procedure
	5.2 General Enantioselective Procedure
6.	Characterization Data of α -Selenated α -Aryl-Isoxazolidin-5-ones 417

	tert-Butyl 5-oxo-4-phenyl-4-(phenylselanyl)isoxazolidine-2-carboxylate (4a):17
	tert-Butyl 4-(naphthalen-2-yl)-5-oxo-4-(phenylselanyl)isoxazolidine-2-carboxylate (4b): 17
	tert-Butyl 5-oxo-4-(phenylselanyl)-4-(thiophen-3-yl)isoxazolidine-2-carboxylate (4c):
	tert-Butyl 4-(4-chlorophenyl)-5-oxo-4-(phenylselanyl)isoxazolidine-2-carboxylate (4d):
	tert-Butyl 4-(4-bromophenyl)-5-oxo-4-(phenylselanyl)isoxazolidine-2-carboxylate (4e): 19
	tert-Butyl 4-(4-fluorophenyl)-5-oxo-4-(phenylselanyl)isoxazolidine-2-carboxylate (4f): 19
	tert-Butyl 4-(3,4-dichlorophenyl)-5-oxo-4-(phenylselanyl)isoxazolidine-2-carboxylate (4g): 20
	tert-Butyl 5-oxo-4-(phenylselanyl)-4-(p-tolyl)isoxazolidine-2-carboxylate (4i):
	tert-Butyl 5-oxo-4-phenyl-4-(o-tolylselanyl)isoxazolidine-2-carboxylate (4j):
	tert-Butyl 5-oxo-4-phenyl-4-(p-tolylselanyl)isoxazolidine-2-carboxylate (4k):
	tert-Butyl 4-(benzylselanyl)-5-oxo-4-phenylisoxazolidine-2-carboxylate (41):
7.	Further Transformations of N-Boc 4,4-phenyl(phenylselanyl)isoxazolidin-5-one 4a23
	<i>tert</i> -Butyl (3-((4-chlorobenzyl)amino)-3-oxo-2-phenyl-2- (phenylselanyl)propyl)(hydroxy)carbamate (9a):
	<i>tert</i> -Butyl hydroxy(3-((4-methoxybenzyl)amino)-3-oxo-2-phenyl-2- (phenylselanyl)propyl)carbamate (9b):
	Methyl 3-((tert-butoxycarbonyl)(hydroxy)amino)-2-phenyl-2-(phenylselanyl)propanoate (10): 24
	tert-Butyl 5-oxo-4-phenylisoxazole-2(5H)-carboxylate (11):
8.	Single-Crystal Analysis
9.	NMR Spectra of Selenation Products
10.	HPLC Traces of Racemic and Enantioenriched Selenation Products
11.	HRMS Data

1. General Information

¹H-, ¹³C- and ¹⁹F-NMR spectra were recorded on a Bruker Avance III 300 MHz spectrometer with a broad band observe probe and a sample changer for 16 samples, a Bruker Avance DRX 500 MHz spectrometer and on a Bruker Avance III 700 MHz spectrometer with an Ascend magnet and TCI cryoprobe, which are property of the Austro-Czech NMR-Research Center "RERI-uasb". NMR spectra were referenced on the solvent peak and chemical shifts are given in ppm.

High resolution mass spectra were obtained using an Agilent 6520 Q-TOF mass spectrometer with an ESI source. Analyses were made in the positive ionization mode if not otherwise stated. Purine (exact mass for $[M+H]^+ = 121.050873$) and 1,2,3,4,5,6-hexakis(2,2,3,3-tetrafluoropropoxy)-1,3,5,2,4,6-triazatriphosphinane (exact mass for $[M+H]^+ = 922.009798$) were used for internal mass calibration.

HPLC was performed using a Thermo Scientific Dionex Ultimate 3000 or a Shimadzu Prominence system with diode array detector with a CHIRALPAK AD-H, OD-H or YMC CHIRAL ART Cellulose-SB (250×4.6 mm, 5 µm) chiral stationary phase. Optical rotations were recorded on a Schmidt + Haensch Polarimeter Model UniPol L1000 at 589 nm.

All chemicals were purchased from commercial suppliers and used without further purification unless otherwise stated. Dry solvents were obtained from an MBraun-SPS-800 solvent purification system. All reactions were carried out under argon atmosphere and in absence of light, unless stated otherwise.

Azlactones¹ 1, α -Aryl-Isoxazolidin-5-ones² 2 and selenation reagents³ 5 were prepared following established procedures.

¹ (a) C. Macovai, P. Vicennati, J. Quinton, M.-C. Nevers, H. Volland, C. Créminon and F. Taran, *Chem. Commun.* 2012, **48**, 4411-4413; (b) A. D. Melhado, M. Luparia and F. D. Toste, *J. Am. Chem. Soc.* 2007, **129**, 42, 12638-12639; (c) D. N. Le, J. Riedel, N. Kozlyuk, R. W. Martin and V. M. Dong, *Org. Lett.* 2017, **19**, 1, 114-117 ² M. N. Oliveira, S. Arseniyadis and J. Cossy, *Chem. Eur. J.* 2018, **24**, 4810–4814.

³ (a) X.-Y. Wang, Y.-F. Zhong, Z.-Y. Mo, S.-H. Wu, Y.-L. Xu, H.-T. Tang and Y.-M. Pan, *Adv. Synth. Catal.* 2021, **363**, 208–214; (b) T. Hori and K. B. Sharpless, *J. Org. Chem.* 1979, **44**, 4208–4210.

2. Synthesis of α-Selenated Azlactones 3

2.1 General Racemic Procedure

To a solution of azlactone (1, 1 equiv.), benzyltriethylammonium chloride (BTEAC, 10 mol%) and K₃PO₄ (10 mol%) in toluene (0.05 M with respect to azlactone substrate 1) under an atmosphere of argon was added the corresponding *N*-(Aryl-seleno)phthalimide (1.1 equiv.) at room temperature and under exclusion of light. The reaction mixture was stirred for 1 h under these conditions and the reaction was monitored by thin layer chromatography using heptanes:EtOAc (3.5:1) as mobile phase. After filtration through a pad of Na₂SO₄ the crude product was subjected to silica gel column chromatography (eluent: heptanes:EtOAc) for purification.

2.2 General Enantioselective Procedure

To a solution of azlactone (1, 1 equiv.) and dihydroquinine (5 mol%) in toluene (0.0125 M related to azlactone 1) under an atmosphere of argon was added the corresponding *N*-(Aryl-seleno)phthalimide (1.1 equiv.) at 0 °C and under exclusion of light. The reaction mixture was stirred for 1 h under these conditions and the reaction was monitored by thin layer chromatography using heptanes:EtOAc (3.5:1) as mobile phase. After filtration through a pad of Na₂SO₄ the crude product was subjected to silica gel column chromatography (eluent: heptanes:EtOAc) for purification.

3. <u>Characterization Data of α-Selenated Azlactones 3</u>

4-Benzyl-2-phenyl-4-(phenylselanyl)oxazol-5(4H)-one (3a):

Compound **3a** was prepared according to the general procedure described in **2.2** and was obtained as a white solid (18.7 mg, 46 µmol, 92% yield, e.r. = 89:11). **TLC** (heptanes:EtOAc = 3.5:1): $R_f = 0.49$ (UV). [α] $\mathbf{p}^{24} = -65.1$ (*c* 1.00, CHCl₃, e.r. = 89:11). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.57 (d, J = 9.0 Hz, 2H), 7.50 (d, J = 6.0 Hz, 2H), 7.39 (t, J = 9.0 Hz, 1H),

7.26 (t, J = 9.0 Hz, 2H), 7.19-7.14 (m, 4H), 7.12-7.02 (m, 4H), 3.54 (d, J = 12.0 Hz, 1H), 3.42 (d, J = 15.0 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 176.4, 160.7, 138.3, 134.6, 132.8, 130.2, 130.2, 129.2, 128.7, 128.5, 127.9, 127.6, 125.3, 73.9, 41.3. HRMS (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₃H₁₇NO₂Se, 408.0498; found, 408.0500. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, λ = 220 nm), retention times $t_{\rm R}(\text{minor}) = 26.4$ min, $t_{\rm R}(\text{major}) = 27.8$ min.

4-Methyl-2-phenyl-4-(phenylselanyl)oxazol-5(4*H*)-one (3c):

Compound **3c** was prepared according to the general procedure described in **2.2** and was obtained as a white solid (14.2 mg, 43 µmol, 86% yield, e.r. = 94:6). **TLC** (heptanes:EtOAc = 3.5:1): $R_f = 0.57$ (UV). $[\alpha]p^{24} = -30.1$ (*c* 1.00, CHCl₃, e.r. = 94:6). ¹H-NMR (700 MHz, CDCl₃, 298.0 K): δ / ppm = 7.76 (d, *J* = 7.0 Hz, 2H), 7.57 (d, *J* = 14.0 Hz, 2H), 7.53 (t, *J* = 14.0 Hz, 1H), 7.40 (t, *J* = 7.0 Hz, 2H), 7.25 (t, *J* = 7.0 Hz, 1H), 7.14 (t, *J* = 7.0 Hz,

2H), 1.93 (s, 3H). ¹³C-NMR (176 MHz, CDCl₃, 298.0 K): δ / ppm = 177.7, 160.6, 138.1, 133.0, 130.2, 129.1, 128.8, 127.9, 125.8, 125.3, 69.2, 21.9. **HRMS** (ESI-QTOF, MeOH) *m*/*z*: [M+H]⁺ calculated for C₁₆H₁₄NO₂Se, 332.0185; found, 332.0187. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, λ = 220 nm), retention times *t*_R(major) = 24.8 min, *t*_R(minor) = 30.3 min.

4-Isopropyl- 2-phenyl-4-(phenylselanyl)oxazol-5(4H)-one (3d):

Compound **3d** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (11.3 mg, 32 µmol, 63% yield, e.r. = 79:21). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.44 (UV). [α] p^{23} = -11.0 (*c* 1.00, CHCl₃, e.r. = 79:21). ¹H-NMR (500 MHz, CDCl₃, 298.0 K): δ / ppm = 7.75 (d, *J* = 7.9 Hz, 2H), 7.55-7.50 (m, 3H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.11 (t, *J* = 7.7 Hz, 2H), 2.54

(sep, J = 6.9 Hz, 1H) 1.33 (d, J = 6.7 Hz, 3H), 1.05 (d, J = 6.7 Hz, 3H). ¹³C-NMR (126 MHz, CDCl₃, 298.0 K): δ / ppm = 176.9, 160.7, 138.4, 132.8, 130.0, 129.1, 128.7, 127.9, 125.5, 125.2, 79.2, 33.9, 18.6, 18.5. HRMS (ESI-QTOF, MeOH) *m*/*z*: [M+H]⁺ calculated for C₁₈H₁₈NO₂Se, 360.0498; found, 360.0501. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, λ = 220 nm), retention times *t*_R(major) = 17-1 min, *t*_R(minor) = 18.6 min.

4-Isobutyl- 2-phenyl-4-(phenylselanyl)oxazol-5(4H)-one (3e):

Compound **3e** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (18.2 mg, 49 µmol, 98% yield, e.r. = 92:8). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.45 (UV). [α] \mathbf{p}^{23} = -93.3 (*c* 1.00, CHCl₃, e.r. = 92:8). ¹H-NMR (500 MHz, CDCl₃, 298.0 K): δ / ppm = 7.74 (d, *J* = 7.2 Hz, 2H), 7.54-7.50 (m, 3H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.24 (t, *J* = 7.4 Hz, 1H),

7.10 (t, J = 7.7 Hz, 2H), 2.32 (dd, $J_1 = 5.6$ Hz, $J_2 = 14.2$ Hz, 1H), 2.17 (dd, $J_1 = 7.7$ Hz, $J_2 = 14.1$ Hz, 1H), 1.83 (sep, J = 6.6 Hz, 1H), 0.95 (d, J = 6.6 Hz, 3H), 0.85 (d, J = 6.6 Hz, 3H). ¹³C-NMR (126 MHz, CDCl₃, 298.0 K): δ / ppm = 177.5, 160.3, 138.3, 132.8, 130.2, 129.0, 128.7, 127.8, 125.4, 125.4, 73.4, 43.3, 27.0, 23.6, 22.7. HRMS (ESI-QTOF, MeOH) *m*/*z*: [M+H]⁺ calculated for C₁₉H₂₀NO₂Se, 374.0654; found, 374.0657. HPLC: YMC Chiral Art Cellulose SB (*n*-hexane:*i*-PrOH = 80:1, flow rate 0.2 mL/min, 10 °C, $\lambda = 220$ nm), retention times *t*_R(major) = 28.9 min, *t*_R(minor) = 30.0 min.

4-(Cyclohexylmethyl)-2-phenyl-4-(phenylselanyl)oxazol-5(4H)-one (3f):

Compound **3f** was prepared according to the general procedure described in **2.2** and was obtained as a white solid (19.4 mg, 47 µmol, 94% yield, e.r. = 93:7). **TLC** (heptanes:EtOAc = 3.5:1): $R_f = 0.63$ (UV). [α] $p^{23} = -109.1$ (*c* 1.00, CHCl₃, e.r. = 93:7). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.75-7.72 (m, 2H), 7.55-7.50 (m, 3H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 2H), 7.55 (t, *J* = 7.4 Hz), 7.55 (t, *J* = 7.5 (t, J = 7

1H), 7.10 (t, J = 7.6 Hz, 2H), 2.33-2.15 (m, 2H), 1.73-1.47 (m, 6H), 1.19-0.88 (m, 5H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 177.6, 160.3, 138.3, 132.8, 130.2, 129.1, 128.8, 127.9, 125.5, 125.5, 77.4, 73.4, 42.2, 36.1, 34.1, 33.2, 26.2, 26.0. HRMS (ESI-QTOF, MeOH) *m*/*z*: [M+H]⁺ calculated for C₂₂H₂₄NO₂Se, 414.0967; found, 414.0965. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, λ = 220 nm), retention times *t*_R(minor) = 20.6 min, *t*_R(major) = 22.9 min.

4-(2-(Methylthio)ethyl)-2-phenyl-4-(phenylselanyl)oxazol-5(4H)-one (3g):

Compound **3g** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (19.1 mg, 49 µmol, 98% yield, e.r. = 93:7). **TLC** (heptanes:EtOAc = 3.5:1): $R_f = 0.43$ (UV). [α] $\mathbf{p}^{24} = -84.9$ (*c* 1.00, CHCl₃, e.r. = 93:7). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.77-7.75 (m, 2H), 7.57-7.51 (m, 3H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.29-7.23 (m, 1H), 7.14 (t,

J = 7.6 Hz, 2H), 2.66-2.56 (m, 4H), 2.05 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 177.1, 161.5, 138.3, 133.0, 130.3, 129.2, 128.8, 128.0, 125.4, 125.0, 72.3, 34.1, 30.3, 15.1. HRMS (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₁₈H₁₈NO₂SSe, 392.0218; found, 392.0219. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm), retention times $t_{\rm R}(\text{minor}) = 31.7$ min, $t_{\rm R}(\text{major}) = 33.2$ min.

4-(4-Chlorobenzyl)- 2-phenyl-4-(phenylselanyl)oxazol-5(4H)-one (3h):

Compound **3h** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (21.8 mg, 50 µmol, 98% yield, e.r. = 82:18). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.49 (UV). [α] p^{24} = -2.3 (*c* 1.00, CHCl₃, e.r. = 82:18). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.62 (d, *J* = 6.0 Hz, 2H), 7.54 (d,

J = 9.0 Hz, 2H), 7.48-7.43 (m, 1H), 7.32 (t, J = 9.0 Hz, 2H), 7.24-7.19 (m, 1H), 7.17-7.08 (m, 6H), 3.55 (d, J = 12.0 Hz, 1H), 3.42 (d, J = 12.0 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 176.3, 160.9, 138.3, 134.5, 133.6, 133.0, 133.0, 131.6, 130.3, 129.2, 128.7, 127.9, 125.2, 125.1, 123.7, 73.4, 40.5. **HRMS** (ESI-QTOF, MeOH) *m*/*z*: [M+H]⁺ calculated for C₂₂H₁₇ClNO₂Se, 442.0108; found, 442.0106. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm), retention times *t*_R(major) = 31.4 min, *t*_R(minor) = 33.9 min.

4-(4-Nitrobenzyl)- 2-phenyl-4-(phenylselanyl)oxazol-5(4H)-one (3i):

Compound **3i** was prepared according to the general procedure described in **2.2** and was obtained as a light-yellow solid (21.0 mg, 47 µmol, 93% yield, e.r. = 69:31). **TLC** (heptanes:EtOAc = 3.5:1): $R_f = 0.42$ (UV). $[\alpha]\mathbf{p}^{24} = -27.2$ (*c* 1.00, CHCl₃, e.r. = 69:31). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 8.08 (d, J = 8.8 Hz, 2H), 7.68-7.65 (m,

2H), 7.59-7.56 (m, 2H), 7.54-7.49 (m, 1H), 7.44 (d, J = 8.8 Hz, 2H), 7.37 (t, J = 7.8 Hz, 2H), 7.31-7.25 (m, 1H), 7.16 (t, J = 7.5 Hz, 2H), 3.72 (d, J = 13.7 Hz, 1H), 3.58 (d, J = 13.7 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 176.1, 161.2, 147.5, 142.0, 138.3, 133.3, 131.2, 130.5, 129.3, 128.8, 127.9, 124.9, 124.8, 123.7, 72.6, 40.8. HRMS (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₂H₁₇N₂O₄Se, 453.0348; found, 453.0352. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, λ = 220 nm), retention times $t_{\rm R}(\text{minor}) = 30.0$ min, $t_{\rm R}(\text{major}) = 32.4$ min.

4-Benzyl-4-(phenylselanyl)-2-(4-(trifluoromethyl)phenyl)oxazol-5(4H)-one (3j):

Compound **3j** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (19.2 mg, 41 µmol, 81% yield, e.r. = 72:28). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.45 (UV). [α] \mathbf{p}^{24} = -46.4 (*c* 1.00, CHCl₃, e.r. = 72:28). ¹H-NMR (700 MHz, CDCl₃, 298.0 K): δ / ppm = 7.76 (d, *J* = 14.0 Hz, 2H), 7.62 (d,

J = 7.0 Hz, 2H), 7.58 (d, *J* = 7.0 Hz, 2H), 7.28-7.24 (m, 3H), 7.21 (t, *J* = 7.0 Hz, 2H), 7.19-7.14 (m, 3H), 3.63 (d, *J* = 14.0 Hz, 1H), 3.54 (d, *J* = 7.0 Hz, 1H). ¹³C-NMR (176 MHz, CDCl₃, 298.0 K): δ / ppm = 175.9, 159.4, 138.3, 134.3, 130.4, 130.2, 129.3, 128.6, 128.2, 127.7, 125.7, 125.7, 125.7, 125.1, 122.8, 73.8, 41.1. ¹⁹F-NMR (471 MHz, CDCl₃, 298.0 K): δ / ppm = -63.21. HRMS (ESI-QTOF, MeOH) *m*/*z*: [M+H]⁺ calculated for C₂₃H₁₇F₃NO₂Se, 476.0371; found, 476.0377. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm), retention times *t*_R(minor) = 21.3 min, *t*_R(major) = 26.3 min.

4-Benzyl-2-(4-nitrophenyl)-4-(phenylselanyl)oxazol-5(4H)-one (3k):

Compound **3k** was prepared according to the general procedure described in **2.2** and was obtained as a yellow solid (12.2 mg, 27 µmol, 54% yield, e.r. = 63:37). **TLC** (heptanes:EtOAc = 3.5:1): $R_f = 0.52$ (UV). $[\alpha]\mathbf{p}^{23} = -23.1$ (*c* 1.00, CHCl₃, e.r. = 63:37). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 8.20 (d, J = 9.1 Hz, 2H), 7.81 (d,

J = 8.7 Hz, 2H), 7.58-7.55 (m, 2H), 7.29-7.12 (m, 8H), 3.65 (d, J = 13.7 Hz, 1H), 3.54 (d, J = 13.7 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 175.6, 158.8, 150.3, 138.3, 134.3, 130.8, 130.5, 130.2, 129.3, 128.8, 128.6, 127.8, 125.1, 123.9, 73.8, 41.0. HRMS (ESI-QTOF, MeOH) *m*/*z*: [M+H]⁺ calculated for C₂₂H₁₇N₂O₄Se, 453.0348; found, 453.0343. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, λ = 220 nm), retention times *t*_R(minor) = 22.5 min, *t*_R(major) = 29.0 min.

4-Benzyl-2-(4-methoxyphenyl)-4-(phenylselanyl)oxazol-5(4*H*)-one (3l):

Compound **31** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (18.8 mg, 43 µmol, 86% yield, e.r. = 91:9). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.20 (UV). [α] \mathbf{p}^{24} = -44.9 (*c* 1.00, CHCl₃, e.r. = 91:9). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.63-7.58 (m, 4H), 7.29-7.12 (m, 8H),

6.84 (d, J = 9.0 Hz, 2H), 3.83 (s, 3H), 3.62 (d, J = 13.6 Hz, 1H), 3.48 (d, J = 13.6 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 176.6, 163.3, 160.5, 138.2, 134.7, 130.3, 130.1, 129.8, 129.1, 128.5, 127.5, 125.5, 117.6, 114.1, 74.0, 55.6, 41.4. HRMS (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₃H₂₀NO₃Se, 438.0603; found, 438.0605. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, λ = 270 nm), retention times $t_{\rm R}(\text{minor}) = 18.2$ min, $t_{\rm R}(\text{major}) = 23.3$ min.

4-Benzyl-2-(4-chlorophenyl)-4-(phenylselanyl)oxazol-5(4*H*)-one (3m):

Compound **3m** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (17.0 mg, 39 µmol, 77% yield, e.r. = 74:26). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.58 (UV). [α] \mathbf{p}^{24} = -37.7 (*c* 1.00, CHCl₃, e.r. = 74:26). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.60-7.55 (m, 4H), 7.35-7.31 (m, 2H),

7.27-7.12 (m, 8H), 3.62 (d, J = 13.7 Hz, 1H), 3.50 (d, J = 13.7 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 176.1, 159.8, 139.3, 138.3, 134.5, 130.3, 130.2, 129.2, 129.2, 128.6, 127.7, 125.2, 123.7, 73.9, 41.2. **HRMS** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₂H₁₇ClNO₂Se, 442.0108; found, 442.0108. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, λ = 220 nm), retention times $t_{\rm R}(\text{minor}) = 25.1 \text{ min}, t_{\rm R}(\text{major}) = 33.2 \text{ min}.$

4-Benzyl-2-(naphthalen-2-yl)-4-(phenylselanyl)oxazol-5(4*H*)-one (3n):

Compound **3n** was prepared according to the general procedure described in **2.2** and was obtained as a light-yellow solid (18.7 mg, 41 µmol, 82% yield, e.r. = 87:13). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.47 (UV). [α] \mathbf{p}^{24} = -88.0 (*c* 1.00, CHCl₃, e.r. = 87:13). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 8.07 (s, 1H), 7.83 (t, *J* = 6.8 Hz, 4H),

7.64-7.61 (m, 2H), 7.58-7.49 (m, 2H), 7.31-7.28 (m, 2H), 7.24-7.09 (m, 6H), 3.68 (d, J = 13.5 Hz, 1H), 3.55 (d, J = 13.7 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 176.4, 160.8, 138.2, 135.4, 134.6, 132.5, 130.2, 130.2, 129.4, 129.2, 129.2, 128.6, 128.5, 128.0, 127.6, 127.1, 125.3, 123.4, 122.5, 74.1, 41.3. HRMS (ESI-QTOF, MeOH) *m/z*: [M+H]⁺ calculated for C₂₆H₂₀NO₂Se, 458.0654; found, 458.0649. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, $\lambda = 220$ nm), retention times $t_{\rm R}(\text{minor}) = 13.7 \text{ min}, t_{\rm R}(\text{major}) = 16.2 \text{ min}.$

4-Benzyl-2-ethyl-4-(phenylselanyl)oxazol-5(4*H*)-one (30):

Compound **30** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (14.2 mg, 40 µmol, 79% yield, e.r. = 53:47). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.36 (UV). ¹**H-NMR** (500 MHz, CDCl₃, 298.0 K): δ / ppm = 7.63-7.60 (m, 2H), 7.42 (t, *J* = 7.7 Hz, 1H), 7.32 (t, *J* = 7.7 Hz, 2H), 7.25-7.19 (m, 5H), 3.48 (d, *J* = 13.5 Hz, 1H), 3.42 (d, *J* = 13.5 Hz, 1H),

2.02-1.88 (m, 2H), 0.84 (t, J = 7.7 Hz, 3H). ¹³C-NMR (126 MHz, CDCl₃, 298.0 K): δ / ppm = 177.0, 166.0, 138.3, 134.4, 130.3, 130.2, 129.3, 128.5, 127.6, 125.3, 72.7, 41.0, 22.1, 8.8. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, λ = 220 nm), retention times $t_{\rm R}$ (major) = 21.5 min, $t_{\rm R}$ (minor) = 22.6 min.

4-Benzyl-2-cyclohexyl-4-(phenylselanyl)oxazol-5(4H)-one (3p):

Compound **3p** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (6.8 mg, 17 µmol, 33% yield, e.r. = 53:47). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.57 (UV). ¹**H-NMR** (500 MHz, CDCl₃, 298.0 K): δ / ppm = 7.64-7.62 (m, 2H), 7.42-7.39 (m, 1H), 7.32 (t, *J* = 7.7 Hz, 2H), 7.25-7.17 (m, 5H), 3.47 (d, *J* = 13.6 Hz, 1H), 3.42 (d, *J* = 13.2 Hz,

1H), 1.93-1.89 (m, 1H), 1.59-1.51 (m, 4H), 1.42-1.36 (m, 3H), 1.10-0.98 (m, 3H). **HRMS** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₂H₂₄NO₂Se, 414.0967; found, 414.0963. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, λ = 220 nm), retention times $t_{\rm R}$ (major) = 19.2 min, $t_{\rm R}$ (minor) = 19.9 min.

4-(4-Chlorobenzyl)-2-(4-methoxyphenyl)-4-(phenylselanyl)oxazol-5(4H)-one (3q):

Compound **3q** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (23.1 mg, 49 µmol, 98% yield, e.r. = 87:13). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.34 (UV). [α] $_{D}^{23}$ = -7.5 (*c* 1.00, CHCl₃, e.r. = 87:13). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.72-7.65 (m, 4H),

7.38-7.33 (m, 2H), 7.29-7.21 (m, 5H), 6.94 (d, J = 8.9 Hz, 2H), 3.92 (s, 3H), 3.66 (d, J = 13.8 Hz, 1H), 3.52 (d, J = 13.8 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): $\delta / \text{ppm} = 176.5$, 163.5, 160.7, 138.3, 133.5, 133.2, 131.6, 130.2, 129.9, 129.2, 128.7, 125.3, 117.4, 114.2, 73.5, 55.6, 40.7. HRMS (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₃H₁₉ClNO₃Se, 472.0213; found, 472.0205. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, $\lambda = 220$ nm), retention times $t_{\rm R}(\text{minor}) = 21.5 \text{ min}, t_{\rm R}(\text{major}) = 25.2 \text{ min}.$

2-(4-Methoxyphenyl)-4-(4-nitrobenzyl)-4-(phenylselanyl)oxazol-5(4H)-one (3r):

Compound **3r** was prepared according to the general procedure described in **2.2** and was obtained as a yellow solid (23.6 mg, 49 µmol, 98% yield, e.r. = 79:21). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.24 (UV). [α] p^{23} = -21.5 (*c* 1.00, CHCl₃, e.r. = 79:21). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 8.07 (d, *J* = 8.7 Hz, 2H),

7.63-7.57 (m, 4H), 7.43 (d, J = 8.4 Hz, 2H), 7.31-7.24 (m, 1H), 7.17 (t, J = 7.7 Hz, 2H), 6.85 (d, J = 9.1 Hz, 2H), 3.84 (s, 3H), 3.70 (d, J = 13.3 Hz, 1H), 3.56 (d, J = 13.9 Hz, 1H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 176.2, 163.7, 161.0, 147.5, 142.2, 138.3, 131.2, 130.4, 129.9, 129.2, 125.1, 123.7, 117.0, 114.3, 72.8, 55.6, 41.0. HRMS (ESI-QTOF, MeOH) *m/z*: [M+H]⁺ calculated for C₂₃H₁₉N₂O₅Se, 483.0454; found, 483.0462. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.2 mL/min, 10 °C, $\lambda = 220$ nm), retention times *t*_R(minor) = 28.0 min, *t*_R(major) = 32.2 min.

2-(4-Methoxyphenyl)-4-methyl-4-(phenylselanyl)oxazol-5(4H)-one (3s):

Compound **3s** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (5.9 mg, 17 µmol, 33% yield, e.r. = 71:29). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.28 (UV). [α] \mathbf{p}^{23} = +18.4 (*c* 0.47, CHCl₃, e.r. = 71:29). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.71 (d, *J* = 8.5 Hz, 2H), 7.57 (d, *J* = 7.7 Hz, 2H), 7.28-7.24 (m, 1H), 7.15 (t, *J* = 7.4 Hz, 2H),

6.89 (d, J = 8.5 Hz, 2H), 3.86 (s, 3H), 1.92 (s, 3H). **HRMS** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₁₇H₁₆NO₃Se, 362.0290; found, 362.0294. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, $\lambda = 220$ nm), retention times $t_{\rm R}$ (minor) = 16.7 min, $t_{\rm R}$ (major) = 17.8 min.

4-Isobutyl-2-(4-methoxyphenyl)-4-(phenylselanyl)oxazol-5(4H)-one (3t):

Compound **3t** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (9.7 mg, 24 µmol, 48% yield, e.r. = 59:41). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.43 (UV). [α] \mathbf{p}^{23} = -32.6 (*c* 0.61, CHCl₃, e.r. = 59:41). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.70 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 7.9 Hz, 2H),

7.26-7.23 (m, 1H), 7.12 (t, J = 7.7 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 3.86 (s, 3H), 2.33-2.29 (m, 1H), 2.18-2.14 (m, 1H), 1.82 (sep, J = 6.8 Hz, 1H), 0.94 (d, J = 6.8 Hz, 1H), 0.84 (d, J = 6.6 Hz, 1H). ¹³**C-NMR** (126 MHz, CDCl₃, 298.0 K): δ / ppm = 177.7, 163.4, 160.2, 138.3, 130.1, 129.8, 129.0, 125.5, 117.8, 114.2, 73.6, 55.6, 43.5, 27.0, 23.7, 22.7. **HRMS** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₀H₂₂NO₃Se, 404.0760; found, 404.0770. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, λ = 220 nm), retention times $t_{\rm R}(\text{minor}) = 21.1$ min, $t_{\rm R}(\text{major}) = 26.1$ min.

2-(4-Methoxyphenyl)-4-(2-(methylthio)ethyl)-4-(phenylselanyl)oxazol-5(4H)-one (3u):

Compound **3u** was prepared according to the general procedure described in **2.2** and was obtained as a colourless solid (16.8 mg, 40 µmol, 80% yield, e.r. = 91:9). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.25 (UV). [α] p^{23} = -32.1 (*c* 1.00, CHCl₃, e.r. = 91:9). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.72 (d, *J* = 8.6 Hz, 2H), 7.56 (d,

J = 7.3 Hz, 2H), 7.29-7.24 (m, 1H), 7.15 (t, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 9.0 Hz, 2H), 3.86 (s, 3H), 2.71-2.52 (m, 4H), 2.04 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 177.2, 163.5, 161.2, 138.3, 130.2, 130.0, 129.1, 125.1, 117.7, 114.2, 72.5, 55.6, 34.3, 30.3, 15.1. HRMS (ESI-QTOF, MeOH) *m*/*z*: [M+H]⁺ calculated for C₁₉H₂₀NO₃SSe, 422.0324; found, 422.0324. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, λ = 220 nm), retention times *t*_R(minor) = 24.2 min, *t*_R(major) = 29.7 min.

4-Benzyl-2-phenyl-4-(*o*-tolylselanyl)oxazol-5(4*H*)-one (3v):

Compound **3v** was prepared according to the general procedure described in **2.2** using *N*-(*o*-tolylseleno)phthalimide as a selenation agent and was obtained as a colourless solid (16.0 mg, 38 µmol, 76% yield, e.r. = 88:12). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.53 (UV). [α] \mathbf{p}^{24} = -84.4 (*c* 1.00, CHCl₃, e.r. = 88:12). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.65-7.62 (m, 2H), 7.58 (d,

J = 7.5 Hz, 1H), 7.50-7.45 (m, 1H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.29-7.16 (m, 5H), 7.12-7.10 (m, 2H), 6.92-6.87 (m, 1H), 3.66 (d, *J* = 13.8 Hz, 1H), 3.54 (d, *J* = 13.8 Hz, 1H), 2.52 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 176.7, 160.3, 144.4, 139.9, 134.7, 132.7, 130.7, 130.3, 130.2, 128.6, 128.5, 127.8, 127.5, 126.5, 126.5, 125.3, 74.2, 41.2, 23.7. HRMS (ESI-QTOF, MeOH) *m*/*z*: [M+H]⁺ calculated for C₂₃H₂₀NO₂Se, 422.0654; found, 422.0650. HPLC: YMC Chiral Art Cellulose SB (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, λ = 270 nm), retention times *t*_R(minor) = 24.1 min, *t*_R(major) = 25.3 min.

4-Benzyl-2-phenyl-4-(*p*-tolylselanyl)oxazol-5(4*H*)-one (3w):

Compound **3w** was prepared according to the general procedure described in **2.2** using *N*-(*p*-tolylseleno)phthalimide as a selenation agent and was obtained as a colourless solid (10.1 mg, 24 µmol, 48% yield, e.r. = 76:24). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.44 (UV). **[a]** \mathbf{p}^{23} = -51.8 (*c* 0.80, CHCl₃, e.r. = 76:24). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.66 (d, *J* = 7.2 Hz, 2H), 7.51-7.44 (m, 3H), 7.36 (t, *J* = 7.8 Hz, 2H), 7.27-7.16 (m, 5H), 6.94

(d, J = 7.9 Hz, 2H), 3.62 (d, J = 13.8 Hz, 1H), 3.49 (d, J = 13.8 Hz, 1H), 2.20 (s, 3H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 176.5, 160.6, 140.6, 138.2, 134.7, 132.8, 130.2, 130.0, 128.6, 128.5, 127.9, 127.5, 125.4, 122.0, 73.7, 41.2, 21.3. **HRMS** (ESI-QTOF, MeOH) *m/z*: [M+H]⁺ calculated for C₂₃H₂₀NO₂Se, 422.0654; found, 422.0658. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm), retention times $t_{\rm R}(\text{major}) = 30.9 \text{ min}, t_{\rm R}(\text{minor}) = 32.8 \text{ min}.$

4-Benzyl-4-(benzylselanyl)-2-phenyloxazol-5(4*H*)-one (3x):

Compound **3x** was prepared according to the general procedure described in **2.2** using *N*-(phenylseleno)phthalimide as a selenation agent and a reaction time of 3 h. It was obtained as a colourless solid (8.4 mg, 20 µmol, 40% yield, e.r. = 74:26). **TLC** (heptanes:EtOAc = 3.5:1): R_f = 0.51 (UV). [α] p^{23} = -61.3 (*c* 0.53, CHCl₃, e.r. = 74:26). ¹H-NMR (300 MHz, CDCl₃, 298.0 K):

 δ / ppm = 7.92-7.89 (m, 2H), 7.58-7.52 (m, 1H), 7.47-7.42 (m, 2H), 7.32-7.15 (m, 10H), 4.07 (d, *J* = 11.2 Hz, 1H), 4.01 (d, *J* = 11.2 Hz, 1H), 3.56 (d, *J* = 13.8 Hz, 1H), 3.43 (d, *J* = 13.8 Hz, 1H). ¹³**C-NMR** (75 MHz, CDCl₃, 298.0 K): δ / ppm = 177.0, 161.1, 136.4, 134.3, 133.2, 130.3, 129.5, 128.9, 128.8, 128.5, 128.2, 127.6, 127.4, 125.3, 69.4, 42.7, 28.7. **HRMS** (ESI-QTOF, MeOH) *m*/*z*: [M+H]⁺ calculated for C₂₃H₂₀NO₂Se, 422.0654; found, 422.0652. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, λ = 220 nm), retention times *t*_R(minor) = 39.3 min, *t*_R(major) = 45.9 min.

tert-Butyl- ((1*S*)-1-(4-benzyl-5-oxo-4-(phenylselanyl)-4,5-dihydrooxazol-2-yl)ethyl)carbamate (8):

Compound **8** was prepared according to the general procedure described in **2.2** using *N*-(phenylseleno)phthalimide as a selenation agent and quinidine **QD** as a catalyst. It was obtained as a colourless solid (20.4 mg, 43 μ mol, 86% yield, d.r. = 17:83). The two diastereomers were separated using preparative HPLC.

TLC (heptanes:EtOAc = 3.5:1): R_f = 0.67 (UV). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K, major diastereomer): δ / ppm = 7.60 (d, J = 7.1 Hz, 2H), 7.47-7.41 (m, 1H), 7.36-7.31 (m, 2H), 7.24-7.15 (m, 5H), 4.66 (d, J = 8.1 Hz, 1H), 4.10-4.05 (m, 1H), 3.51-3.41 (m, 2H), 1.46 (s, 9H), 0.89 (d, J = 6.9 Hz, 3H). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K, minor diastereomer): δ / ppm = 7.64-7.61 (m, 2H), 7.44-7.38 (m, 1H), 7.35-7.30 (m, 2H), 7.25-7.23 (m, 3H), 7.19-7.15 (m, 2H), 4.66 (d, J = 7.9 Hz, 1H), 4.23-4.11 (m, 1H), 3.48 (d, J = 13.6 Hz, 1H), 3.39 (d, J = 13.6 Hz, 1H), 1.45 (s, 9H), 0.82 (d, J = 7.1 Hz, 3H). **HRMS** (ESI-QTOF, MeOH) *m/z*: [M+H]⁺ calculated for C₂₃H₂₇N₂O₄Se, 475.1131; found, 475.1126. **Preparative HPLC**: Grace Alltima Silica 10 µm, 250 x 10 mm (*n*-hexane:EtOAc = 9:1, flow rate 5 mL/min, λ = 230 nm), retention times *t*_R(major) = 12.3 min, *t*_R(minor) = 14.4 min.

4. <u>Further Transformations of 4-Benzyl-2-phenyl-4-(phenylselanyl)oxazol-</u> 5(4H)-one 3a

Methyl 2-benzamido-2-methoxy-3-phenylpropanoate (6):

Compound **6** was prepared in analogy to a reported procedure⁴ by addition of a solution of 4-benzyl-2-phenyl-4-(phenylselanyl)oxazol-5(4*H*)-one (**3a**, 0.046 mmol, 18.6 mg, 1 equiv.) in 0.115 mL methanol to a suspension of K₂CO₃ (0.046 mmol, 6.4 mg, 1 equiv.) in 0.115 mL methanol (in total 0.2 M concerning the substrate **3a**). The resulting mixture was stirred at room temperature under an argon atmosphere for 21 h. After extractive work up using DCM and sat. NaCl solution (aq.) the organic phases were dried over Na₂SO₄ and the solvent was evaporated to obtain 10.5 mg of crude product **6** (28 % yield, e.r. = 52.5:47.5). **TLC** (heptanes:EtOAc = 4:1): R_f = 0.24 (UV). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.74-7.71 (m, 2H), 7.56-7.50 (m, 1H), 7.46-7.41 (m, 2H), 7.27-7.24 (m, 2H), 7.17-7.10 (m, 3H), 4.06 (d, *J* = 13.4 Hz, 1H), 3.88 (s, 3H), 3.33 (d, *J* = 13.2 Hz, 1H), 3.31 (s, 3H). ¹³**C-NMR** (75 MHz, CDCl₃, 298.0 K): δ / ppm = 170.8, 166.9, 134.5, 134.3, 132.2, 130.3, 128.9, 128.6, 127.5, 127.2, 89.2, 53.3, 52.3, 41.2. **HRMS** (ESI-QTOF, MeOH) *m/z*: [M+Na]⁺ calculated for C₁₈H₁₉NO₄Na, 336.1206; found, 336.1207. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 0.9 mL/min, 10 °C, λ = 220 nm), retention times *t*_R(major) = 41.7 min, *t*_R(minor) = 43.6 min.

⁴ J. Yang, W. Sun, Z. He, C. Yu, G. Bao, Y. Li, Y. Liu, L. Hong and R. Wang, Org. Lett. 2018, 20, 22, 7080-7084

5. Synthesis of a-Selenated a-Aryl-Isoxazolidin-5-ones 4

5.1 General Racemic Procedure

A flame-dried Schlenk-tube equipped with a stirring bar under argon atmosphere was charged with α -Aryl-Isoxazolidin-5-one **2** (0.1 mmol, 1 equiv), K₂CO₃ (15.2 mg, 1.1 equiv) and dry toluene (1 mL, 0.1 M with respect to **2**). Selenation reagent **5** (1.1-1.2 equiv) was added and the reaction flask was covered with aluminum foil. The reaction mixture was stirred for 2 h, whereupon it was concentrated under reduced pressure and directly subjected to column chromatography with gradient elution (silica gel, heptanes/EtOAc = 1/0 to 10/1) to obtain alpha-selenation products **4**.

5.2 General Enantioselective Procedure

A flame-dried Schlenk-tube equipped with a stirring bar under argon atmosphere was charged with α -Aryl-Isoxazolidin-5-one **2** (1 equiv), **DHQN** (10 mol%) and dry toluene (0.025 M with respect to **2**). The mixture was stirred until all solids dissolved to give a clear, colorless solution which was cooled in an ice bath for 10 min. Selenation reagent **5** (1.1-1.2 equiv) was added at once and the reaction flask was covered with aluminum foil. The reaction mixture was gradually warmed to room temperature and stirred for 14 h, whereupon it was concentrated under reduced pressure and directly subjected to column chromatography with gradient elution (silica gel, heptanes/EtOAc = 1/0 to 10/1) to obtain alpha-selenation products **4** in the given yields and enantiopurities.

tert-Butyl 5-oxo-4-phenyl-4-(phenylselanyl)isoxazolidine-2-carboxylate (4a):

Compound (+)-4a was prepared from 2a (199 mg, 756 µmol) and N-(phenylseleno)succinimide

9 (207 mg, 1.1 equiv) according to the general procedure described in **5.2** and was obtained as a colorless oil, which solidifies upon storage in a refrigerator. (227 mg, 543 µmol, 72% yield, e.r. = 83:17). **TLC** (heptanes:EtOAc = 10:1): $R_f = 0.24$ (UV). [α] $_D^{23} = +90.2$ (*c* 1.01, CHCl₃). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.41-7.34 (m, 3H), 7.30-7.18 (m, 7H), 4.75 (d, J =

12.7 Hz, 1H), 4.34 (d, J = 12.7 Hz, 1H), 1.56 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 172.1, 156.6, 138.3, 135.7, 130.6, 129.3, 128.8, 128.6, 127.5, 126.3, 84.7, 59.5, 49.3, 28.4. **HRMS** (ESI-QTOF, MeOH) *m/z*: [M+NH₄]⁺ calculated for C₂₀H₂₅N₂O₄Se⁺, 437.0974; found, 437.0973. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C, $\lambda = 254$ nm), retention times *t*_R(minor) = 9.7 min, *t*_R(major) = 11.0 min.

tert-Butyl 4-(naphthalen-2-yl)-5-oxo-4-(phenylselanyl)isoxazolidine-2-carboxylate (4b):

Compound (+)-**4**b was prepared from **2b** (31.8 mg, 101 µmol) and N-(phenylseleno)succinimide 9 (28 mg, 1.1 equiv) according to the 0 general procedure described in 5.2 and was obtained as a colorless oil PhSe Ò (31.2 mg, 67 µmol, TLC 66% yield, = 82:18). e.r. (heptanes:EtOAc = 10:1): $R_f = 0.23$ (UV). $[\alpha]_D^{23} = +84.6$ (c 1.02, Boc (+)-4b CHCl₃). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.85-7.78 (m, 2H), 7.68-7.60 (m, 3H), 7.53-7.43 (m, 2H), 7.37-7.30 (m, 1H), 7.22-7.10 (m, 4H), 4.85 (d, J = 12.7 Hz, 1H), 4.43 (d, *J* = 12.7 Hz, 1H), 1.57 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 172.0, 156.7, 138.3, 132.9, 132.6, 130.6, 129.3, 128.9, 128.7, 127.8, 127.2, 126.9,

126.7, 126.4, 124.9, 84.8, 59.5, 49.7, 28.4. **HRMS** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₄H₂₇N₂O₄Se⁺, 487.1131; found, 487.1129. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C, λ = 254 nm), retention times $t_{\rm R}$ (minor) = 12.5 min, $t_{\rm R}$ (major) = 16.7 min.

tert-Butyl 5-oxo-4-(phenylselanyl)-4-(thiophen-3-yl)isoxazolidine-2-carboxylate (4c):

(+)-4c was prepared from 2c (26.8 mg, 100 μmol) and *N*-(phenylseleno)succinimide 9 (28 mg, 1.1 equiv) according to the general procedure described in 5.2 and was obtained as a yellowish oil (21.6 mg, 51 μmol, 51% yield, e.r. = 76:24). TLC (heptanes:EtOAc = 10:1): R_f = 0.30 (UV). [α] \mathbf{p}^{23} = +54.7 (*c* 0.98, CHCl₃). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ/ppm = 7.43-7.36 (m, 1H), 7.33 (dd, *J* = 5.1, 3.0 Hz, 1H), 7.28-7.21 (m, 4H),

7.17 (dd, J = 5.1, 1.4 Hz, 1H), 7.05 (dd, J = 3.0, 1.4 Hz, 1H), 4.74 (d, J = 12.6 Hz, 1H), 4.27 (d, J = 12.6 Hz, 1H), 1.58 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 172.1, 156.7, 138.3, 135.2, 130.6, 129.3, 126.8, 126.4, 124.2, 84.8, 59.6, 46.7, 28.5. HRMS (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₁₈H₂₃N₂O₄SSe⁺, 443.0538; found, 443.0538. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C, $\lambda = 254$ nm), retention times $t_{\rm R}(\text{minor}) = 14.1$ min, $t_{\rm R}(\text{major}) = 15.7$ min.

tert-Butyl 4-(4-chlorophenyl)-5-oxo-4-(phenylselanyl)isoxazolidine-2-carboxylate (4d):

(+)-4d was prepared from 2d (30.6 mg, 103 µmol) and *N*-(phenylseleno)succinimide 9 (28 mg, 1.1 equiv) according to the general procedure described in 5.2 and was obtained as a colorless oil (34.8 mg, 77 µmol, 75% yield, e.r. = 80:20). TLC (heptanes:EtOAc = 10:1): R_f = 0.24 (UV). [α] p^{24} = +93.3 (*c* 1.01, CHCl₃). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.45-7.36 (m, 1H), 7.32-7.21 (m, 8H), 4.77 (d, *J* = 12.7 Hz, 1H),

4.27 (d, J = 12.7 Hz, 1H), 1.58 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 171.8, 156.6, 138.3, 134.7, 134.4, 130.9. 129.5, 128.9, 128.8, 126.0, 84.9, 59.2, 48.4, 28.4. HRMS (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₀H₂₄ClN₂O₄Se⁺, 471.0584; found, 471.0582. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C, $\lambda = 254$ nm), retention times $t_{\rm R}(\text{minor}) = 12.0$ min, $t_{\rm R}(\text{major}) = 16.1$ min.

tert-Butyl 4-(4-bromophenyl)-5-oxo-4-(phenylselanyl)isoxazolidine-2-carboxylate (4e):

-4e was prepared from 2e (34.6 mg, 101 μmol) and *N*-(phenylseleno)succinimide 9 (28 mg, 1.1 equiv) according to the general procedure described in 5.2 and was obtained as a colorless oil (38.1 mg, 77 μmol, 76% yield, e.r. = 83:17). TLC (heptanes:EtOAc = 10:1): R_f = 0.27 (UV). [α] \mathbf{p}^{24} = +93.3 (*c* 1.00, CHCl₃). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.44-7.36 (m, 3H), 7.28-7.20 (m, 6H), 4.76 (d, *J* = 12.7 Hz, 1H), 4.26 (d, *J* = 12.7 Hz, 1H), 1.58 (s, 9H). ¹³C-NMR (75 MHz,

CDCl₃, 298.0 K): δ / ppm = 171.7, 156.5, 138.3, 134.9, 131.9, 130.9, 129.5, 129.0, 126.0, 122.9, 84.9, 59.2, 48.5, 28.4. **HRMS** (ESI-QTOF, MeOH) *m*/*z*: [M+NH₄]⁺ calculated for C₂₀H₂₄BrN₂O₄Se⁺, 515.0079; found, 515.0079. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C, λ = 254 nm), retention times *t*_R(minor) = 12.6 min, *t*_R(major) = 17.6 min.

tert-Butyl 4-(4-fluorophenyl)-5-oxo-4-(phenylselanyl)isoxazolidine-2-carboxylate (4f):

Compound (+)-4f was prepared from 2f (28.4 mg, 101 µmol) and N-(phenylseleno)succinimide

9 (28 mg, 1.1 equiv) according to the general procedure described in **5.2** and was obtained as a colorless oil (29.8 mg, 68 µmol, 68% yield, e.r. = 81:19). **TLC** (heptanes:EtOAc = 10:1): $R_f = 0.24$ (UV). **[\alpha]\mathbf{p}^{23} = +78.4 (***c* **0.99, CHCl₃). ¹H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.43-7.31 (m, 3H), 7.27-7.23 (m, 4H), 6.99-6.91 (m, 2H), 4.77 (d, *J* = 12.7 Hz, 1H), 4.29 (d, *J* =

12.7 Hz, 1H), 1.58 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 172.0, 162.6 (d, ¹*J*_{CF} = 249.0 Hz), 156.6, 138.3, 131.7 (d, ³*J*_{CF} = 3.4 Hz), 130.8, 129.4, 129.4 (d, ³*J*_{CF} = 8.0 Hz), 126.1, 115.7 (d, ²*J*_{CF} = 21.6 Hz), 84.9, 59.5, 48.5, 28.5. ¹⁹F-NMR (282 MHz, CDCl₃, 298.0 K): δ / ppm = -113.1. HRMS (ESI-QTOF, MeOH) *m*/*z*: [M+NH₄]⁺ calculated for C₂₀H₂₄FN₂O₄Se⁺, 455.0880; found, 455.0881. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C, λ = 254 nm), retention times *t*_R(minor) = 12.1 min, *t*_R(major) = 14.2 min.

tert-Butyl 4-(3,4-dichlorophenyl)-5-oxo-4-(phenylselanyl)isoxazolidine-2-carboxylate (4g):

Compound (+)-4g was prepared from 2g (33.0 mg, 99 µmol) and N-(phenylseleno)succinimide

9 (28 mg, 1.1 equiv) according to the general procedure described in **5.2** and was obtained as a colorless oil (34.7 mg, 71 µmol, 72% yield, e.r. = 75:25). **TLC** (heptanes:EtOAc = 10:1): R_f = 0.30 (UV). [α] \mathbf{p}^{24} = +77.2 (*c* 0.96, CHCl₃). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.46-7.40 (m, 1H), 7.37 (d, *J* = 2.3 Hz, 1H), 7.33 (d, *J* = 8.5 Hz, 1H), 7.31-7.24 (m, 4H), 7.18 (dd, *J* = 8.5, 2.3 Hz, 1H), 4.77 (d, *J* = 12.7 Hz,

1H), 4.23 (d, J = 12.7 Hz, 1H), 1.59 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 171.4, 156.5, 138.4, 136.0, 133.0, 132.9, 131.2, 130.6, 129.6, 129.4, 126.6, 125.8, 85.1, 59.0, 47.6, 28.5 **HRMS** (ESI-QTOF, MeOH) *m*/*z*: [M+NH₄]⁺ calculated for C₂₀H₂₃Cl₂N₂O₄Se⁺, 505.0195; found, 505.0195. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C, λ = 254 nm), retention times *t*_R(minor) = 10.2 min, *t*_R(major) = 13.1 min.

tert-Butyl 5-oxo-4-(phenylselanyl)-4-(*p*-tolyl)isoxazolidine-2-carboxylate (4i):

Compound (+)-4i was prepared from 2i (28.4 mg, 102 µmol) and N-(phenylseleno)succinimide

9 (28 mg, 1.1 equiv) according to the general procedure described in **5.2** and was obtained as a reddish oil (18.3 mg, 42 µmol, 41% yield, e.r. = 74:26). **TLC** (heptanes:EtOAc = 10:1): R_f = 0.27 (UV). **[a]** \mathbf{p}^{23} = +44.6 (*c* 0.99, CHCl₃). ¹**H-NMR** (500 MHz, CDCl₃, 298.0 K): δ / ppm = 7.40-7.36 (m, 1H), 7.30-7.21 (m, 6H), 7.08 (d, *J* = 8.1 Hz, 2H), 4.71 (d, *J* = 12.6 Hz, 1H), 4.32 (d, *J* = 12.6 Hz, 1H), 2.32 (s, 3H), 1.55 (s, 9H). ¹³**C-NMR** (126 MHz,

CDCl₃, 298.0 K): δ / ppm = 172.2, 156.6, 138.6, 138.3, 132.6, 130.6, 129.5, 129.3, 127.3, 126.4, 84.6, 59.6, 49.5, 28.4, 21.5. **HRMS** (ESI-QTOF, MeOH) *m*/*z*: [M+NH₄]⁺ calculated for C₂₁H₂₇N₂O₄Se⁺, 451.1131; found, 451.1128. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C, λ = 254 nm), retention times *t*_R(minor) = 9.2 min, *t*_R(major) = 12.6 min. Compound (+)-4j was prepared from 2a (26.5 mg, 101 µmol) and N-(o-tolylseleno)phthalimide

(38 mg, 1.2 equiv) according to the general procedure described in **5.2** and was obtained as a colorless oil (37.6 mg, 87 µmol, 76% yield, e.r. = 76:24). **TLC** (heptanes:EtOAc = 10:1): R_f = 0.32 (UV). [α] p^{24} = +79.5 (*c* 0.99, CHCl₃). ¹H-NMR (500 MHz, CDCl₃, 298.0 K): δ / ppm = 7.36-7.33 (m, 2H), 7.30-7.23 (m, 5H), 7.19 (d, *J* = 7.4 Hz, 1H), 7.05-7.01

(m, 1H), 4.87 (d, J = 12.7 Hz, 1H), 4.32 (d, J = 12.7 Hz, 1H), 2.07 (s, 3H), 1.58 (s, 9H). ¹³C-NMR (126 MHz, CDCl₃, 298.0 K): δ / ppm = 171.6, 156.7, 144.9, 140.0, 135.8, 131.2, 130.5, 128.8, 128.6, 127.3, 127.2, 126.7, 84.7, 59.8, 48.3, 28.4, 23.0. HRMS (ESI-QTOF, MeOH) *m*/*z*: [M+NH₄]⁺ calculated for C₂₁H₂₇N₂O₄Se⁺, 451.1131; found, 451.1125. HPLC: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 10 °C, λ = 240 nm), retention times *t*_R(minor) = 9.1 min, *t*_R(major) = 11.8 min.

tert-Butyl 5-oxo-4-phenyl-4-(p-tolylselanyl)isoxazolidine-2-carboxylate (4k):

was prepared from **2a** (26.4 mg, 100 µmol) and *N*-(*p*-tolylseleno)phthalimide (38 mg, 1.2 equiv) according to the general procedure described in **5.2** and was obtained as a colorless oil (8.3 mg, 19 µmol, 19% yield, e.r. = 72:28). **TLC** (heptanes:EtOAc = 10:1): $R_f = 0.32$ (UV). $[\alpha]\mathbf{p}^{24} = +44.6$ (*c* 0.83, CHCl₃). ¹**H-NMR** (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.41-7.34

(m, 2H), 7.30-7.25 (m, 3H), 7.14 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 7.9 Hz, 2H), 4.73 (d, J = 12.7 Hz, 1H), 4.32 (d, J = 12.7 Hz, 1H), 2.33 (s, 3H), 1.56 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 172.1, 156.7, 141.1, 138.2, 135.9, 130.2, 128.8, 128.5, 127.4, 122.9, 84.6, 59.4, 49.3, 28.4, 21.7. **HRMS** (ESI-QTOF, MeOH) *m*/*z*: [M+NH₄]⁺ calculated for C₂₁H₂₇N₂O₄Se⁺, 451.1131; found, 451.1129. **HPLC**: Chiralpak AD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 10 °C, λ = 240 nm), retention times

tert-Butyl 4-(benzylselanyl)-5-oxo-4-phenylisoxazolidine-2-carboxylate (4l):

Compound (+)-4l was prepared from 2a (26.6 mg, 101 µmol) and N-(benzylseleno)phthalimide

(38 mg, 1.2 equiv) according to the general procedure described in **5.2** and was obtained as a colorless oil (9.7 mg, 22 µmol, 22% yield, e.r. = 61:39). **TLC** (heptanes:EtOAc = 10:1): R_f = 0.32 (UV). [α] \mathbf{p}^{23} = +17.3 (*c* 0.97, CHCl₃). ¹**H-NMR** (500 MHz, CDCl₃, 298.0 K): δ / ppm = 7.70-7.67 (m, 2H), 7.42-7.38 (m, 2H), 7.36-7.32 (m, 1H), 7.22-7.15 (m,

3H), 7.11-7.08 (m, 2H), 4.65 (d, J = 12.7 Hz, 1H), 4.18 (d, J = 12.7 Hz, 1H), 4.04 (d, J = 10.8 Hz, 1H), 3.69 (d, J = 10.8 Hz, 1H), 1.51 (s, 9H). ¹³C-NMR (126 MHz, CDCl₃, 298.0 K): $\delta / \text{ppm} = 172.8$, 156.5, 136.2, 135.7, 129.6, 129.3, 128.9, 127.8, 127.6, 84.8, 61.5, 47.2, 30.5, 28.4. HRMS (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₁H₂₇N₂O₄Se⁺, 451.1131; found, 451.1133. HPLC: Chiralpak OD-H (*n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 10 °C, $\lambda = 220$ nm), retention times $t_{\rm R}$ (minor) = 11.9 min, $t_{\rm R}$ (major) = 14.1 min.

7. <u>Further Transformations of N-Boc 4,4-</u> phenyl(phenylselanyl)isoxazolidin-5-one 4a

tert-Butyl (3-((4-chlorobenzyl)amino)-3-oxo-2-phenyl-2-(phenylselanyl)propyl)(hydroxy)carbamate (9a):

Compound (+)-9a was prepared in analogy to a reported procedure⁵ by treatment of

enantioenriched selenation product (+)-**4a** (38.4 mg, 92 μ mol, e.r. = 83:17) with 4-chlorobenzylamine (60 μ L, 5 equiv) in *t*BuOH (2 mL, 0.05 M). The crude product was purified *via* flash column chromatography (silica gel, heptanes/EtOAc =

2/1) to obtain amide (+)-**9a** as a white solid (42.8 mg, 76 µmol, 83% yield, e.r. = 83:17). **TLC** (heptanes:EtOAc = 2:1): R_f = 0.44 (UV). [α] p^{23} = +33.2 (*c* 1.04, CHCl₃). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 8.12 (s, 1H), 7.40-7.15 (m, 15H), 6.83 (bt, *J* = 5.7 Hz, 1H), 4.57 (d, *J* = 15.2 Hz, 1H), 4.39 (d, *J* = 6.0 Hz, 2H), 4.07 (d, *J* = 15.2 Hz, 1H), 1.27 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 173.9, 155.3, 138.6, 137.5, 136.2, 133.9, 130.0, 129.5, 129.2, 128.8, 128.7, 128.4, 126.8, 81.6, 61.9, 59.1, 44.3, 28.4. HRMS (ESI-QTOF, MeOH) *m/z*: [M+Na]⁺ calculated for C₂₇H₂₉ClN₂NaO4Se⁺, 583.0873; found, 583.0875. HPLC: Chiralpak OD-H (*n*-hexane:*i*-PrOH = 2:1, flow rate 0.5 mL/min, 20 °C, λ = 254 nm), retention times *t*_R(minor) = 13.8 min, *t*_R(major) = 27.4 min.

tert-Butyl hydroxy(3-((4-methoxybenzyl)amino)-3-oxo-2-phenyl-2-(phenylselanyl)propyl)carbamate (9b):

Analogously prepared to 9a, using 4-methoxybenzylamine (60 µL, 5 equiv). Amide (+)-9b was

obtained as an off-white solid (42.8 mg, 77 μ mol, 84% yield, e.r. = 83:17). **TLC** (heptanes:EtOAc = 2:1): $R_f = 0.37$ (UV). [α] $p^{23} = +29.4$ (*c* 1.07, CHCl₃). ¹H-NMR (500 MHz, CDCl₃, 298.0 K): δ / ppm = 8.40 (s, 1H),

7.42-7.39 (m, 2H), 7.38-7.33 (m, 3H), 7.29-7.24 (m, 4H), 7.23-7.16 (m, 4H), 6.88-6.84 (m, 2H), 6.79 (bs, 1H), 4.59 (d, J = 15.2 Hz, 1H), 4.38 (dd, J = 5.6, 2.4 Hz, 2H), 4.02 (d, J = 15.2 Hz, 1H), 3.81 (s, 3H), 1.26 (s, 9H). ¹³**C-NMR** (126 MHz, CDCl₃, 298.0 K): δ / ppm = 173.9, 159.6, 155.0, 138.6, 137.5, 130.0, 129.5, 128.7, 128.3, 126.8, 114.5, 81.4, 62.0, 59.4, 55.7, 44.5, 28.4. **HRMS** (ESI-QTOF, MeOH) *m*/*z*: [M+Na]⁺ calculated for C₂₈H₃₂N₂NaO₅Se⁺, 579.1369; found,

⁵ P. Zebrowski, I. Eder, A. Eitzinger, S. C. Mallojjala and M. Waser, ACS Org. Inorg. Au 10.1021/acsorginorgau.1c00025.

579.1364. **HPLC**: Chiralpak OD-H (*n*-hexane:*i*-PrOH = 2:1, flow rate 0.5 mL/min, 20 °C, $\lambda = 254$ nm), retention times $t_R(\text{minor}) = 19.1$ min, $t_R(\text{major}) = 31.3$ min.

Methyl 3-((*tert*-butoxycarbonyl)(hydroxy)amino)-2-phenyl-2-(phenylselanyl)propanoate (10):

A reaction vial was charged with (+)-4a (42.4 mg, 101 μ mol, e.r. = 83:17), MeOH (1 mL,

0.1 M) and Amberlyst A21 (100 mg). The heterogenous mixture was stirred vigorously for 24 h at room temperature, whereupon it was filtered over cotton and concentrated under reduced pressure. The crude product was purified by preparative TLC (silica gel, heptanes/EtOAc =

2/1) to obtain (-)-10 as a colorless oil (21.0 mg, 47 µmol, 46% yield, e.r. = 83:17). TLC (heptanes:EtOAc = 2:1): R_f = 0.29 (UV). [α] p^{24} = -21.1 (*c* 0.43, CHCl₃). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 7.35-7.29 (m, 3H), 7.25-7.14 (m, 7H), 6.41 (s, 1H), 4.43 (d, *J* = 14.8 Hz, 1H), 4.25 (d, *J* = 14.8 Hz, 1H), 3.70 (s, 3H), 1.38 (s, 9H). ¹³C-NMR (176 MHz, CDCl₃, 298.0 K): δ / ppm = 173.6, 156.0, 138.3, 129.8, 129.0, 128.4, 128.3, 127.9, 127.1, 82.3, 60.3, 57.0, 53.3, 28.4. HRMS (ESI-QTOF, MeOH) *m*/*z*: [M+Na]⁺ calculated for C₂₁H₂₅NNaO₅Se⁺, 474.0790; found, 474.0795. HPLC: YMC Chiral ART Cellulose-SB (*n*-hexane:*i*-PrOH = 4:1, flow rate 0.5 mL/min, 20 °C, λ = 254 nm), retention times *t*_R(major) = 22.7 min, *t*_R(minor) = 26.2 min.

tert-Butyl 5-oxo-4-phenylisoxazole-2(5H)-carboxylate (11):

A flame-dried Schlenk tube was charged with 4a (40.8 mg, 98 μ mol) and dry CH₂Cl₂ (1 mL,

0.1 M). mCPBA (49.6 mg, 2.3 equiv, \leq 77%) was added and the mixture was stirred for 24 h at room temperature. The reaction was quenched by addition of sat. Na₂S₂O₃ solution (1 mL) and the organic phase was washed with sat. Na₂S₂O₃ (2x 1 mL) and sat. NaHCO₃ (3x 1 mL) solution, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. **11** was obtained as a off-white

solid (21.2 mg, 81 µmol, 83% yield). **TLC** (heptanes:EtOAc = 5:1): R_f = 0.34 (UV). ¹H-NMR (300 MHz, CDCl₃, 298.0 K): δ / ppm = 8.51 (s, 1H), 7.80-7.75 (m, 2H), 7.45-7.30 (m, 3H), 1.63 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃, 298.0 K): δ / ppm = 166.6, 144.9, 138.9, 129.2, 128.7, 128.0, 126.1, 107.5, 87.5, 28.4. **HRMS** (ESI-QTOF, MeOH) *m*/*z*: [M+Na]⁺ calculated for C₁₄H₁₅NNaO₄⁺, 284.0893; found, 284.0893.

8. Single-Crystal Analysis

Single crystals suitable for single crystal X-ray diffraction were obtained by re-crystallisation from diethyl ether. Single-crystal structure analysis was carried out at room temperature on a Bruker D8 Quest ECO diffractometer with graphite-monochromated MoK_{α} radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods (SHELXS-97⁶) and refined by full-matrix least-squares on F^2 (SHELXL-2014/7⁷). The H atoms were calculated geometrically, and a riding model was applied in the refinement process. Crystallographic details for (*rac*)-**4a** can be found in Table 1. CCDC 2121570 contain the supplementary crystallographic data. This information can be obtained free of charge via <u>https://www.ccdc.cam.ac.uk/structures/</u>

Compound	(<i>rac</i>)-4a
Empirical formula	$C_{20}H_{21}NO_4Se$
Formula weight (g·mol ⁻¹)	418.34
Crystal system	triclinic
Space group	ΡĪ
Temp (K)	293
<i>a</i> (Å)	9.198(5)
<i>b</i> (Å)	10.355(7)
<i>c</i> (Å)	12.174(7)
α (°)	69.365(16)
β (°)	76.44(2)
γ (°)	64.56(2)
$V(\text{\AA}^3)$	975.2(10)
Ζ	2
$\rho_{\rm calc} ({\rm g}\cdot{\rm cm}^{-3})$	1.425
Reflns collected	60514
Indep. reflns	3429
Obs. reflns $[I > 2\sigma(I)]$	3176
Param. refin./restr.	238 / 0
Absorption correction	multi-scan
<i>R</i> ₁	0.027

Table 1: X-ray diffraction crystal data, data collection and structure refinement for the compound (rac)-4a.

⁶ Sheldrick, GM (1997) SHELXS-97, Program for the Solution of Crystal Structures, Göttingen, Germany. See also: Sheldrick, GM (1990) Acta Crystallogr A 46:467.

⁷ Sheldrick, GM (2015) Acta Crystallogr A 71:3.

Compound	<i>(rac)</i> -4a
wR_2	0.075
CCDC	2121570

Figure 1: Single crystal structure of (*rac*)-4a.

9. <u>NMR Spectra of Selenation Products</u>

NMR spectra of compound 3a

NMR spectra of compound 3c

¹H-NMR (700 MHz, CDCl₃, 298 K)

¹H-NMR (500 MHz, CDCl₃, 298 K)

NMR spectra of compound 3e

¹H-NMR (500 MHz, CDCl₃, 298 K)

NMR spectra of compound 3f

¹H-NMR (300 MHz, CDCl₃, 298 K)

¹H-NMR (300 MHz, CDCl₃, 298 K)

NMR spectra of compound 3h

¹H-NMR (300 MHz, CDCl₃, 298 K)

NMR spectra of compound 3i

¹H-NMR (300 MHz, CDCl₃, 298 K)

NMR spectra of compound 3k

NMR spectra of compound 3m

NMR spectra of compound 3n

NMR spectra of compound 30

NMR spectra of compound 3p

¹H-NMR (300 MHz, CDCl₃, 298 K)

130 120 ppm

NMR spectra of compound 3s

NMR spectra of compound 3t

NMR spectra of compound 3v

NMR spectra of compound 3x

NMR spectra of compound 4a

NMR spectra of compound 4b

NMR spectra of compound 4c

NMR spectra of compound 4d

NMR spectra of compound 4e

ppm

NMR spectra of compound 4f

NMR spectra of compound 4g

NMR spectra of compound 4j

NMR spectra of compound 4k

NMR spectra of compound 4l

NMR spectra of compound 6

NMR spectra of compound 8

NMR spectra of compound 9a

¹³C-NMR (126 MHz, CDCl₃, 298 K)

10.HPLC Traces of Racemic and Enantioenriched Selenation Products

HPLC traces of **3a** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3c** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3d** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm)

Integration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		17,067	37,530	122,876	49,98	52,05	n.a.
2		18,587	37,567	113,177	50,02	47,95	n.a.
Total:			75,096	236,052	100,00	100,00	

HPLC traces of **3e** (YMC Chiral Art Cellulose SB, *n*-hexane:*i*-PrOH = 80:1, flow rate 0.2 mL/min, 10 °C, λ = 220 nm)

HPLC traces of **3f** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, $\lambda = 220$ nm)

(*rac*)-3g

25,0

12,5-

0,0

-12,5

HPLC traces of **3j** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3m** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3n** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3o** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3p** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3q** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3r** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 1.2 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3t** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.7 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3v** (YMC Chiral Art Cellulose SB, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, λ = 270 nm)

HPLC traces of **3w** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **3x** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.3 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **4a** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C,

HPLC traces of **4b** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C,

HPLC traces of **4c** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C,

 $\lambda = 254 \text{ nm}$)

mAU PDA Multi 1 254nm,4nm 300 14,22 0 200 PhSe Ò Boc 100 12,06 (+)-**4**f 0 12 13 14 15 11 16 17 min Peak Table PDA Ch1 254nm Peak# Ret. Time Area% Area 12,06 14,22 1879654 19,26 1 7878156 2 80,74 Total 9757810 100,00 mAU 500 PDA Multi 1 254nm,4nm 400-14,04 12,08 300-0 PhSe Ò 200 Boc (±)-4f 100-0-14 12 15 16 13 17 11 min Peak Table PDA Ch1 254nm Peak# Ret. Time Area% Area 12,08 10007146 49,53 1 14,04 2 10198474 50,47 Total 20205620 100,00

HPLC traces of **4f** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C,

HPLC traces of **4g** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 20 °C,

HPLC traces of **4j** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 10 °C, $\lambda = 240$ nm)

HPLC traces of **4k** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 10 °C, $\lambda = 240$ nm)

266,182

703,366

100,00

100,00

Total:

HPLC traces of 4l (Chiralpak OD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 1.0 mL/min, 10 °C, $\lambda = 220 \text{ nm}$)

104,703

210,577

429,393

100,00

Total:

42.28

100,00

n.a

HPLC traces of **6** (Chiralpak AD-H, *n*-hexane:*i*-PrOH = 20:1, flow rate 0.9 mL/min, 10 °C, $\lambda = 220$ nm)

HPLC traces of **9a** (Chiralpak OD-H, *n*-hexane:*i*-PrOH = 2:1, flow rate 0.5 mL/min, 20 °C,

HPLC traces of **9b** (Chiralpak OD-H, *n*-hexane:*i*-PrOH = 2:1, flow rate 0.5 mL/min, 20 °C,

 $\lambda = 254 \text{ nm}$)

HPLC traces of **10** (YMC Chiral ART Cellulose-SB, *n*-hexane:*i*-PrOH = 4:1, flow rate 0.5 mL/min, 20 °C, λ = 254 nm)

11.HRMS Data

HRMS spectrum of **3a** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₃H₁₇NO₂Se, 408.0498; found, 408.0500.

HRMS spectrum of **3c** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₁₆H₁₄NO₂Se, 332.0185; found, 332.0187.

HRMS spectrum of **3d** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₁₈H₁₈NO₂Se, 360.0498; found, 360.0501.

HRMS spectrum of **3e** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₁₉H₂₀NO₂Se, 374.0654; found, 374.0657.

HRMS spectrum of **3f** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₂H₂₄NO₂Se, 414.0967; found, 414.0965.

HRMS spectrum of **3g** (ESI-QTOF, MeOH) m/z: $[M+H]^+$ calculated for C₁₈H₁₈NO₂SSe, 392.0218; found, 392.0219.

HRMS spectrum of **3h** (ESI-QTOF, MeOH) m/z: $[M+H]^+$ calculated for C₂₂H₁₇ClNO₂Se, 442.0108; found, 442.0106.

HRMS spectrum of **3i** (ESI-QTOF, MeOH) m/z: $[M+H]^+$ calculated for C₂₂H₁₇N₂O₄Se, 453.0348; found, 453.0352.

HRMS spectrum of **3j** (ESI-QTOF, MeOH) m/z: $[M+H]^+$ calculated for C₂₃H₁₇F₃NO₂Se, 476.0371; found, 476.0377.

HRMS spectrum of **3k** (ESI-QTOF, MeOH) m/z: $[M+H]^+$ calculated for C₂₂H₁₇N₂O₄Se, 453.0348; found, 453.0343.

HRMS spectrum of **31** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₃H₂₀NO₃Se, 438.0603; found, 438.0605.

HRMS spectrum of **3m** (ESI-QTOF, MeOH) m/z: $[M+H]^+$ calculated for C₂₂H₁₇ClNO₂Se, 442.0108; found, 442.0108.

HRMS spectrum of **3n** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₆H₂₀NO₂Se, 458.0654; found, 458.0649.

HRMS spectrum of **3p** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₂H₂₄NO₂Se, 414.0967; found, 414.0963.

HRMS spectrum of **3q** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₃H₁₉ClNO₃Se, 472.0213; found, 472.0205.

HRMS spectrum of **3r** (ESI-QTOF, MeOH) m/z: $[M+H]^+$ calculated for C₂₃H₁₉N₂O₅Se, 483.0454; found, 483.0462.

HRMS spectrum of **3s** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₁₇H₁₆NO₃Se, 362.0290; found, 362.0294.

HRMS spectrum of **3t** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₀H₂₂NO₃Se, 404.0760; found, 404.0770.

HRMS spectrum of **3u** (ESI-QTOF, MeOH) m/z: $[M+H]^+$ calculated for C₁₉H₂₀NO₃SSe, 422.0324; found, 422.0324.

HRMS spectrum of **3v** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₃H₂₀NO₂Se, 422.0654; found, 422.0650.

HRMS spectrum of **3w** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₃H₂₀NO₂Se, 422.0654; found, 422.0658.

HRMS spectrum of **3x** (ESI-QTOF, MeOH) m/z: [M+H]⁺ calculated for C₂₃H₂₀NO₂Se, 422.0654; found, 422.0652.

HRMS spectrum of **4a** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₀H₂₅N₂O₄Se⁺, 437.0974; found, 437.0973.

HRMS spectrum of **4b** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₄H₂₇N₂O₄Se⁺, 487.1131; found, 487.1129.

HRMS spectrum of **4c** (ESI-QTOF, MeOH) m/z: $[M+NH_4]^+$ calculated for C₁₈H₂₃N₂O₄SSe⁺, 443.0538; found, 443.0538.

HRMS spectrum of **4d** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₀H₂₄ClN₂O₄Se⁺,

HRMS spectrum of **4e** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₀H₂₄BrN₂O₄Se⁺, 515.0079; found, 515.0079.

HRMS spectrum of **4f** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₀H₂₄FN₂O₄Se⁺, 455.0880; found, 455.0881.

HRMS spectrum of **4g** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₀H₂₃Cl₂N₂O₄Se⁺, 505.0195; found, 505.0195.

HRMS spectrum of **4i** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₁H₂₇N₂O₄Se⁺, 451.1131; found, 451.1128.

HRMS spectrum of **4j** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₁H₂₇N₂O₄Se⁺, 451.1131; found, 451.1125.

HRMS spectrum of **4k** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₁H₂₇N₂O₄Se⁺, 451.1131; found, 451.1129.

HRMS spectrum of **4l** (ESI-QTOF, MeOH) m/z: [M+NH₄]⁺ calculated for C₂₁H₂₇N₂O₄Se⁺, 451.1131; found, 451.1133.

HRMS spectrum of **6** (ESI-QTOF, MeOH) m/z: [M+Na]⁺ calculated for C₁₈H₁₉NO₄Na, 336.1206; found, 336.1207.

HRMS spectrum of **8** (ESI-QTOF, MeOH) m/z: $[M+H]^+$ calculated for C₂₃H₂₇N₂O₄Se, 475.1131; found, 475.1126.

HRMS spectrum of **9a** (ESI-QTOF, MeOH) m/z: $[M+Na]^+$ calculated for C₂₇H₂₉ClN₂NaO₄Se⁺, 583.0873; found, 583.0875.

HRMS spectrum of **9b** (ESI-QTOF, MeOH) *m/z*: [M+Na]⁺ calculated for C₂₈H₃₂N₂NaO₅Se⁺, 579.1369; found, 579.1364.

HRMS spectrum of **10** (ESI-QTOF, MeOH) *m/z*: [M+Na]⁺ calculated for C₂₁H₂₅NNaO₅Se⁺, 474.0790; found, 474.0795.

HRMS spectrum of **11** (ESI-QTOF, MeOH) m/z: [M+Na]⁺ calculated for C₁₄H₁₅NNaO₄⁺, 284.0893; found, 284.0893.

