Supporting Information

An Efficient and Straightforward Approach for Accessing

Thionoester via Palladium-Catalyzed C-N Cleavage of

Thioamides

Yinbo Liu,^a Xiaofeng Mo,^a Majeed Irfan,^a Mei Zhang,^a Hui Wang,^a Zhuo Zeng^{ab,*}

^a School of Chemistry, South China Normal University, Guangzhou 510006, People's

Republic of China

Fax:(+86)-20-3931-0187 E-mail: <u>zhuoz@scun.edu.cn;</u>

^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic

Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China

List of Contents

Table S1 Referred to from the Main Manuscript	.2
List of Known Compounds	.3
Experimental Procedures and Characterization Data	.3
References	17
Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR, Mass spectra and HRMS	

Table S1 Referred to from the Main Manuscript

Table S1 Summary of key optimization studies in the esterification of thioamides^[a]

		Boc + HO	cat. [Pd] base, s	, ligand	S O	
	1 a	2a			3 a	
Entry	Catalyst	Ligand[c]	Base	Solvent	Yield[b]	
1	Pd(PPh ₃) ₂ Cl ₂	none	K ₂ CO ₃	toluene	24	
2	Pd(OAc) ₂	PPh ₃	K ₂ CO ₃	toluene	52	
3	Pd ₂ (dba) ₃	none	K ₂ CO ₃	toluene	<5	
4	PdCl ₂	PCy ₃	K ₂ CO ₃	toluene	<5	
5	PdCl ₂	dppp	K ₂ CO ₃	toluene	<5	
6	PdCl ₂	dppf	K ₂ CO ₃	toluene	trace	
7	PdCl ₂	Xantphos	K ₂ CO ₃	toluene	trace	
8	Pd(OAc) ₂	PPh ₃	K ₃ PO ₄	toluene	73	
9	Pd(OAc) ₂	PCy ₃	к ₃ ро ₄	toluene	50	
10	Pd(OAc) ₂	$P(C_{6}F_{5})_{3}$	K ₃ PO ₄	toluene	81	
11	Pd(OAc) ₂	(4-MeOPh) ₃ P	K ₃ PO ₄	toluene	28	
12	Pd(OAc) ₂	Rac-Binap	K ₃ PO ₄	toluene	55	
13	Pd(OAc) ₂	dppp	K ₃ PO ₄	toluene	25	
14	Pd(OAc) ₂	dppf	к ₃ ро ₄	toluene	<5	
15	Pd(OAc) ₂	$P(C_6F_5)_3$	к ₃ ро ₄	DMSO	trace	
16	Pd(OAc) ₂	$P(C_6F_5)_3$	к ₃ ро ₄	DMF	trace	
17	Pd(OAc) ₂	$P(C_6F_5)_3$	к ₃ ро ₄	CH ₃ CN	<5	
18[d]	Pd(OAc) ₂	$P(C_6F_5)_3$	к ₃ ро ₄	toluene	56	
19[e]	Pd(OAc) ₂	$P(C_6F_5)_3$	к ₃ ро ₄	toluene	62	
20[f]	Pd(OAc) ₂	$P(C_6F_5)_3$	к ₃ ро ₄	toluene	43	

[a] Reaction condition: **1a** (0.2 mmol, 1.0 equiv), **2a** (0.3 mmol, 1.5 equiv), catalyst (5 mol%), ligand (20 mol%), base (3.0 equiv), solvent (2.0 ml), 110 ° C, 12h. [b] Isolated yield. [c] Full name of all ligands: PPh_3 (Triphenylphosphine), PCy₃(Tricyclohexyl phosphine), dppp (1,3-Bis(diphenylphosphino)propane), dppf (1,1'-Bis(diphenylphosphino)ferrocene), Xantphos(9,9-Dimethyl-4,5-bis(diphenylphosphino)xanthene), $P(C_6F_5)_3$ (Tris(pentafluorophenyl)phosphine), (4-MeOPh)_3P(Tris(p-methoxyphenyl)phosphine), Rac-Binap(1.1'-Binaphthyl-2.2'-diphemyl phosphine). [d] Pd(OAc)₂ (3 mol%). [e]

 $P(C_6F_5)_3$ (10 mol%). [f] At 90 ° C.

List of Known Compounds

The reactions were conducted in sealed tube under nitrogen atmosphere. All reactants reported in the manuscript are commercially available and have been prepared by the method reported previously. All solvents were purchased at the China suppliers and used without any purification. Flash chromatography was performed using 200-300 mesh silica gel. ¹H and ¹³C and ¹⁹F NMR data were recorded with AVANCE NEO Bruker (600 MHz) and Varian AS (400 MHz) spectrometers in CDCl₃ or (CD₃)₂SO₂ with tetramethylsiliane as an internal standard. ¹H NMR data are given for all compounds in the Supporting Experimental. ¹H NMR, ¹³C NMR, ¹⁹F NMR and HRMS data are reported for all new compounds.

Experimental Procedures and Characterization Data Experimental procedures for the synthesis of *N*-phenylbenzothioamides.

To a solution of phenylisothiocyanate (10.0 mmol, 1.0 equiv) in dry THF (5 mL) was added dropwise a dry THF solution of Grignard reagent (10.0 mmol, 1.0 equiv) at 0 °C. The reaction mixture was left to warm up to room temperature, and stirred for another 2 h. The reaction was quenched with water (10 mL), extracted with dichloromethane (3 x 20 mL). The combined organic solution was washed with brine and dried over anhydrous Na_2SO_4 . The solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography (petroleum ether/ethyl acetate) to give the desired compound.

N-**phenylbenzothioamide (1).** The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate =10/1) yielded the target compound **1** in 74% (1.58 g) as a yellow solid; R_f= 0.52 (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.75 (s, 1H), 7.83 (d, *J* = 7.8 Hz, 4H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.49 – 7.42 (m,4H), 7.28 (t, *J* = 7.4 Hz, 1H). These data are corresponding to the literature.^[1]

4-methyl-*N***-phenylbenzothioamide (2).** The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate =10/1) yielded the target compound **2** in 76% (1.72 g) as a yellow solid; $R_f = 0.61$ (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.63 (s, 1H), 7.78 (dd, *J* = 14.0 Hz, *J* = 7.9 Hz, 4H), 7.43 (t, *J* = 7.9 Hz, 2H), 7.27 (t, *J* = 7.7 Hz, 3H), 2.37 (s, 3H). These data are corresponding to the literature.^[2]

4-methoxy-*N***-phenylbenzothioamide (3).** The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate =10/1) yielded the target compound **3** in 81% (1.97 g) as a yellow solid; $R_f = 0.35$ (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.54 (s, 1H), 7.90 (d, *J* = 8.6 Hz, 2H), 7.77 (d, *J* = 7.8 Hz, 2H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 1H), 7.02 (d, *J* = 8.7 Hz, 2H), 3.84 (s, 3H).

These data are corresponding to the literature.^[3]

Experimental procedures for the synthesis of tert-butyl phenyl(phenylcarbonothioyl)carbamates.

An oven-dried round-bottomed flask equipped with a stir bar was charged with a *N-phenylbenzothioamides* substrate (5.0 mmol, 1.0 equiv), 4-(dimethylamino)pyridine (1.0 mmol, 0.2 equiv), di-tert-butyl dicarbonate (15.0 mmol, 3.0 equiv) and acetonitrile (10.0 mL). The mixture was allowed to stir at room temperature for 15 h. After the indicated time, the reaction was quenched with aqueous HCl (1.0 M, 25 mL) and extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated. Purification by flash column chromatography (petroleum ether/ethyl acetate) afforded pure products.

To a mixture of the aniline (5 mmol), Et₃N (6.5 mmol) and CH₂Cl₂ (10 mL) was added benzoyl chloride (5.5 mmol) slowly at room temperature for 3 h. Then, the reaction mixture was washed with water and extracted with CH₂Cl₂ (20 mL \times 2). The organic layers were combined, dried over Na₂SO₄, and concentrated under reduced pressure to obtain pure benzamide. The solution of the benzamide (2.5mmol) and Lawesson's reagent (1.5 mmol) in dry toluene (40 mL) was heated at reflux under an atmosphere of nitrogen for 2 h, after which it was concentrated, recrystallized from hexane/ethyl acetate.

An oven-dried round-bottomed flask equipped with a stir bar was charged with a N-phenylbenzothioamides substrate (5.0 mmol, 1.0 equiv), 4-

(dimethylamino)pyridine (1.0 mmol, 0.2 equiv), di-tert-butyl dicarbonate (15.0 mmol, 3.0 equiv) and acetonitrile (10.0 mL). The mixture was allowed to stir at room temperature for 15 h. After the indicated time, the reaction was quenched with aqueous HCl (1.0 M, 25 mL) and extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. Purification by flash column chromatography (petroleum ether/ethyl acetate) afforded pure products.

tert-butyl phenyl(phenylcarbonothioyl)carbamate (1a). The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate =20/1) yielded the target compound 1a in 60% (0.94 g) as an orange-yellow solid; R_f =0.68 (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, CDCl₃) δ 7.68 (d, *J* = 7.2 Hz, 2H), 7.46 (t, *J* = 7.8 Hz, 3H), 7.37 (t, *J* = 7.8 Hz, 3H), 7.30 (d, *J* = 7.4 Hz, 2H), 1.19 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 211.11, 152.69, 146.50, 144.05, 130.91, 129.62, 128.30, 128.22, 128.02, 127.05, 84.59, 27.40. HRMS (ESI-MS) m/z: [M+Na]⁺ Calcd for C₁₈H₁₉O₂NNaS 336.1034; Found 336.1029 for the compounds: 1a.

tert-butyl (4-methylphenylcarbonothioyl)(phenyl)carbamate (1b). The

representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate =20/1) yielded the target compound **1b** in 65% (1.06 g) as an orange-red solid; $R_f = 0.72$ (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.8 Hz, 2H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.29 – 7.25 (m, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 3.86

(s, 3H), 1.25 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 210.24, 162.49, 152.88, 144.23, 139.28, 129.49, 129.36, 127.84, 127.79, 113.43, 83.99, 55.58, 27.45. HRMS (ESI-MS) m/z: [M+Na]⁺ Calcd for C₁₉H₂₁O₂NNaS 350.1191; Found 350.1372 for the compounds: **1b**.

tert-butyl (4-methoxyphenylcarbonothioyl)(phenyl)carbamate (1c). The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate =10/1) yielded the target compound 1c in 58% (0.99 g) as an orange-yellow solid; $R_f =0.43$ (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, J = 6.8 Hz, 2H), 7.42 (t, J = 7.8 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.29 – 7.24 (m, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 1.25 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 210.24, 162.26, 152.88, 144.29, 139.28, 129.50, 129.36, 127.85, 127.79, 113.44, 83.99, 55.59, 27.46. HRMS (ESI-MS) m/z: [M+Na]⁺ Calcd for C₁₉H₂₁O₃NNaS 336.1140; Found 336.1146 for the compounds: 1c.

tert-butyl (4-fluorophenylcarbonothioyl)(phenyl)carbamate (1d). The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate =30/1) yielded the target compound 1d in 70% (1.16 g) as an orange-yellow solid; R_f =0.73 (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, CDCl₃) δ 7.78 – 7.73 (m, 2H), 7.49 (t, J= 7.7 Hz, 2H), 7.41 (t, J= 7.4 Hz, 1H), 7.32 (d, J= 7.5 Hz, 2H), 7.10 (t, J= 7.6 Hz, 2H), 1.29 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 209.25, 164.40 (d, J= 252.7 Hz), 152.54, 143.90, 142.55 (d, J= 3.1 Hz), 129.53, 129.26 (d, J= 8.6 Hz), 128.15, 127.86, 115.24 (d, J= 21.9 Hz), 84.57, 27.42. ¹⁹F NMR (565 MHz, CDCl₃) δ -108.65. HRMS (ESI-MS) m/z: $[M+H]^+$ Calcd for $C_{18}H_{19}O_2NFS$ 332.1121; Found 332.1125 for the compounds: 1d.

tert-butyl (4-methoxyphenyl)(phenylcarbonothioyl)carbamate (1e). The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate =10/1) yielded the target compound 1e in 86% (1.47 g) as an orange-red solid; R_f =0.45 (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, *J* = 5.2 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 2H), 7.21 (d, *J* = 8.9 Hz, 2H), 6.96 (d, *J* = 6.7 Hz, 2H), 3.83 (s, 3H), 1.18 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 211.03, 159.10, 152.76, 146.41, 136.74, 130.68, 128.92, 128.16, 126.88, 114.72, 84.41, 55.45, 27.29. HRMS (ESI-MS) m/z: [M+H]⁺ Calcd for C₁₉H₂₂O₃NS 344.1320; Found 344.1323 for the compounds: 1e.

tert-butyl ethyl(phenylcarbonothioyl)carbamate (1f). The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate =30/1) yielded the target compound 1f in 88% (1.16g) as an orange-yellow solid; R_f =0.76 (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, CDCl₃) δ 7.39 (d, *J* = 7.0 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 2H), 4.33 (q, *J* = 7.0 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.10 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 209.05, 152.34, 147.21, 129.86, 127.87, 126.37, 83.76, 47.79, 27.15, 12.73. HRMS (ESI-MS) m/z: [M+H]⁺ Calcd for C₁₄H₂₀O₂NS 266.1215; Found 266.1219 for the compounds: 1f.

An oven-dried round-bottomed flask equipped with a stir bar was charged with a benzothioamide substrate (5.0 mmol, 1.0 equiv), 4-(dimethylamino)pyridine (1.0 mmol, 0.2 equiv), di-tert-butyl dicarbonate (15.0 mmol, 3.0 equiv) and acetonitrile (10.0 mL). The mixture was allowed to stir at room temperature for 15 h. After the indicated time, the reaction was quenched with aqueous HCl (1.0 M, 25 mL) and extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated. Purification by flash column chromatography (petroleum ether/ethyl acetate) afforded pure product.

tert-butyl (tert-butoxycarbonyl)(phenylcarbonothioyl)carbamate (4a). The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate =20/1) yielded the target compound 4a in 68% (1.14 g) as a yellow solid; R_f =0.62 (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 7.2 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 2H), 1.49 (s, 18H). ¹³C NMR (150 MHz, CDCl₃) δ 203.82, 149.30, 142.37, 131.67, 128.22, 127.22, 83.61, 27.96.

Experimental procedures for the synthesis of thionoester via tert-butyl phenyl(phenylcarbonothioyl)carbamates.

A sealed tube equipped with a stir bar was charged with tert-butyl phenyl(phenylcarbonothioyl)carbamates (0.2 mmol, 1.0 equiv), alcohols (0.3 mmol, 1.5 equiv), Pd(OAc)₂ (5 mol%), P(C₆F₅)₃ (20 mol%), K₃PO₄ (3.0 equiv) and toluene (2.0 ml) under a N₂ atmosphere. The reaction mixture was placed in an oil bath and stirred for 12 h at 110 °C. Then the mixture was cooled to room temperature, washed with H₂O (20 mL), saturated NaCl (20 mL) and extracted with CH₂Cl₂ (20 mL×3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under vacuo. The desired product was isolated by flash column chromatography using 100% petroleum ether as eluent to afford thionoester and calculate the yields. [P(C₆F₅)₃ = Tris(pentafluorophenyl)phosphine]

O-benzyl benzothioate (3aa). The representative general procedure mentioned above was followed. Purification by flash column chromatography (100% petroleum ether) yielded the target compound 3aa in 81% (36.40 mg) as a yellow liqiud; R_f =0.80 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.21 (d, *J* = 7.3 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.48 (d, *J* = 7.1 Hz, 2H), 7.42 (t, *J* = 7.3 Hz, 2H), 7.38 (t, *J* = 7.9 Hz, 3H), 5.71 (s, 2H). These data are corresponding to the literature.^[4]

O-(4-methylbenzyl) benzothioate (3ab). The representative general procedure mentioned above was followed. Purification by flash column chromatography (100% petroleum ether) yielded the target compound 3ab in 74% (35.86 mg) as a yellow liqiud; R_f =0.86 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.19 (d, *J* =

7.3 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 6.8 Hz, 4H), 7.23 (d, J = 7.8 Hz, 2H),
5.66 (s, 2H), 2.39 (s, 3H). These data are corresponding to the literature.^[5]

O-(2-methylbenzyl) benzothioate (3ac). The representative general procedure mentioned above was followed. Purification by flash column chromatography (100% petroleum ether) yielded the target compound **3ac** in 71% (35.86 mg) as a yellow liqiud; R_f =0.85 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.22 (dd, *J* = 8.5 Hz, *J* = 1.2 Hz, 2H), 7.56 (t, *J* = 6.8 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.36 – 7.31 (m, 1H), 7.30 – 7.25 (m, 2H), 5.73 (s, 2H), 2.43 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 211.06, 138.21, 137.45, 133.40, 132.83, 130.52, 129.75, 128.91, 128.87, 128.13, 126.10, 72.91, 19.08. HRMS (EI-MS) m/z: [M] Calcd for C₁₅H₁₄OS 242.0765; Found 242.0763 for the compounds: **3ac**.

O-(4-methoxybenzyl) benzothioate (3ad). The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate = 100/1) yielded the target compound 3ad in 36% (18.60 mg) as a yellow liqiud; R_f =0.53 (petroleum ether/ethyl acetate = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, *J* = 8.3 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.41 (d, *J* = 8.6 Hz, 2H), 7.36 (t, *J* = 7.9 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 5.64 (s, 2H), 3.84 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 211.18, 159.88, 138.34, 132.77, 130.29, 128.89, 128.08, 127.37, 114.06, 74.14, 55.33. HRMS (EI-MS) m/z: [M] Calcd for C₁₅H₁₄O₂S 258.0715; Found 258.0705 for the compounds: 3ad.

O-(4-(trifluoromethyl)benzyl) benzothioate (3ae). The representative general procedure mentioned above was followed. Purification by flash column

chromatography (100% petroleum ether) yielded the target compound **3ae** in 68% (40.29 mg) as a yellow liqiud; R_f =0.65 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.24 (dd, *J* = 8.5 Hz, *J* = 1.2, 2H), 7.68 (d, *J* = 8.1 Hz, 2H), 7.65 – 7.56 (m, 3H), 7.44 – 7.42 (m, 2H), 5.71 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 210.72, 139.35, 138.01, 133.10, 130.63 (q, *J* = 32.6 Hz), 128.92, 128.31, 128.24, 125.68 (q, *J* = 3.8 Hz), 124.00 (q, *J* = 272.0 Hz), 72.79 (s). ¹⁹F NMR (565 MHz, CDCl₃) δ -62.64. HRMS (EI-MS) m/z: [M] Calcd for C₁₅H₁₁OF₃S 296.0483; Found 296.0483 for the compounds: **3ae**.

O-(4-bromobenzyl) benzothioate (3af). The representative general procedure mentioned above was followed. Purification by flash column chromatography (100% petroleum ether) yielded the target compound 3af in 62% (38.09 mg) as a yellow liqiud; R_f =0.71 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.19 (dd, *J* = 8.5 Hz, *J* = 1.2 Hz, 2H), 7.54 (t, *J* = 6.6 Hz, 3H), 7.41 – 7.33 (m, 4H), 5.66 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 210.85, 138.10, 134.34, 132.99, 131.87, 130.04, 128.90, 128.19, 122.57, 73.14. HRMS (EI-MS) m/z: [M] Calcd for C₁₄H₁₁OBrS 305.9714; Found 305.9715 for the compounds: 3af.

O-propyl benzothioate (3ag). The representative general procedure mentioned above was followed. Purification by flash column chromatography (100% petroleum ether) yielded the target compound 3ag in 67% (24.15 mg) as a yellow liqiud; R_f =0.78 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.19 (dd, J = 8.5, J = 1.2 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.42 – 7.36 (m, 2H), 4.63 (t, J = 6.6 Hz, 2H), 1.99 – 1.91 (m, 2H), 1.10 (t, J = 7.4 Hz, 3H). These data are corresponding to the literature.^[6]

O-butyl benzothioate (3ah). The representative general procedure mentioned above was followed. Purification by flash column chromatography (100% petroleum ether) yielded the target compound 3ah in 70% (27.28 mg) as a yellow liqiud; R_f =0.76 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.18 (dd, J = 8.5, J = 1.2 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.41 – 7.37 (m, 2H), 4.68 (t, J = 6.5 Hz, 2H), 1.94 – 1.87 (m, 2H), 1.55 (h, J = 7.4 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H). These data are corresponding to the literature.^[7]

O-hexyl benzothioate (3ai). The representative general procedure mentioned above was followed. Purification by flash column chromatography (100% petroleum ether) yielded the target compound 3ai in 72% (32.02 mg) as a yellow liqiud; R_f =0.74 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, *J* = 8.3 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 2H), 4.66 (t, *J* = 6.6 Hz, 2H), 1.94 – 1.88 (m, 2H), 1.53 – 1.46 (m, 2H), 1.36 (tt, *J* = 13.0, *J* = 6.4 Hz, 4H), 0.91 (t, *J* = 7.0 Hz, 3H). These data are corresponding to the literature.^[5]

O-(thiophen-2-ylmethyl) benzothioate (3aj). The representative general procedure mentioned above was followed. Purification by flash column chromatography (100% petroleum ether) yielded the target compound 3aj in 58% (27.18 mg) as a yellow liqiud; R_f =0.63 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.19 (dd, *J* = 8.5, *J* = 1.2 Hz, 2H), 7.53 (t, *J* = 6.8 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 3H), 7.22 (d, *J* = 3.4 Hz, 1H), 7.06 – 7.03 (m, 1H), 5.88 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 210.63, 138.09, 137.09, 132.94, 128.98, 128.63, 128.13, 127.17, 126.88, 68.31. HRMS (EI-MS) m/z: [M] Calcd for C₁₂H₁₀OS₂ 234.0173; Found 234.0169 for the compounds: 3aj.

O-benzyl 4-methylbenzothioate (3ba). The representative general procedure mentioned above was followed. Purification by flash column chromatography (100% petroleum ether) yielded the target compound 3ba in 76% (36.83 mg) as a yellow liqiud; R_f =0.68 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 7.0 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 2H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.16 (d, *J* = 8.1 Hz, 2H), 5.69 (s, 2H), 2.37 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 211.01, 143.82, 135.90, 135.51, 129.05, 128.87, 128.68, 128.46, 128.36, 73.93, 21.65. HRMS (EI-MS) m/z: [M] Calcd for C₁₅H₁₄OS 242.0765; Found 242.0761 for the compounds: **3ba**.

O-benzyl 4-methoxybenzothioate (3ca). The representative general procedure mentioned above was followed. Purification by flash column chromatography (petroleum ether/ethyl acetate = 100/1) yielded the target compound 3ca in 69% (35.65 mg) as a yellow liqiud; $R_f = 0.52$ (petroleum ether/ethyl acetate = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 8.21 (d, J = 9.1 Hz, 2H), 7.47 (d, J = 7.2 Hz, 2H), 7.43 – 7.40 (m, 3H), 6.86 (d, J = 9.1 Hz, 2H), 5.69 (s, 2H), 3.86 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 210.11, 163.74, 135.65, 131.21, 128.71, 128.65, 128.40, 128.32, 113.31, 73.74, 55.51. HRMS (EI-MS) m/z: [M] Calcd for C₁₅H₁₄O₂S 258.0715; Found 258.0716 for the compounds: **3ca**.

O-benzyl 4-fluorobenzothioate (3da). The representative general procedure mentioned above was followed. Purification by flash column chromatography (100% petroleum ether) yielded the target compound 3da in 87% (42.81 mg) as a yellow liqiud; Rf =0.74 (100% petroleum ether); ¹H NMR (600 MHz, CDCl₃) δ 8.23 (dd, *J* =

8.9, J = 5.5 Hz, 2H), 7.47 (d, J = 7.0 Hz, 2H), 7.42 (t, J = 7.2 Hz, 2H), 7.38 (t, J = 7.0 Hz, 1H), 7.07 – 7.01 (m, 2H), 5.68 (s, 2H). ¹⁹F NMR (565 MHz, CDCl₃) δ -106.05.

Experimental procedures for the synthesis of thionoester via tert-butyl (tertbutoxycarbonyl)(phenylcarbonothioyl)carbamate.

A sealed tube equipped with a stir bar was charged with tert-butyl (tertbutoxycarbonyl)(phenylcarbonothioyl)carbamate (0.2 mmol, 1.0 equiv), alcohols (0.3 mmol, 1.5 equiv), Pd(OAc)₂ (5 mol%), P(C₆F₅)₃ (20 mol%), K₃PO₄ (3.0 equiv) and toluene (2.0 ml) under a N₂ atmosphere. The reaction mixture was placed in an oil bath and stirred for 12 h at 110 °C. Then the mixture was cooled to room temperature, washed with H₂O (20 mL), saturated NaCl (20 mL) and extracted with CH₂Cl₂ (20 mL×3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under vacuo. The desired product was isolated by flash column chromatography using petroleum ether as eluent to afford thionoester and calculate the yields. [P(C₆F₅)₃ = Tris(pentafluorophenyl)phosphine]

Experimental procedures for the for scale-up of the reaction.

A sealed tube equipped with a stir bar was charged with tert-butyl phenyl(phenylcarbonothioyl)carbamate (5 mmol, 1.0 equiv, 1.57 g), phenylmethanol

(10 mmol, 2.0 equiv, 1.08 g), Pd(OAc)₂ (5 mol%, 56 mg), P(C₆F₅)₃ (20 mol%, 0.53 g), K₃PO₄ (3.0 equiv, 3.18 g) and toluene (10.0 ml) under a N₂ atmosphere. The reaction mixture was placed in an oil bath and stirred for 12 h at 110 °C. Then the mixture was cooled to room temperature, washed with H₂O (20 mL), saturated NaCl (20 mL) and extracted with CH₂Cl₂ (20 mL×3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under vacuo. The desired product was isolated by flash column chromatography using petroleum ether as eluent to afford *O*-benzyl benzothioate (yellow liquid) and the yields is 75% (85.6 mg). [P(C₆F₅)₃ = Tris(pentafluorophenyl)phosphine]

Experimental procedures for control reaction.

HO

2a

3aa

A sealed tube equipped with a stir bar was charged with thioamides (5 mmol, 1.0 equiv, 1.57 g), phenylmethanol (10 mmol, 2.0 equiv, 1.08 g), $Pd(OAc)_2$ (5 mol%, 56 mg), $P(C_6F_5)_3$ (20 mol%, 0.53 g), K_3PO_4 (3.0 equiv, 3.18 g) and toluene (10.0 ml) under a N₂ atmosphere. The reaction mixture was placed in an oil bath and stirred for 12 h at 110 °C. Then the mixture was cooled to room temperature, washed with H₂O (20 mL), saturated NaCl (20 mL) and extracted with CH₂Cl₂ (20 mL×3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under vacuo. The desired product was isolated by flash column

chromatography using petroleum ether as eluent to afford *O*-benzyl benzothioate (yellow liquid) and the yields were calculated. $[P(C_6F_5)_3 = Tris(pentafluorophenyl)phosphine]$

References

- H. Jin, X. Chen, C. Qian, X. Ge, S. Zhou, *Eur. J. Org. Chem.* 2021, 2021, 3403-3406.
- [2] N. T. Do, K. M. Tran, H. T. Phan, T. A. To, T. T. Nguyen, N. T. Phan, Org. Biomol. Chem. 2019, 17, 8987-8991.
- [3] A. A. Folgueiras-Amador, X.-Y. Qian, H. Xu, T. Wirth, *Chem. Eur. J.* **2018**, *24*, 487-491.
- [4] M. A. Shalaby, H. Rapoport, J. Org. Chem. 1999, 64, 1065-1070.
- [5] J. J. Newton, R. Britton, C. M. Friesen, J. Org. Chem. 2018, 83, 12784-12792.
- [6] S.-K. Yeo, B.-G. Choi, J.-D. Kim, J.-H. Lee, Bull. Korean Chem. Soc. 2002, 23, 1029-1030.
- [7] J. Newton, D. Driedger, M. B. Nodwell, P. Schaffer, R. E. Martin, R. Britton, C. M. Friesen, *Chem. Eur. J.* 2019, 25, 15993-15997.

Copies of ¹H, ¹³C, ¹⁹F, NMR, Mass Spectra and HRMS

Figure S1. N-phenylbenzothioamide (1)

Figure S2. 4-methyl-*N*-phenylbenzothioamide (2) ¹H NMR (600 MHz, DMSO-*d*₆)

Figure S7. tert-butyl phenyl(phenylcarbonothioyl)carbamate (1a) HRMS

Nationa	I Center for Organic Mass Spectrometry in Shanghai
	Shanghai Institute of Organic Chemistry
	Chinese Academic of Sciences
	High Resolution ESI-MS REPORT

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS Card Serial Number: E212376 Sample Serial Number: LYB-PhBoc

Operator: Songw Date: 2021/09/16

Operation Mode: ESI Positive Ion Mode

Elemental composition search on mass 336,1029

m/z= 331.1029-341.1029
m/z Theo. Delta RDB Composition
Mass (ppm) equiv.
336.1029 336.1029 0.21 9.5 C18 H19 O2 N Na S

Figure S8. tert-butyl (4-methylphenylcarbonothioyl)(phenyl)carbamate (1b)

Figure S10. tert-butyl (4-methylphenylcarbonothioyl)(phenyl)carbamate (1b) Mass spectrum

Figure S11. tert-butyl (4-methoxyphenylcarbonothioyl)(phenyl)carbamate (1c) ¹H NMR (600 MHz, CDCl₃)

Figure S12. tert-butyl (4-methoxyphenylcarbonothioyl)(phenyl)carbamate (1c)

Figure S13. tert-butyl (4-methoxyphenylcarbonothioyl)(phenyl)carbamate (1c) Mass spectrum

Figure S14. tert-butyl (4-fluorophenylcarbonothioyl)(phenyl)carbamate (1d) ¹H NMR (600 MHz, CDCl₃)

Figure S18. tert-butyl (4-methoxyphenyl)(phenylcarbonothioyl)carbamate (1e)

Figure S19. tert-butyl (4-methoxyphenyl)(phenylcarbonothioyl)carbamate (1e) ¹³C NMR (150 MHz, CDCl₃)

Figure S20. tert-butyl (4-methoxyphenyl)(phenylcarbonothioyl)carbamate (1e)

HRMS

Elemental Composition Report Page 1 **Single Mass Analysis** Tolerance = 30.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 101 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 19-19 H: 5-45 N: 1-2 O: 1-9 S: 1-3 I: 0-3 4 0126-4-lyb-phboc 164 (0.925) 1: TOF MS ES+ 1.01e+003 344.1323 100-344.1180 344.1484 344.0934 % 344.1833 0-- m/z 344.500 343.800 343.900 344.000 344.300 344.400 344.200 344.100 Minimum: Maximum: -1.5 50.0 5.0 30.0 Conf(%) Formula n/a C19 H22 N O3 S PPM 0.9 Mass 344.1323 Calc. Mass 344.1320 mDa 0.3 DBE 9.5 i-FIT 58.5 Norm n/a

Figure S22. tert-butyl ethyl(phenylcarbonothioyl)carbamate (1f)

Figure S24. tert-butyl (tert-butoxycarbonyl)(phenylcarbonothioyl)carbamate (4a) ¹H NMR (600 MHz, CDCl₃)

Figure S30. *O*-(2-methylbenzyl) benzothioate (3ac) Mass spectrum

	National	Center for (Shanghai I Chine High Low	Organic Ma Institute of ese Acaden Resolution Resolution	ass Spectrometry in Organic Chemistry nic of Sciences EI-MS Report EI-MS Report	h Shanghai	SIDC CTS S
Instrument:	Wate	rs Premier GC-	TOF MS			
Operation Mod	e: EI	Positive Ion M	lode	(Electron En	ergy: 70eV)	
Card Serial Nu	mber: GCT	-P-EI-T21-240	8			
Sample Serial 1	Number: 201	9551-LYB-2C	H3			
Operator:	Li		Da	te: 2	021/09/14	
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	n	
242.0763	242.0762	0.57	-5.5	C 5 H 22 O 3 N Br H	7	
	242.0760	1.05	2.0	C9H13O4F3		
	242.0760	1.29	9.0	C15 H14 O S		
	242.0759	1.47	-9.5	C ₃ H ₂₄ NBrF ₃ S		
	242.0771	-3.25	-13.5	H25 ONBr F4 S		

Figure S32. *O*-(4-methoxybenzyl) benzothioate (3ad) ¹H NMR (600 MHz, CDCl₃)

Figure S35. *O*-(4-methoxybenzyl) benzothioate (3ad) HRMS

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S38. *O*-(4-(trifluoromethyl)benzyl) benzothioate (3ae) Mass spectrum

Figure S39. *O*-(4-(trifluoromethyl)benzyl) benzothioate (3ae) HRMS

	National	Center for Shanghai 1 Chin High Low	Organic nstitute ese Acader Resolutio Resolutio	Mass Spectro of Organic (nic of Scien on FI-MS Rep n FI-MS Rep	ometry in Shangh Chemistry ces wort ort	SIOC CTS S
Instrument:		JEOL-AccuTOF-	GCV4G-GCT MS			
Operation Mode:		FI Positive	Ion Mode		(Counter Electrode:	10000V)
Card Serial M	vumber:	GCT-FI-T21	-09-2410			
Sample Serial	l Number:	2019551-LY	'B-CF3			
Operator:		LI	Date	1	2021/09/14	
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composit	ion	
296.0483	296.0479 296.0478 296.0489 296.0477	1.22 1.76 -1.91 1.95	13.0 0 2.0 0 5.0 0 9.0 0	17 H9 O4 F 9 H10 O4 F6 12 H12 O2 F4 15 H11 O F3 S 15 H7 N F5	S	

Figure S42. O-(4-bromobenzyl) benzothioate (3af)

Mass spectrum

Figure S43. *O*-(4-bromobenzyl) benzothioate (3af) HRMS

	National	Center fo Shanghai Chi Hig Loo	or Organi Institut nese Aca h Resolu v Resolut	c Mass Spectrom e of Organic Ch demic of Science tion FI-MS Repor- tion FI-MS Repor-	etry in Shanghai emistry es rt t
Instrument:		JEOL-Accurof	-GCv4G-GCT	WS	
Operation Mo	de:	FI Positive	lon Mode	(C	ounter Electrode: 10000%)
Card Serial	Number:	GCT-FI-T21	-09-2411		
Sample Seria	1 Number:	2019551-L	YB-Br		
Operator:	1	.i	Da	te:	2021/09/14
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	3
305.9715	305.9717	-0.58	9.0	C 10 H 2 O 3 N 2 F 4	S
	305.9718	-1.09	-6.0	C3H13O2Br F6S	1
	305.9720	-1.61	5.0	C11 H12 O2 Br F S	
	305.9709	1.94	2.0	C8 H10 O4 Br F3	
	305.9708	2.12	9.0	C14 H11 OBr S	

Figure S50. O-(thiophen-2-ylmethyl) benzothioate (3aj)

HRMS

Figure S53. O-benzyl 4-methylbenzothioate (3ba)

Mass spectrum

Figure S54. *O*-benzyl 4-methylbenzothioate (3ba) HRMS

		Chi Hig Lo	nese Aca h Resolu v Resolut	demic of Scie tion FI-MS Re tion FI-MS Rep	nces port port
Instrument:		JEOL-AccuTOF	-GCv4G-GCT	MS	
Operation Mc	ode:	FI Positive	lon Mode	8	(Counter Electrode: 10000V)
Card Serial	Number:	GCT-FI-T21	-09-2409		
Sample Seria	1 Number:	2019551-L	YB-LCH3		
Sample Seria Operator:	d Number: L	2019551-L'	YB-LCH3 Da	ite:	2021/09/14
Sample Seria Operator: m/z	l Number: I Theo. Mass	2019551-L' .i Delta (ppm)	RDB equiv.	te: Compositi	2021/09/14 Lon
Sample Seria Operator: m/z 242.0761	I Number: I Theo. Mass 242.0760	2019551-L .i Delta (ppm) 0.23	RDB equiv. 2.0	te: Compositi C 9 H 13 O 4 F 3	2021/09/14 Lon
Sample Serie Operator: m/z 242.0761	Theo. Mass 242.0760 242.0760	2019551-L i Delta (ppm) 0.23 0.47	RDB equiv. 2.0 9.0	Compositi C 9 H 13 O 4 F 3 C 15 H 14 O S	2021/09/14 Lon
Sample Serie Operator: m/z 242.0761	Theo. Mass 242.0760 242.0758	2019551-L7 .i Delta (ppm) 0.23 0.47 1.12	RDB equiv. 2.0 9.0 -2.0	Compositi C 5 H 13 O 4 F 3 C 15 H 14 O S C 7 H 15 O F 5 S	2021/09/14 Lon
Sample Seria Operator: m/z 242.0761	Theo. Mass 242.0760 242.0760 242.0758 242.0770	2019551-L i Delta (ppm) 0.23 0.47 1.12 -3.60	RDB equiv. 2.0 9.0 -2.0 -6.0	Compositi C 9 H 13 O 4 F 3 C 15 H 14 O S C 7 H 15 O F 5 S C 4 H 16 O 2 F 6 S	2021/09/14 Lon

Figure S55. O-benzyl 4-methoxybenzothioate (3ca)

Figure S57. *O*-benzyl 4-methoxybenzothioate (3ca)

Mass spectrum

Figure S58. *O*-benzyl 4-methoxybenzothioate (3ca) HRMS

		Shanghai I Chine	nstitute of Or se Academic Resolution El	ganic Chemis of Sciences LMS Report	stry	Chinake State
		Low I	Resolution El	-MS Report		
Instrument:	Wate	rs Premier GC-1	TOF MS			
Operation Mod	e: El	Positive Ion M	ode	(Electron	Energy: 70eV)	
Card Serial Nu	mber: GC	r-P-EI-T21-240	7			
Sample Serial 1	Number: 20	19551-LYB-LM	eO			
Operator:	Li		Date:		2021/09/14	
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Compositi	Lon	
258 0716	258.0714	0.95	14.5 C	18 H 9 N F		
200.0120	258.0720	-1.56	-13.5 H	25 O 2 N Br F4	S	
230.0720			E D D.	A HAR ON PS		
230.0720	258.0720	-1.72	5.0 0	12 U 12 O 3 1 D		
230.0720	258.0720 258.0711	-1.72 2.03	-5.5 C	5 H22 O4 N BI	F	

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)