Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Ag₂CO₃/TFA Catalyzed Intramolecular Annulation Approach to Imidazo[1,2-*c*][1,3]oxazin-5-one Derivatives

Abdelkarim El Qami,^{a, b} Badr Jismy,^{a,*} Mohamed Akssira,^b Johan Jacquemin,^a Abdellatif Tikad,^{c,*} and Mohamed Abarbri^{a,*}

^b Laboratoire de Chimie Physique et de Chimie Bioorganique, URAC 22. Faculté des Sciences et Techniques de Mohammedia, Université Hassan II de Casablanca. B.P. 146, 28800 Mohammedia, Morocco.

^c Laboratoire de Chimie Moléculaire et Substances Naturelles, Faculté des Sciences, Université Moulay Ismail, B.P. 11201, Zitoune, Meknès, Morocco.

Contents:

1. Optimizations of Suzuki-Miyaura and Sonogashira cross-couplings at C-2 of 2a	S2
2. ¹ H and ¹³ C NMR spectra of products	S3-S37
3. Details of DFT calculations	S38-S39

^a Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299. Université de Tours, Faculté des Sciences et Techniques. Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France. Phone: (+33) 2 47 36 73 59 / (+33) 6 70 22 15 77, fax: (+33) 2 47 36 70 73, e-mail: mohamed.abarbri@univ-tours.fr

1. Optimizations of Suzuki-Miyaura and Sonogashira cross-couplings at C-2 of 2a

Table S1. Optimization of Suzuki-Miyaura cross-coupling between 2a and 4-methoxyphenylboronicacid.

Br-	2a	(1.5 equiv.)	Cat (X equiv and (0.1 equ ase (2 equiv colvent, T (°C	.) uiv.) /.) C)		O N O 6a	`Ph
Entry	Solvent	Catalyst (equiv.)	Base	Ligand	T (°C)	Time (h)	6a/2a
1	Dioxane/H ₂ O (4/1)	PdCl ₂ dppf (0.1)	Na_2CO_3	-	65	1	_b
2	DME/EtOH/H ₂ O (3/1/1)	Pd(OAc) ₂ (0.04)	Na_2CO_3	-	65 ^[a]	1	_b
3	Toluène/MeOH (4/1)	PdPPh ₃ (0.1)	Na_2CO_3	-	80	1	_b
4	Toluène/H₂O (5/0.5)	$PdCl_{2}(PPh_{3})_{2}(0.1)$	Na_2CO_3	-	80	1	_b
5	Toluène/H₂O (5/0.5)	$PdCl_2(PPh_3)_2(0.1)$	K_3PO_4	-	80	24	6/94
6	Toluene/H ₂ O (5/0.5)	Pd ₂ (dba) ₃ (0.025)	K_3PO_4	-	110	24	12/88
7	Toluene/H ₂ O (5/0.5)	Pd ₂ (dba) ₃ (0.025)	K ₃ PO ₄	XPhos	110	1	100/0
8	EtOH/H ₂ O (4/1)	XPhosPdG ₂ (0.1)	K ₂ CO ₃	Xphos	65 [°]	1	_[b]

^{*a*}Reaction was performed under microwave irradiation. ^{*b*}Degradation of the reaction.

Table S2. Optimization of Sonogashira cross-coupling between 2a and phenylacetylene.

	Br - N - Ph + 2a	Cu Cu Liga Ba (1.5 equiv.)	at (X equiv.) II (10 mol %) and (0.1 equiv.) ase (X equiv.) solvent, T °C			N O Pt	ı
Entry	Solvent	Catalyst (equiv.)	Base (equiv.)	Ligand	T(°C)	Time (h)	7a/2a
1	Toluène	$PdCl_2(PPh_3)_2(0.1)$	Et ₃ N (5.0)	PPh_3	110	48	0/100
2	Et ₃ N	$PdCl_{2}(PPh_{3})_{2}(0.1)$			110	48	0/100
3	Et ₃ N	$PdCl_{2}(PPh_{3})_{2}(0.1)$		$AsPh_3$	110	48	0/100
4	Et₃N	Pd₂(dba)₃ (0.05)		XPhos	80	1	100/0
5 ^{<i>a</i>}	DME/EtOH/H ₂ O (3/1/1)	Pd(OAc) ₂ (0.04)	Et ₃ N (2.0)	PPh_3	70	1	_ ^b

^aReaction carried out under microwave irradiation. ^bDegradation of the reaction

2. ¹H and ¹³C NMR spectra of products

¹H NMR (300 MHz, CDCl₃) of **2a**

¹H NMR (300 MHz, CDCl₃) of **2b**

¹H NMR (300 MHz, CDCl₃) of 2c

¹H NMR (300 MHz, CDCl₃) of 2d

^{13}C NMR (75 MHz, CDCl_3) of 2d

^1H NMR (300 MHz, CDCl₃) of 2e

¹H NMR (300 MHz, CDCl₃) of 2f

 $^{19}\mathsf{F}\,\mathsf{NMR}$ (282 MHz, CDCl_3) of $\mathbf{2f}$

 ^{13}C NMR (75 MHz, CDCl_3) of 2f

^{13}C NMR (75 MHz, CDCl_3) of 2g

¹H NMR (300 MHz, CDCl₃) of **2h**

^{13}C NMR (75 MHz, CDCl_3) of 2h

¹H NMR (300 MHz, CDCl₃) of 2i

¹H NMR (300 MHz, CDCl₃) of 2j

¹H NMR (300 MHz, CDCl₃) of 2k

¹H NMR (300 MHz, CDCl₃) of **2I**

¹H NMR (300 MHz, CDCl₃) of **5a**

 ^1H NMR (300 MHz, CDCl₃) of 5b

¹H NMR (300 MHz, CDCl₃) of **5**c

¹H NMR (300 MHz, CDCl₃) of **5d**

 ^1H NMR (300 MHz, CDCl₃) of 5e

¹H NMR (300 MHz, CDCl₃) of 5g

 ^1H NMR (300 MHz, CDCl₃) of **5h**

1 H NMR (300 MHz, CDCl₃) of **5i**

¹H NMR (300 MHz, $CDCl_3$) of **5j**

^1H NMR (300 MHz, CDCl_3) of 5k

^{13}C NMR (75 MHz, CDCl_3) of 5k

¹H NMR (300 MHz, $CDCI_3$) of **5**I

^1H NMR (300 MHz, CDCl₃) of **6a**

¹H NMR (300 MHz, CDCl₃) of **6b**

 ^1H NMR (300 MHz, CDCl_3) of 6c

¹H NMR (300 MHz, CDCl₃) of **6d**

¹H NMR (300 MHz, CDCl₃) of 7a

 $^{^{19}\}mathsf{F}\,\mathsf{NMR}$ (282 MHz, $\mathsf{CDCl}_3)$ of 7a

 ^{13}C NMR (75 MHz, CDCl_3) of 7b

 ^1H NMR (300 MHz, CDCl_3) of 8b

^{13}C NMR (75 MHz, CDCl_3) of 8b

^1H NMR (300 MHz, CDCl_3) of 8c

 ^{13}C NMR (75 MHz, CDCl_3) of 8c

S37

3. Details of DFT calculations

Figure 1: Rotational barrier and conformers of *N*-Boc imidazole 2a.

Figure 2: Rotational barrier and conformers of *N*-Boc imidazole 2m.

Figure 3: Rotational barrier and conformers of *N*-Boc imidazole 2n.