Supplementary Information

Importance of Ile71 in β-actin on histidine methyltransferase SETD3 catalysis

Nurgül Bilgin,^a Laust Moesgaard,^a Marijn N. Maas,^a Jordi C. J. Hintzen,^a Apolonia Witecka,^b Jakub Drozak,^b Jacob Kongsted,^a and Jasmin Mecinović^{*a}

^a Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
E-mail: mecinovic@sdu.dk
^b Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland

Table of Contents

1. Characterisation of β-actin peptides	3
2. MALDI-TOF MS supporting figures	20
3. Kinetics analysis supporting figures	24
4. Docking supporting figures	26
5. MD supporting figures	27

1. Characterisation of β -actin peptides

Names	Sequences	m/z Calculated	m/z Found
β A (66-88)	TLKYPIEHGIVTNWDDMEKIWHH	2861.42	2861.97
β A-Gly71	TLKYP G EHGIVTNWDDMEKIWHH	2805.35	2805.65
β A-Ala71	TLKYPAEHGIVTNWDDMEKIWHH	2819.37	2820.27
β A-Abu71	TLKYPAbuEHGIVTNWDDMEKIWHH	2833.38	2833.79
β A-Nva71	TLKYPNvaEHGIVTNWDDMEKIWHH	2847.40	2848.39
βA-Nle71	TLKYP NIe EHGIVTNWDDMEKIWHH	2861.42	2861.88
β A-Ahp71	TLKYPAhpEHGIVTNWDDMEKIWHH	2875.43	2875.76
β A-Aoc71	TLKYP Aoc EHGIVTNWDDMEKIWHH	2889.45	2889.83
βA-Cha71	TLKYPChaEHGIVTNWDDMEKIWHH	2901.45	2900.63
β A-Phe71	TLKYPFEHGIVTNWDDMEKIWHH	2895.40	2895.99
β A-Val71	TLKYPVEHGIVTNWDDMEKIWHH	2847.40	2847.59
β A-Leu71	TLKYPLEHGIVTNWDDMEKIWHH	2861.42	2861.73
β A-Dap71	TLKYP D apEHGIVTNWDDMEKIWHH	2834.38	2834.66
β A-Dab71	TLKYP D abEHGIVTNWDDMEKIWHH	2848.39	2848.66
β A-DIle71	TLKYP D-IIe EHGIVTNWDDMEKIWHH	2861.42	2861.71
β A-hSer71	TLKYP hSer EHGIVTNWDDMEKIWHH	2849.38	2849.50

Table S1 Overview of synthetized βA peptide sequences and their respective m/z values.

Fig. S1 MALDI-TOF MS data (top) calc. m/z 2861.4 and found m/z 2862.0. Analytical HPLC of the β A-Ile71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.52 min.

Fig. S2 MALDI-TOF MS data (top) calc. m/z 2861.4 and found m/z 2861.7. Analytical HPLC of the β A-DIIe71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.47 min.

Fig. S3 MALDI-TOF MS data (top) calc. m/z 2861.4 and found m/z 2861.7. Analytical HPLC of the β A-Leu71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.5 min.

Fig. S4 MALDI-TOF MS data (top) calc. m/z 2847.4 and found m/z 2847.6. Analytical HPLC of the β A-Val71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.37 min.

Fig. S5 MALDI-TOF MS data (top) calc. m/z 2805.4 and found m/z 2805.7. Analytical HPLC of the β A-Gly71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.18 min.

Fig. S6 MALDI-TOF MS data (top) calc. m/z 2820.4 and found m/z 2820.3. Analytical HPLC of the β A-Ala71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.27 min.

Fig. S7 MALDI-TOF MS data (top) calc. m/z 2833.4 and found m/z 2833.8. Analytical HPLC of the β A-Abu71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.35 min.

Fig. S8 MALDI-TOF MS data (top) calc. m/z 2847.4 found m/z 2848.4. Analytical HPLC of the β A-Nva71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.56 min.

Fig. S9 MALDI-TOF MS data (top) calc. m/z 2861.4 and found m/z 2861.9. Analytical HPLC of the β A-Nle71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.43 min.

Fig. S10 MALDI-TOF MS data (top) calc. m/z 2875.4 and found m/z 2875.8. Analytical HPLC of the β A-Ahp71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.71 min.

Fig. S11 MALDI-TOF MS data (top) calc. m/z 2889.5 and found m/z 2889.8. Analytical HPLC of the β A-Aoc71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.88 min.

Fig. S12 MALDI-TOF MS data (top) calc. m/z 2901.5 and found m/z 2901.6. Analytical HPLC of the β A-Cha71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.99 min.

Fig. S13 MALDI-TOF MS data (top) calc. m/z 2895.4 and found m/z 2896.0. Analytical HPLC of the β A-Phe71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.64 min.

Fig. S14 MALDI-TOF MS data (top) calc. m/z 2834.4 and found m/z 2834.7. Analytical HPLC of the β A-Dap71 peptide after RP-HPLC purification (bottom). Peptide elutes at 11.93 min.

Fig. S15 MALDI-TOF MS data (top) calc. m/z 2848.4 and found m/z 2848.7. Analytical HPLC of the β A-Dab71 peptide after RP-HPLC purification (bottom). Peptide elutes at 11.89 min.

Fig. S16 MALDI-TOF MS data (top) calc. m/z 2849.4 and found m/z 2849.5. Analytical HPLC of the β A-hSer71 peptide after RP-HPLC purification (bottom). Peptide elutes at 12.08 min.

2. MALDI-TOF MS supporting figures

Fig. S17 MALDI-TOF MS data showing SETD3-catalysed (1 μ M) methylation of β A peptides (10 μ M) in the presence of SAM (100 μ M) after 1 h at 37 °C, pH 9. Control reactions in the absence of SETD3 are shown in black, whereas SETD3-catalysed reactions are shown in red. **a**) β A-Ile71, **b**) β A-DIle71, **c**) β A-Leu71, **d**) β A-Val71, **e**) β A-Gly71, **f**) β A-Ala71 **g**) β A-Abu71, **h**) β A-Nva71, **i**) β A-Nle71, **j**) β A-Ahp71, **k**) β A-Aco71, **l**) β A-Cha71, **m**) β A-Phe71, **n**) β A-Dap71, **o**) β A-Dab71, **p**) β A-hSer71.

Fig. S18 MALDI-TOF MS data showing SETD3-catalysed (200 nM) methylation of β A peptides (10 μ M) in the presence of SAM (100 μ M) after 1 h at 37 °C, pH 9. Control reactions in the absence of SETD3 are shown in black, whereas SETD3-catalysed reactions are shown in red. **a**) β A-IIe71, **b**) β A-DIIe71, **c**) β A-Leu71, **d**) β A-Val71, **e**) β A-Ala71, **f**) β A-Abu71 **g**) β A-Nva71, **h**) β A-Nle71, **i**) β A-Ahp71, **j**) β A-Cha71, **k**) β A-Phe71, **l**) β A-hSer71.

Fig. S19 MALDI-TOF MS data showing SETD3-catalysed (200 nM) methylation of β A peptides (10 μ M) in the presence of SAM (100 μ M) after 3 h at 37 °C, pH 9 (**a-l**). Control reactions in the absence of SETD3 are shown in black, whereas SETD3-catalysed reactions are shown in red. **a**) β A-IIe71, **b**) β A-DIIe71, **c**) β A-Leu71, **d**) β A-Val71, **e**) β A-Ala71, **f**) β A-Abu71 **g**) β A-Nva71, **h**) β A-Nle71, **i**) β A-Ahp71, **j**) β A-Cha71, **k**) β A-Phe71, **l**) β A-hSer71.

Fig. S20 Data showing percentage methylation of all βA peptides (10 μ M) in the presence of 200 nM SETD3 and 100 μ M SAM after 1 and 3 h.

3. Kinetics analysis supporting figures

Fig. S21 MALDI-TOF MS kinetics analysis of SETD3-catalysed methylation of β -actin peptides containing isoleucine and isoleucine analogues at position 71. Michaelis-Menten plots of **a**) β A-IIe71, **b**) β A-D-IIe71, **c**) β A-Val71, **d**) β A-Leu71, **e**) β A-Abu71, **f**) β A-Nva71, **g**) β A-Nle71, **h**) β A-Abp71, **i**) β A-Cha71.

Fig. S22 A single point inhibition of human SETD3 (360 nM) by β A peptides (10 μ M). Experiments were carried out in replicates (n = 2), error bars reported as standard error (SE).

4. Docking supporting figures

Fig. S23 Docking poses of a selection of β A peptides. a) β A-Ile71, b) β A-D-Ile71, c) β A-Val71, d) β A-Gly71, e) β A-Ahp71, f) β A-Aoc71, g) a-f superimposed.

5. MD supporting figures

Fig. S24 Conformation of Asn256 during the MD simulations. a) Asn256 changes from (I) to (II) during MD simulation of SETD3 bound to β A-Gly71 and in the unbound (apo) simulation. The yellow dotted line marks a hydrogen bond between Asn256 and water in the simulation of β A-Gly71. b) Plot of the dihedral angle (θ) during the MD simulations.