Supporting information

CuCl₂/TBHP Mediated Synthesis of β-Enaminones via a Coupling Reaction of Vinyl Azides with Aldehydes

Yaohong Zhang,^{*a}MengqiangLuo,^{a,b}YichanZhang,^cKai Cheng,^aYong Li,^aChenzeQi,^aRunpuShen^b and Hai Wang^{*a}

- ^a School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing,312000, Zhejiang, P. R. China.
- ^b School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing,312000, Zhejiang, P. R. China
- ^c Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, P. R. China

*Corresponding author E-mail: zhangyhsxu@126.com

Table of Contents

1. General Information
2. General procedures for the synthesis of compounds 3aa-3ua
3. Typical procedures for control experiments
4. Typical procedures for synthetic applications of 3aa S3
5. Characterization of synthesized compounds 3aa-3ua
6. Characterization and NMR spectra of starting materials (20)
7. Characterization and NMR spectra of product (8) for control experiments
8. Characterization and NMR spectra of products for synthetic applications of
3 aa
9. Crystallography of 3na
10. ¹ H and ¹³ C NMR spectra of compounds 3aa-3ua
11. References

1. General Information

Commercially available materials were used as received. Purifications of all the desired products were carried out by chromatography (silica gel 200-300 mesh). NMR spectra were recorded on a 400 MHz spectrometer, data are reported as follows: chemical shift, integration, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet). Chemical shifts (δ) were reported in ppm and the coupling constants J are given in Hz. For ¹H NMR, DMSO-d₆ (δ =2.50) or CDCl₃ (δ =7.26) was used as internal standard. For ¹³C NMR, DMSO-d₆ (δ =39.50) or CDCl₃ (δ =77.16) was used as internal standard. HR-MS data was obtained using Waters XEVO G2-XS QTQF/H-CLASS LC/MS. Melting points were measured on a BÜCHI B-540 melting point apparatus and uncorrected. The starting material of vinyl azides**2**were prepared according to the reported methods.^[1-3]

2. General procedures for synthesis of compounds 3aa-3ua

A mixture of aldehydes 1(1.5 mmol, 3.0 equiv), vinyl azides 2 (0.5 mmol), TBHP (1.0 mmol, 2.0 equiv) and CuCl₂·2H₂O (0.05 mmol) in DMSO (3 mL) was stirred at 80 °C for 8h. Upon completion of the reaction, the resulting mixture was diluted with saturated NaCl solution (5 mL) and extracted with EtOAc (3×10 mL). The combined organic phase was dried with anhydrous Na₂SO₄, concentrated and purified by chromatography (petroleum ether/ethylacetate = 15:1) on silica gel to afford the desired products β -enaminones (**3aa-3ua**).

3. Typical procedures for control experiments

(a)Typical procedure for radical trapping experiment

A mixture of benzaldehyde **1a** (1.5mmol, 3.0 equiv), α -phenylvinyl azide **2a** (0.5 mmol), TBHP (1.0 mmol, 2.0 equiv), CuCl₂·2H₂O (0.05 mmol) and TEMPO (1.0 mmol, 2.0 equiv) in DMSO (3 mL) was stirred at 80 °C for 8h. Upon completion of the reaction, the resulting mixture was diluted with saturated NaCl solution (5 mL) and extracted with EtOAc (3×10 mL). Then the resulting mixture was detected by LC-MS, no desired product **(3aa)** was detected.

(b) Typical procedure for radical trapping experiment in the absence of α-phenylvinyl azide

A mixture of benzaldehyde **1a** (1.5mmol, 3.0 equiv), TBHP (1.0 mmol, 2.0 equiv), $CuCl_2 \cdot 2H_2O$ (0.05 mmol) and TEMPO (1.0 mmol, 2.0 equiv) in DMSO (3 mL) was stirred at 80 °C for 8h. Upon completion of the reaction, the resulting mixture was diluted with saturated NaCl solution (5 mL) and extracted with EtOAc (3×10 mL). The combined organic phase was dried with anhydrous Na₂SO₄, concentrated and purified by chromatography on silica gel, the coupling product (**8**) was obtained in 76%yield (petroleum ether/ethylacetate = 15:1).

(c) Typical procedure for the reaction of 3-phenyl-2H-azirine (9) instead of 2a to with 1a

A mixture of benzaldehyde **1a** (1.5mmol, 3.0 equiv), 3-phenyl-2H-azirine **9** (0.5 mmol), TBHP (1.0 mmol, 2.0 equiv) and $CuCl_2 \cdot 2H_2O$ (0.05 mmol) in DMSO (3 mL) was stirred at 80 °C for 8h. The resulting mixture was detected by LC-MS, no desired product **(3aa)** was detected. **2**/64

(d) Typical procedure for studying the role of enaminones (4) with benzaldehyde

A mixture of benzaldehyde**1a** (1.5 mmol, 3.0 equiv.), enaminones **4** (0.5 mmol), TBHP (1.0mmol, 2.0 equiv., 70% aqueous solution) and $CuCl_2 \cdot 2H_2O$ (0.05 mmol) in DMSO (3 mL) was stirred at 80 °C for 8h. Upon completion of the reaction, the resulting mixture was diluted with saturated NaCl solution (5 mL) and extracted with EtOAc (3×10 mL). The combined organic phase was dried with anhydrous Na₂SO₄, concentrated and purified by chromatography (petroleum ether/ethylacetate = 15:1) on silica gel to afford the desired products73% 3aa.

(e) Typical procedure for radical trapping experiment for the reaction of benzaldehyde with enaminones (4)

A mixture of benzaldehyde **1a** (1.5 mmol, 3.0 equiv.), enaminones **4** (0.5 mmol), TBHP (1.0mmol, 2.0 equiv., 70% aqueous solution), $CuCl_2 \cdot 2H_2O$ (0.05 mmol) and TEMPO (1.0 mmol, 2.0 equiv.) in DMSO (3 mL) was stirred at 80 °C for 8h. Upon completion of the reaction, the resulting mixture was diluted with saturated NaCl solution (5 mL) and extracted with EtOAc (3×10 mL). Then the resulting mixture was detected by LC-MS, no desired product (**3aa**) was detected.

4. Typical procedures for synthetic applications of 3aa

(a) Typical synthesis of N-unsubstituted β-enaminone 4

To a solution of compound **3aa** (0.1 mmol, 1.0 equiv) in MeOH (1.0 mL) was added NH_4HCO_3 (1.6 mmol, 16.0 equiv). The reaction mixture was stirred at 65 °C in oil bath for 24 h. Upon completion, the mixture was then concentrated under vacuum and the residue was purified by chromatography on silica gel (PE/EA) to afford **4** as a yellow oil in 92% yield.

(b) Typical synthesis of 1,3-diketone 5

Compound **3aa** (0.3 mmol) was added into a 5 mL reaction tube. THF (1.0 mL) and concentrated hydrochloric acid (1.0 mL) were then added at 0 °C sequentially by syringe. The resulting mixture was stirred at 50 °C for 24 hours. Upon completion as monitored by TLC, the solvent was removed under vacuum. The residue was purified directly by column chromatography, eluting with petroleum ether/ethyl acetate to afford **5** in 95% yield as colorless oil.

(c) Typical synthesis of 2,3,5-triphenyl-1H-pyrrole 6

Under anhydrous conditions, titanium tetrachloride (2 mmol) was added dropwise using a syringe to a stirred suspension of samarium powder (2 mmol) in THF (15 mL) at at room room temperature under a nitrogen atmosphere. After the completion of addition, the mixture was refluxed for 2 h. The suspension of the low-valent titanium reagent formed was cooled to room temperature and a solution of substrates **3aa** (1 mmol) in anhydrous THF(2 mL) was added via a syringe. The mixture was refluxed for 1 h, and the deep dark color of the solution changed into a brownish red gradually. After completion monitored by TLC, the reaction was quenched with dilute HCl and extracted with ether (3 x 20 mL). The combined extract was washed with saturated brine (15 mL) and dried over anhydrous Na₂SO₄. After evaporating the solvent under reduced pressure, the resulting crude product was purified silica gel column chromatography to afford 6 in 80% yield.

(d) Typical synthesis of 2,4,6-triphenyl-4H-1,3-oxazine 7

To a solution of BINAPO (10 mol%) and **3aa** (0.25 mmol) in dry dichloromethane (1 mL) was added dropwise trichlorosilane (ca. 3 M CH₂Cl₂ solution, 3 equiv.) at 0 °C. The reaction was stirred at rt for 24 h and quenched with water (3 mL) and dichloromethane (5 mL). The mixture was stirred for 1 h, filtered through a Celite pad with dichloromethane and extracted with dichloromethane for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, evaporated, and purified by silica gel column chromatography to afford **7** in 70% yield.

5. Characterization of Synthesized Compounds 3aa-3sa

(Z)-N-(3-oxo-1,3-diphenylprop-1-en-1-yl)benzamide (3aa): Yellow oil, yield 88%, ¹H NMR (400 MHz, CDCl₃) δ 13.40 (s, 1H), 8.16 – 8.14 (m, 2H), 8.04 – 8.02 (m, 2H), 7.64 – 7.45 (m, 11H), 6.48 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 192.11, 165.34, 157.17, 138.64, 136.46, 133.44, 132.89, 132.86, 130.49, 129.90, 128.98, 128.76, 128.22, 127.96, 127.47, 105.45.HRMS (ESI): m/z calcd for C₂₂H₁₈NO₂[M+H]⁺: 328.1338, found: 328.1336.

(Z)-N-(1-(4-fluorophenyl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide (3ab): Yellow solid, m.p. 125.6 – 126.1°C, yield 83%, ¹H NMR (400 MHz, CDCl₃) δ 13.36 (s, 1H), 8.12-8.10 (m, 2H), 8.01 – 7.99 (m, 2H), 7.64 – 7.48 (m, 8H), 7.17 – 7.11 (m, 2H), 6.42 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 192.18, 165.54, 163.81 (d, *J* = 249 Hz), 156.08, 138.62, 133.36, 133.06, 132.50, 132.47, 129.55 (d, *J* = 8 Hz), 129.10, 128.88, 128.27, 128.03, 115.48 (d, *J* = 22 Hz), 105.50.HRMS (ESI): m/z calcd for C₂₂H₁₆FNO₂[M+H]⁺: 346.1243, found: 346.1245.

(Z)-N-(1-(4-chlorophenyl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide (3ac): Yellow solid, m.p. 144.8 – 145.2°C, yield 84%, ¹H NMR (400 MHz, DMSO-d₆) δ 12.77 (s, 1H), 8.13 (d, *J* = 7.2, Hz, 2H), 8.01 (d, *J* = 7.2 Hz, 2H), 7.73 – 7.61 (m, 6H), 7.57 – 7.51(m, 4H), 6.77 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 191.30, 164.76, 153.78, 137.87, 134.78, 134.57, 133.28, 133.12, 133.06, 129.62, 129.15, 128.84, 128.24, 128.13, 127.79, 106.65. HRMS (ESI): m/z calcd for C₂₂H₁₇CINO₂[M+H]⁺: 362.0948, found: 362.0947.

(Z)-N-(1-(4-bromophenyl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide (3ad): Yellow solid, m.p. 181.4 – 181.8°C, yield 87%, ¹H NMR (400 MHz, DMSO-d₆) δ 12.79 (s, 1H), 8.12 (d, J = 7.6 Hz, 2H), 8.01 (d, J = 7.2 Hz, 2H), 7.72 – 7.52 (m, 10H), 6.75 (s, 1H).¹³C NMR (100 MHz, DMSO-d₆) δ 191.31, 164.74, 153.92, 137.86, 135.15, 133.29, 133.09, 131.05, 129.84, 129.16, 128.85, 128.25, 127.80, 123.37, 106.56.HRMS (ESI): m/z calcd for C₂₂H₁₇BrNO₂[M+H]⁺: 406.0443, found: 406.0445.

(Z)-N-(1-(4-nitrophenyl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide (3ae): Yellow solid, m.p. 195.6 – 196.1°C, yield 82%,¹H NMR (400 MHz, CDCl₃) δ 13.37 (s, 1H), 8.31 (d, *J* = 8.8 Hz, 2H), 8.08 (d, *J* = 7.6 Hz, 2H), 8.01 (d, *J* = 7.6 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 2H), 7.64 – 7.59 (m, 2H), 7.57 – 7.46 (m, 4H), 6.45 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.22, 165.46, 154.29, 148.41, **5/64**

143.16, 138.25, 133.47, 133.34, 132.79, 129.20, 129.00, 128.62, 128.44, 128.27, 123.62, 106.35.HRMS (ESI): m/z calcd for $C_{22}H_{16}N_2O_4[M+H]^+$:373.1188, found: 372.1190.

(Z)-N-(3-oxo-3-phenyl-1-(p-tolyl)prop-1-en-1-yl)benzamide(3af): White solid, m.p.96.4 – 96.7, yield 89%, ¹H NMR (400 MHz, DMSO-d₆)) δ 12.82 (s, 1H), 8.11 (d, J = 7.2 Hz, 2H), 8.02 (d, J = 7.2 Hz, 2H), 7.71–7.68 (m, 1H), 7.63 (q, J = 6.8 Hz, 3H), 7.55–7.52 (m, 4H), 7.25 (d, J = 8.0 Hz, 2H), 6.70 (s, 1H), 2.37 (s, 3H).¹³C NMR (100 MHz, DMSO-d₆) δ 191.13, 164.66, 155.46, 139.78, 138.03, 133.29, 132.97, 132.91, 132.85, 129.02, 128.71, 128.60, 128.02, 127.69, 127.65, 105.69, 20.91.HRMS (ESI): m/z calcd for C₂₃H₂₀NO₂[M+H]⁺: 342.1494, found: 342.1491.

(Z)-N-(1-([1,1'-biphenyl]-4-yl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide(3ag): White solid, m.p. 188.5 – 188.7, yield 89%, ¹H NMR (400 MHz, DMSO-d₆) δ 12.83 (s, 1H), 8.15 (d, *J* = 7.2 Hz, 2H), 8.04 (d, *J* = 7.2Hz, 2H), 7.75–7.40 (m, 15H), 6.82 (s, 1H).¹³C NMR (100 MHz, DMSO-d₆) δ 191.24, 164.82, 154.83, 141.64, 139.40, 138.02, 134.93, 133.23, 133.18, 129.15, 129.10, 128.84, 128.44, 128.20, 127.95, 127.81 126.79, 126.34, 106.36.HRMS (ESI): m/z calcd for C₂₈H₂₂NO₂[M+H]⁺: 404.1651, found: 404.1654.

(Z)-4-(1-benzamido-3-oxo-3-phenylprop-1-en-1-yl)phenyl acetate(3ah): White solid, m.p. 92.8 – 93.4, yield 87%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.81 (s, 1H), 8.14 (d, *J* = 7.6 Hz, 2H), 8.03 (d, *J* = 7.2 Hz, 2H), 7.71–7.69 (m, 3H), 7.66–7.61 (m, 3H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.77 (s, 1H), 2.31 (s, 3H).¹³C NMR(100 MHz, DMSO-d₆) δ 191.23, 169.10, 164.75, 154.29, 151.77, 137.95, 133.30, 133.21,133.19,133.00,129.12, 129.08, 128.81, 128.21, 127.80, 121.56, 106.47, 20.93.HRMS (ESI): m/z calcd for C₂₄H₂₀NO₄[M+H]⁺: 386.1392, found: 386.1391.

(Z)-N-(1-(3-chlorophenyl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide(3ai): Yellow solid, m.p. 104.2 – 104.5°C, yield 82%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.80 (s, 1H), 8.14 (d, *J* = 7.6 Hz, 2H), 8.01 (d, *J* = 7.2 Hz, 2H), 7.73–7.67 (m, 2H), 7.64–7.60 (m, 3H), 7.58–7.53 (m, 4H), 7.48–7.44 (m, 1H), 6.77 (s, 1H).¹³C NMR (100 MHz, DMSO-d₆) δ 191.37, 164.66, 153.33, 138.08, 137.78, 133.28, 133.06, 133.03, 132.84, 129.88, 129.54, 129.11, 128.79, 128.28, 127.78, 127.30, 126.47, 106.91.HRMS (ESI): m/z calcd for C₂₂H₁₇ClNO₂[M+H]⁺: 362.0948, found: 362.0945.

(Z)-N-(1-(3-bromophenyl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide(3aj): Yellow solid, m.p.
96.3 – 96.5°C, yield 82%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.82 (s, 1H), 8.14 (d, J = 7.6 Hz, 2H), 8.01 (d, J = 7.6Hz, 2H), 7.84 (s, 1H), 7.69 – 7.60(m, 6H), 7.53 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7/64

7.6 Hz, 1H), 6.74 (s, 1H).¹³C NMR(100 MHz, DMSO-d₆) δ191.30, 164.57, 153.25, 138.25, 137.75, 133.19, 133.01, 132.94, 132.36,130.04, 129.98, 129.03, 128.71, 128.21, 127.72, 126.78, 121.28, 106.80.HRMS (ESI): m/z calcd for C₂₂H₁₇BrNO₂[M+H]⁺: 406.0443, found: 406.0446.

(Z)-N-(3-oxo-3-phenyl-1-(m-tolyl)prop-1-en-1-yl)benzamide(3ak): Yellow solid, m.p.113.7 – 114.1 °C, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 13.36 (s, 1H), 8.14 – 8.12 (m, 2H), 8.03 – 8.01 (m, 2H), 7.64–7.48 (m, 6H), 7.37–7.29 (m, 4H), 6.46 (s, 1H), 2.44 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 192.18, 165.41, 157.50, 138.76, 138.02, 136.52, 133.55, 132.89, 130.80, 129.02, 128.80, 128.29, 128.16, 128.00, 127.93, 124.72, 105.41, 21.63.HRMS (ESI): m/z calcd for C₂₃H₂₀NO₂[M+H]⁺: 342.1494, found: 342.1496.

(Z)-N-(1-(2-chlorophenyl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide(3al): Yellow solid, m.p. 142.3 – 142.6°C, yield 81%. ¹H NMR (400 MHz, DMSO-d₆) δ 13.54 (s, 1H), 8.11 (d, *J* = 7.6 Hz, 2H), 7.97 (d, *J* = 7.2 Hz, 2H), 7.71 (t, *J* = 7.2 Hz, 1H), 7.67–7.62 (m, 3H), 7.59–7.44 (m, 6H), 6.53 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 191.90, 163.59, 153.02, 137.58, 135.42, 133.39, 133.38, 133.17, 132.67, 131.25, 130.43, 129.83, 129.30, 128.92, 128.89, 128.19, 127.57, 127.13, 104.71.HRMS (ESI): m/z calcd for C₂₂H₁₇CINO₂[M+H]⁺: 362.0948, found: 362.0949.

(Z)-N-(1-(2-bromophenyl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide(3am): Yellow solid, m.p. 106.3 – 106.5°C, yield 82%. ¹H NMR (400 MHz, DMSO-d₆) δ 13.55 (s, 1H), 8.12 (d, *J* = 7.2 Hz, 8/64

2H), 7.97 (d,J = 7.2Hz, 2H), 7.74 – 7.63 (m, 5H), 7.56 – 7.45 (m, 4H), 7.40 (td, J = 7.6, 1.6 Hz, 1H), 6.52 (s, 1H).¹³C NMR (100 MHz, DMSO-d₆) δ 191.93, 163.45, 154.31, 137.55, 137.39, 133.41, 133.18, 132.69, 132.04, 130.46, 129.84, 129.32, 128.90, 128.19, 127.56, 120.99, 104.48HRMS (ESI): m/z calcd for C₂₂H₁₇BrNO₂[M+H]⁺: 406.0443, found: 406.0447.

(Z)-N-(3-oxo-3-phenyl-1-(o-tolyl)prop-1-en-1-yl)benzamide(3an):White solid, m.p. 89.2 – 89.3°C, yield 84%. ¹H NMR (400 MHz, DMSO-d₆) δ 13.60 (s, 1H), 8.09 (d, J = 7.2 Hz, 2H), 8.00 (d, J = 6.8 Hz, 2H), 7.70 (t, J = 7.2 Hz, 1H), 7.65–7.61 (m, 3H), 7.52 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.29–7.24 (m, 2H), 6.43 (s, 1H), 2.27 (s, 3H).¹³C NMR (100 MHz, DMSO-d₆) δ 191.62, 163.72, 156.18, 137.80, 136.34, 134.96, 133.16, 133.08, 132.92, 129.61, 129.23, 128.83, 128.70, 128.09, 127.72, 127.61, 125.58, 104.42, 19.30. HRMS (ESI): m/z calcd for C₂₃H₂₀NO₂[M+H]⁺: 342.1494, found: 342.1493.

(Z)-N-(1-(3-bromo-4-methoxyphenyl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide(3ao): White solid, m.p.135.8 – 136.2°C, yield 88%. ¹H NMR (400 MHz, CDCl₃) δ 13.31 (s, 1H), 8.11(d, J = 7.2 Hz, 2H), 8.00(d, J = 7.2 Hz, 2H), 7.76 (d, J = 1.2 Hz, 1H), 7.62– 7.47(m, 7H), 6.95 (d, J = 8.8 Hz, 1H), 6.42 (s, 1H), 3.95 (s, 3H).¹³C NMR(100 MHz, CDCl₃) δ 192.11, 165.60, 157.34, 155.38, 138.70, 133.47, 133.01, 132.34, 129.93, 129.08, 128.86, 128.41, 128.29, 128.04, 111.59, 111.31, 105.30, 56.48.HRMS (ESI): m/z calcd for C₂₃H₁₉BrNO₃[M+H]⁺: 436.0548, found: 436.0541.

(Z)-N-(1-(naphthalen-2-yl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide(3ap): White solid, m.p. 167.6 – 167.9 °C, yield 89%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.96 (s, 1H), 8.29 (s, 1H), 8.17 (d, *J* = 7.6 Hz, 2H), 8.04 (d, *J* = 7.2 Hz, 3H),7.99 – 7.93 (m, 2H), 7.74 – 7.55 (m, 9H), 6.89 (s, 1H).¹³C NMR (100 MHz, DMSO-d₆) δ 191.30,164.77, 155.31, 138.03, 133.67, 133.58, 133.14, 133.22, 133.06, 132.52, 129.18,128.86, 128.61, 128.23, 127.83, 127.57,127.24, 127.05, 126.55, 125.49, 106.53.HRMS (ESI): m/z calcd for C₂₆H₂₀NO₂[M+H]⁺: 378.1494, found: 378.1497.

(Z)-N-(1-(4-methylthiazol-5-yl)-3-oxo-3-phenylprop-1-en-1-yl)benzamide(3aq): Yellow solid, m.p. 121.3 – 121.8 °C, yield 86%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.87 (s, 1H), 9.14 (s, 1H), 8.08 (d, *J* = 7.6 Hz, 2H), 8.00 (d, *J* = 7.2 Hz, 2H), 7.72 – 7.67(m, 1H), 7.65–7.60 (m, 3H), 7.54 (t, *J* = 7.6 Hz, 2H), 6.76 (s, 1H), 2.49 (s, 3H).¹³C NMR(100 MHz, DMSO-d₆) δ 190.84, 164.42, 153.82, 152.02, 145.61, 137.65, 133.35,133.11, 132.93,129.18,128.89, 128.19, 127.73, 126.58, 107.85, 16.24.HRMS (ESI): m/z calcd for C₂₀H₁₇N₂O₂S[M+H]⁺: 349.1011, found: 349.1015.

(Z)-4-fluoro-N-(3-(4-fluorophenyl)-3-oxo-1-phenylprop-1-en-1-yl)benzamide(3ba):White solid, m.p.144.2 – 144.7°C, yield 77%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.68 (s, 1H), 8.20 (dd, *J* = 8.8, 5.6 Hz, 2H), 8.07 (dd, *J* = 8.8, 5.6 Hz, 2H), 7.63 (d, *J* = 6.8 Hz, 2H), 7.45 – 7.42(m, 5H),

7.34 (t, J = 8.8 Hz, 2H), 6.73 (s, 1H).¹³C NMR (100 MHz, DMSO-d₆) δ 189.74, 165.05 (d, J = 250 Hz), 164.85 (d, J = 249 Hz), 163.68, 155.10, 135.81, 134.59 (d, J = 3 Hz), 131.20 (d, J = 10 Hz), 130.65 (d, J = 10 Hz), 129.97, 129.84 (d, J = 3 Hz),128.09, 127.73, 116.13 (d, J = 22 Hz),115.79 (d, J = 21Hz),106.41.HRMS (ESI): m/z calcd for C₂₂H₁₆F₂NO₂[M+H]⁺: 364.1149, found: 364.1147.

(Z)-4-chloro-N-(3-(4-chlorophenyl)-3-oxo-1-phenylprop-1-en-1-yl)benzamide(3ca): Yellowsoli d, m.p.119.1 – 119.6°C, yield 74%.¹H NMR (400 MHz, CDCl₃) δ 13.36 (s, 1H), 8.04 (d, *J* = 8.4 Hz, 2H), 7.94 (d, *J* = 8.8 Hz, 2H), 7.54 – 7.44 (m, 9H), 6.39 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 190.83, 164.32, 157.68, 139.49, 139.44, 136.90, 136.14, 131.85, 130.19, 129.67, 129.44, 129.35, 129.15, 128.35, 127.50, 105.13.HRMS (ESI): m/z calcd for C₂₂H₁₆Cl₂NO₂[M+H]⁺: 396.0558, found: 396.0555.

(Z)-4-bromo-N-(3-(4-bromophenyl)-3-oxo-1-phenylprop-1-en-1-yl)benzamide(3da): Yellow solid, m.p.128.3 – 128.7°C, yield 74%.¹H NMR (400 MHz, CDCl₃) δ 13.35 (s, 1H), 7.96 (d, J = 4.8 Hz, 2H), 7.86 (d, J = 4.8 Hz, 2H), 7.68 (d, J = 4.8 Hz, 2H), 7.63 (d, J = 5.2 Hz, 2H), 7.53 – 7.45 (m, 5H), 6.39 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 191.06, 164.51, 157.76, 137.37, 136.15, 132.39, 132.34, 132.18, 130.24, 129.82, 129.58, 128.39, 128.24, 128.11, 127.53, 105.14.HRMS (ESI): m/z calcd for C₂₂H₁₆Br₂NO₂[M+H]⁺: 483.9548, found: 483.9551.

(**Z**)-4-methyl-N-(3-oxo-1-phenyl-3-(p-tolyl)prop-1-en-1-yl)benzamide(3ea): Yellow oil, yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 13.38 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 2H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.57 – 7.54 (m, 2H), 7.48 – 7.43(m, 3H), 7.32 (dd, *J* = 16.8, 8.0 Hz, 4H), 6.43 (s, 1H), 2.45 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.77, 165.34, 156.98, 143.73, 143.54, 136.75, 136.18, 130.79, 129.78, 129.67, 129.49, 128.32, 128.21, 128.12, 127.48, 105.31, 21.75, 21.72.

HRMS (ESI): m/z calcd for $C_{24}H_{22}NO_2[M+H]^+$: 356.1651, found: 356.1655.

(Z)-4-methoxy-N-(3-(4-methoxyphenyl)-3-oxo-1-phenylprop-1-en-1-yl)benzamide(3fa): Light yellow oil, yield 69%. ¹H NMR (400 MHz, CDCl₃) δ 13.38 (s, 1H),8.07 (d, *J* = 8.8 Hz, 2H), 8.00 (d, *J* = 7.2 Hz, 2H), 7.54 – 7.52 (m, 2H), 7.46 – 7.43(m, 3H), 6.99 (dd, *J* = 17.0, 9.0 Hz, 4H), 6.38 (s, 1H), 3.89 (s, 3H), 3.88 (s, 3H).¹³C NMR(100 MHz, CDCl₃) δ 190.78, 164.93, 163.53, 163.35, 156.84, 136.96, 131.64, 130.36, 130.30, 129.72, 128.23, 127.49, 126.02, 114.24, 114.04, 105.02, 55.64.HRMS (ESI): m/z calcd for C₂₄H₂₂NO₄[M+H]⁺: 388.1549, found: 388.1551.

(**Z**)-N-(3-([1,1'-biphenyl]-4-yl)-3-oxo-1-phenylprop-1-en-1-yl)-[1,1'-biphenyl]-4-carboxamide (3ga):White solid, m.p.148.4 – 148.8°C, yield 73%.¹H NMR (400 MHz, CDCl₃) δ 13.50 (s, 1H), 8.21 (d, *J* = 8.4 Hz, 2H), 8.11 (d, *J* = 8.4 Hz, 2H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 2H),7.68 – 7.65 (m, 4H), 7.61 – 758(m, 2H), 7.52 – 7.46 (m, 7H), 7.44 – 7.40 (m, 2H), 6.52 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 191.67, 183.53, 165.17, 157.31, 145.68, 145.66, 140.01, 139.97, 137.47, 136.62, 132.23, 129.99, 129.11, 128.88, 128.68, 128.38, 128.33, 127.70, 127.58, 127.48, 12/64 127.43, 127.41, 105.49.HRMS (ESI): m/z calcd for $C_{34}H_{26}NO_2[M+H]^+$: 480.1964, found: 480.1966.

(Z)-3-Fluoro-N-(3-(3-fluorophenyl)-3-oxo-1-phenylprop-1-en-1-yl)benzamide(3ha): White solid, m.p. 90.3 – 90.6°C, yield 74%.¹H NMR (400 MHz, DMSO-d₆) δ 12.61 (s, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.91-7.85 (m, 2H), 7.75 (d, J = 9.6 Hz, 1H), 7.68 – 7.64 (m, 3H), 7.58 – 7.51 (m, 2H), 7.49-7.43 (m, 4H), 6.75 (s, 1H).¹³C NMR (100 MHz, DMSO) δ 189.69, 162.30 (d, J = 244Hz),162.21 (d, J = 244Hz),155.08, 140.16 (d, J = 7 Hz), 135.63 (d, J = 7 Hz), 135.56, 131.27 (d, J = 8 Hz), 130.83 (d, J = 8 Hz),130.06, 128.07, 127.81,124.33, 124.31, 123.79, 123.76, 119.99 (d, J = 9 Hz), 119.78 (d, J = 9 Hz),119.88 (dd, J = 21, 9 Hz), 114.68 (dd, J = 23, 3 Hz), 106.78.HRMS (ESI): m/z calcd for C₂₂H₁₆F₂NO₂[M+H]⁺: 364.1149, found: 364.1152.

(**Z**)-3-Chloro-N-(3-(3-chlorophenyl)-3-oxo-1-phenylprop-1-en-1-yl)benzamide(3ia):Yellow oil, yield 72%.¹H NMR (400 MHz, DMSO-d₆) δ 12.36 (s, 1H), 8.13 (s, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.99 (s, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.72 – 7.63 (m, 4H), 7.57 (t, *J* = 8.0 Hz, 1H), 7.52–7.44 (m, 3H), 6.82 (s, 1H).¹³C NMR (100 MHz, DMSO-d₆) δ 189.57, 163.55, 154.32,139.82, 135.57, 135.36, 133.73, 132.71, 132.57, 130.96, 130.67, 130.10, 128.28, 128.10, 127.86,127.77, 127.59, 126.82, 126.37, 107.51.HRMS (ESI): m/z calcd for C₂₂H₁₆Cl₂NO₂[M+H]⁺: 396.0558, found: 396.0555.

(**Z**)-3-Bromo-N-(3-(3-bromophenyl)-3-oxo-1-phenylprop-1-en-1-yl)benzamide(3ja):Yellow oil, yield 73%. ¹H NMR (400 MHz, CDCl₃) δ 13.27 (s, 1H), 8.21 (t, *J* = 1.6 Hz, 1H), 8.13 (t, *J* = 1.6 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.75–7.69 (m, 2H), 7.54–7.35 (m, 7H), 6.39 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 190.63, 164.05, 157.83, 140.39, 135.98, 135.86, 135.39, 131.73, 131.14, 131.05, 130.59, 130.42, 130.32, 128.42, 127.53, 126.57, 126.49, 123.36, 123.22, 105.31.HRMS (ESI): m/z calcd for C₂₂H₁₆Br₂NO₂[M+H]⁺:483.9548, found: 483.9550.

(Z)-N-(3-oxo-1-phenyl-3-(3-(trifluoromethyl)phenyl)prop-1-en-1-yl)-3-(trifluoromethyl)benz amide(3ka): Yellow oil, yield 74%. ¹H NMR (400 MHz, CDCl₃) δ 13.43 (s, 1H), 8.37 (s, 1H), 8.31 (d, *J* = 7.6 Hz, 1H), 8.27 (s, 1H), 8.19 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H),7.72 (t, *J* = 7.6 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.57 – 7.55 (m, 2H), 7.53 – 7.46 (m, 3H),6.48 (s, 1H).¹³C NMR(100 MHz, CDCl₃) δ 190.70, 164.08, 158.21, 139.12, 135.86, 134.28,131.99, 131.68, 131.19, 131.05, 130.99, 130.46, 129.78, 129.59, 129.54, 129.47, 128.48, 127.57, 125.75, 124.97,122.42,105.21. HRMS (ESI): m/z calcd forC₂₄H₁₆F₆NO₂[M+H]⁺: 464.1085, found: 464.1089.

(Z)-3-Methyl-N-(3-oxo-1-phenyl-3-(m-tolyl)prop-1-en-1-yl)benzamide(3la):Yellow oil, yield 68%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.84 (s, 1H), 7.94 (s, 1H), 7.90 (d, *J* = 7.2 Hz, 1H), 7.82 (s, 2H), 7.62 (d, *J* = 6.8 Hz, 2H), 7.50 (d, *J* = 5.2 Hz, 2H), 7.51–7.39 (m, 5H), 6.69 (s, 1H), 2.41

(s, 3H), 2.38 (s, 3H).¹³C NMR (100 MHz, DMSO-d₆) δ 191.33, 164.73, 155.26, 138.49, 138.18, 138.00, 135.94, 133.70,133.51, 133.27, 129.79, 128.93, 128.62, 128.54, 128.26, 128.02, 127.64, 125.31, 124.81, 106.18, 20.93, 20.84.HRMS (ESI): m/z calcd for C₂₄H₂₂NO₂[M+H]⁺: 356.1651, found: 356.1655.

(Z)-2-Chloro-N-(3-(2-chlorophenyl)-3-oxo-1-phenylprop-1-en-1-yl)benzamide(**3ma**): Yellow oil, yield 71%. ¹H NMR (400 MHz, CDCl₃) δ 12.27 (s, 1H), 7.73 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.59 (dd, *J* = 7.6, 1.6 Hz, 2H), 7.56 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.50 – 7.41 (m, 6H), 7.40 – 7.32 (m, 3H), 6.25 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.35, 165.51, 155.15, 139.69, 135.66, 134.60, 132.34, 132.00, 131.38, 130.91, 130.70, 130.30, 130.26, 129.82, 128.41, 127.67, 127.31, 127.13, 110.15.HRMS (ESI): m/z calcd for C₂₂H₁₆Cl₂NO₂[M+H]⁺: 396.0558, found: 396.0562.

(Z)-2-Methyl-N-(3-oxo-1-phenyl-3-(o-tolyl)prop-1-en-1-yl)benzamide(3na): Yellow solid, m.p.
121.2 - 121.5°C, yield 68%. ¹H NMR (400 MHz, DMSO-d₆) δ 11.94 (s, 1H), 7.74 (t, J = 6.8 Hz, 2H), 7.66-7.64 (m, 2H), 7.48-7.44(m, 4H), 7.42-7.28 (m, 5H), 6.32 (s, 1H), 2.45 (s, 3H), 2.41 (s, 3H).¹³C NMR (100 MHz, DMSO-d₆) δ 195.19, 167.11, 152.85, 139.18, 137.01, 136.88, 135.90, 134.62, 131.42, 131.36, 131.07, 129.88, 128.58, 128.16, 127.61, 127.54, 126.13, 125.85, 110.60, 20.39, 19.83.HRMS (ESI): m/z calcd for C₂₄H₂₂NO₂[M+H]⁺: 356.1651, found: 356.1653.

(Z)-3-chloro-N-(3-(3-chloro-4-fluorophenyl)-3-oxo-1-phenylprop-1-en-1-yl)-4-fluorobenzami de(3oa): White solid, m.p.153.8 – 154.1°C, yield 76%. ¹H NMR (400 MHz, CDCl₃) δ 13.29 (s, 1H), 8.15 (dd, J = 6.8, 2.0 Hz, 1H), 8.09 (dd, J = 6.8, 2.0 Hz, 1H), 8.02–7.98 (m, 1H), 7.93–7.89 (m, 1H), 7.52 – 7.44 (m, 5H), 7.32 (d, J = 8.5 Hz, 1H), 7. 29–7.24 (m, 1H), 6.37 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 189.47, 163.24, 161.13(d, J = 255 Hz), 161.09 (d, J = 249 Hz), 158.07, 135.86, 135.65 (d, J = 3 Hz), 131.53, 131.03, 130.68 (d, J = 2 Hz), 130.44, 128.46, 128.31 (d, J = 9 Hz), 127.52, 122.42 (d, J = 19 Hz), 122.19 (d, J = 18 Hz), 117.31 (d, J = 19 Hz), 117.18, 117.09 (d, J = 18 Hz), 104.92.HRMS (ESI): m/z calcd for C₂₂H₁₄Cl₂F₂NO₂[M+H]⁺: 432.0370, found:432.0371.

(Z)-N-(3-(3,4-dimethylphenyl)-3-oxo-1-phenylprop-1-en-1-yl)-3,4-dimethylbenzamide(3pa): Light yellow oil, yield 64%. ¹H NMR (400 MHz, CDCl₃) δ 13.31 (s, 1H), 7.86 (d, *J* = 6.4 Hz, 2H), 7.79 (s, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.55 – 7.53 (m, 2H), 7.47 – 7.42 (m, 3H), 7.28 (d, *J* = 8.4 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 6.42 (s, 1H), 2.36 – 2.34 (m, 12H).¹³C NMR (100 MHz, CDCl₃) δ 192.03, 165.64, 156.85, 142.49, 142.25, 137.37, 137.20, 136.95, 136.68, 131.20, 131.16, 130.21, 130.04, 129.71, 129.64, 129.20, 128.23, 127.51, 125.71, 105.44, 20.03, 19.99, 19.97, 19.93.HRMS (ESI): m/z calcd for C₂₆H₂₆NO₂[M+H]⁺: 384.1964, found: 384.1965.

(Z)-N-(3-(furan-2-yl)-3-oxo-1-phenylprop-1-en-1-yl)furan-2-carboxamide(3qa): White solid, m.p.137.1 – 137.4°C, yield 73%. ¹H NMR (400 MHz, DMSO-d₆) δ 12.72 (s, 1H), 8.06 (d, J = 12.0 Hz, 2H), 7.69 (d, J = 3.2 Hz, 1H), 7.55 (d, J = 7.2 Hz, 2H), 7.49– 7.41 (m, 3H), 7.33 (d, J = 3.2 Hz, 1H), 6.82 – 6.70 (m, 2H), 6.45 (s, 1H).¹³C NMR (100 MHz, DMSO-d₆) δ 178.90, 155.04, 154.22, 152.71, 148.32, 147.06, 146.75, 135.42, 129.85, 127.98, 127.64, 118.64, 117.00, 113.01, 105.65.HRMS (ESI): m/z calcd for C₁₈H₁₄NO₄[M+H]⁺: 308.0923, found: 308.0925.

(Z)-N-(3-oxo-1-phenyl-3-(thiophen-2-yl)prop-1-en-1-yl)thiophene-2-carboxamide(3ra): White solid, m.p.160.1 – 160.4°C, yield 74%. ¹H NMR (400 MHz, CDCl₃) δ 13.17 (s, 1H), 7.94 (dd, J = 3.6, 0.8 Hz, 1H), 7.78 (dd, J = 3.6, 0.8 Hz, 1H), 7.68 (dd, J = 4.8, 0.8 Hz, 1H), 7.61 (dd, J = 4.8, 0.8 Hz, 1H), 7.54 – 7.52 (m, 2H), 7.48 – 7.42 (m, 3H), 7.19 – 7.15(m, 2H), 6.26 (s, 1H). ¹³C NMR(100 MHz, CDCl₃) δ 184.47, 159.88, 156.63, 145.78, 139.12, 135.97, 134.06, 132.82, 131.23, 130.61, 130.05, 128.56, 128.32, 128.27, 127.61, 105.05.HRMS (ESI): m/z calcd for C₁₈H₁₄NO₂S₂[M+H]⁺: 340.0466, found: 340.0470.

(Z)-N-(3-(naphthalen-2-yl)-3-oxo-1-phenylprop-1-en-1-yl)-2-naphthamide (3sa):White solid, m.p.194.1 – 194.5 °C, yield 75%. ¹H NMR (400 MHz, DMSO-d₆) δ 13.01 (s, 1H), 8.90 (s, 1H), 8.72 (s, 1H), 8.18 – 8.12 (m, 4H), 8.06 – 8.02 (m, 3H), 7.99 (d, J = 8.0 Hz, 1H), 7.73 – 7.60 (m, 6H), 7.50 (d, J = 7.2 Hz, 3H), 6.97 (s, 1H).¹³C NMR (100 MHz, DMSO-d₆) δ 191.47, 165.35, 155.63, 136.52, 135.75, 135.46, 135.29, 132.78, 132.66, 131.13, 130.37, 130.16, 129.78, 129.31, 129.27, 129.14, 129.03, 128.88, 128.60, 128.22, 128.10, 127.68, 127.36, 124.27, 106.96.HRMS (ESI): m/z calcd for C₃₀H₂₂NO₂[M+H]⁺: 428.1651, found: 428.1654.

(Z)-2-Methyl-N-((1Z,4E)-4-methyl-3-oxo-1-phenylhepta-1,4-dien-1-yl)pent-2-enamide(3ta):L ight yellow oil, yield 63%.¹H NMR (400 MHz, CDCl₃) δ 12.47 (s, 1H), 7.42 – 7.37 (m, 5H), 6.70 (td, J = 7.2, 1.2 Hz, 1H), 6.62 (td, J = 7.2, 1.2 Hz, 1H), 6.06 (s, 1H), 2.30 – 2.21 (m, 4H), 1.93 (s, 3H), 1.88(s, 3H), 1.11 – 1.06 (m, 6H).¹³C NMR(100 MHz, CDCl₃) δ 194.26, 167.71, 155.20, 142.78, 141.69, 137.68, 137.35, 131.01, 129.35, 128.13, 127.20, 104.92, 22.50, 22.27, 13.23, 13.05, 12.46, 11.79.HRMS (ESI): m/z calcd for C₂₀H₂₆NO₂[M+H]⁺: 312.1964, found: 312.1967.

(Z)-N-(3-oxo-1-phenyloct-1-en-1-yl)hexanamide(3ua): Light yellow oil, yield 61%. ¹H NMR (400 MHz, CDCl₃) δ 11.86 (s, 1H), 7.41 – 7.35 (m, 5H), 5.59 (s, 1H), 2.48 (t, J = 7.6 Hz, 2H), 2.41(d, J = 7.6 Hz, 2H), 1.68 – 1.61 (m, 4H), 1.34 – 1.31 (m, 8H), 0.92 – 0.87 (m, 6H).¹³C NMR (100 MHz, CDCl₃) δ 203.05, 172.11, 154.28, 136.04, 129.63, 128.04, 127.31, 108.01, 43.92, 38.00, 31.51, 31.33, 24.75, 24.50, 22.55, 22.41, 13.99, 13.96.HRMS (ESI): m/z calcd for C₂₀H₃₀NO₂[M+H]⁺: 316.2277, found: 316.2276.

6. Characterization and NMR spectraof starting materials (20)

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 2.0 Hz, 1H), 7.48 (dd, *J* = 8.8, 2.0 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 1H), 5.34 (d, *J* = 2.4 Hz, 1H), 4.89 (d, *J* = 2.4 Hz, 1H), 3.91 (s, 3H).

7. Characterization and NMR spectra of product 4 for control experiments

¹H NMR (400 MHz, CDCl₃)δ 8.08 – 8.06 (m, 2H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 1.82 – 1.67 (m, 4H), 1.61 – 1.57 (m, 2H), 1.28 (s, 6H), 1.12 (s, 6H).

8. Characterization and NMR spectra of products for synthetic applications of 3aa

(Z)-3-Amino-1,3-diphenylprop-2-en-1-one (4): Yellow oil, yield 92%. ¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 8.01 (d, J = 8.5 Hz, 2H), 7.67 (d, J = 8.5 Hz, 2H), 7.57 – 7.45 (m, 6H), 6.21 (s, 1H), 5.53 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.33, 163.04, 140.53, 137.54, 131.14, 130.68, 129.00, 128.41, 127.21, 126.49, 91.99. HRMS (ESI): m/z calculated for C₁₅H₁₄NO [M + H]+: 224.1070, found: 224.1075.

1,3-Diphenylpropane-1,3-dione (**5**): colorless oil, yield 95%. ¹H NMR (400 MHz, CDCl₃) δ 8.03 -7.8.01 (m, 4H), 7.60 - 7.55 (m, 2H), 7.54 - 7.45 (m, 4H), 6.86 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.03, 135.81, 132.86, 128.98, 127.52, 93.54. HRMS m/z: calcd for C₁₅H₁₃O₂⁺ [M+H]⁺ 225.0910, found: 225.0906.

2,3,5-Triphenyl-1H-pyrrole (6): Light yellow solid, yield 80%, mp 135-138 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.44 (s, 1H), 7.57 (d, *J* = 7.6 Hz, 2H), 7.48 -7.21 (m, 13H), 6.74 (d, *J* = 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 136.42, 133.15, 132.38, 132.19, 129.76, 129.56, 129.00, 128.81, 128.36, 127.60, 127.09, 126.69, 126.05, 123.99, 123.86, 108.71. HRMS m/z: calcd for C₂₂H₁₇N⁺ [M+H]⁺ 295.1361, found: 295.1365.

2,4,6-Triphenyl-4H-1,3-oxazine (7): Colorless solid, yield 70%, mp 97 - 99 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 7.2 HZ, 2H), 7.78 (d, *J* = 7.6 HZ, 2H), 7.54 - 7.49 (m, 2H), 7.39 - 7.35 (m, 8H), 7.32-7.23 (m, 1H), 5.66 (d, *J* = 4.0 Hz, 1H), 5.46 (d, *J* = 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 152.31, 146.30, 144.52, 132.93, 132.50, 131.14, 129.00, 128.81, 128.61, 128.36, 127.60, 127.42, 127.27, 124.30, 100.86, 56.64. HRMS (ESI): m/z calcd. for C₂₂H₁₈NO (M+H⁺) 312.1383, found 312.1386.

23 / 64

9. Crystallography of 3na

Table 1 Datablock of 3na

Empirical formula	C ₂₄ H ₂₁ NO ₂		
Moiety formula	C ₂₄ H ₂₁ NO ₂		
Sum formula	$C_{24}H_{21}NO_2$		
Bond precision	C-C = 0.0030 A, Wavelength=1.54178		
Unit cell dimensions	a=9.8259(3) alpha=97.864(2), b=9.8256(2) beta=108.797(2),		
	c=10.8672(3) gamma=103.162(2)		
Temperature	153 K		
	Calculated	Reported	
Volume	941.65(5)	941.65(4)	
Space group	P -1	P -1	
Hall group	-P 1		
Mr	355.42	355.42	
Dx,g cm ⁻³	1.253	1.254	
Ζ	2	2	
Mu (mm-1)	0.627	0.627	
F000	376.0	376.0	
F000'	377.07		
h,k,lmax	11,11,12	11,11,12	
Nref	3332	3333	
Tmin,Tmax	0.882,0.939	0.378,1.000	
Tmin'	0.882		
Correction method= #	Tmin=0.378, Tmax=1.000,AbsCorr = MULTI-SCAN		
Reported T Limits:			
Data completeness	1.000		
Theta(max)	66.590		
R(reflections)	0.0597(2887)		
wR2(reflections)	0.2913(3333)		
S	1.383		
Npar	244		

10. ¹H and ¹³C NMR spectra of compounds 3aa-3ua

-13.357 -113.357 -8.119 -8.101 -8.101 -8.007 -8.007 -7.994 -7.994 -7.994 -7.994 -7.994 -7.994 -7.994 -7.994 -7.587

-13.365

$-13.364\\ -13.364\\ -13.364\\ -8.117\\ -8.009\\ -8.009\\ -8.009\\ -8.009\\ -7.610\\ -7.501\\ -7.501\\ -7.556\\ -7.566\\ -7.556\\ -$

-2.436

$$-13.599$$

 -13.599
 -13.599
 -13.598
 -13.698
 -7.7987
 -7.7166
 -7.7698
 -7.7698
 -7.7698
 -7.7698
 -7.7698
 -7.7608
 -7.7608
 -7.7608
 -7.7608
 -7.7616
 -7.7608
 -7.7524
 -7.7524
 -7.7524
 -7.7524
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.7526
 -7.72728
 -7.7261
 -7.7261
 -7.7261
 -7.2274
 -2.274

-13.363

-13.354 -13.354 -13.354 -7.869 -7.869 -7.682 -7.682 -7.632 -7.7352 -7.746 -7.746 -632 -7.746 -632 -7.746 -7.746 -7.746 -7.746 -7.746 -7.746 -7.746 -7.746 -7.746 -7.746 -7.746 -7.746 -7.746 -7.746 -7.746 -7.7523 -7.7523 -7.7523 -7.7523 -7.7523 -7.7523 -7.7523 -7.7523 -7.7523 -7.7523 -7.7523 -7.7523 -7.7523 -7.7523 -7.7553

-1.571

-13.376

-13 272 -13 272 -13 272 -13 272 -13 272 -13 272 -13 287 -17 288 -77 7887 -77 587 -7

-13 430 -13 430 -13 430 -13 430 -13 430 -13 430 -13 430 -13 430 -13 430 -13 430 -13 646 -17 646 -17 646 -17 646 -17 646 -17 646 -17 646 -17 646 -17 646 -17 651 -17 7519 -17 551 -17 5

-13.173 -17.945 -17.945 -17.945 -17.938 -17.938 -17.938 -17.691 -17.759 -17.611 -17.61

-11.861

11. References

- D. B. Ramachary, G.S. Reddy, S. Peraka, J. Gujral, Organo catalytic vinyl azide-carbonyl [3+2] cycloaddition: High-yielding synthesis of fully decorated N-vinyl-1,2,3-triazoles, ChemCatChem, 2017, 9, 263-267.
- 2. X. Zhu, S. Chiba, Construction of 1-pyrroline skeletons by lewis acid-mediated conjugate additionofvinylazides, Chemical Communications, 2016, 52, 2473-2476.
- 3. Y.F. Wang, M. Hu, H. Hayashi, B. Xing, S. Chiba, Linking of alcohols with vinyl azides, Organic Letters, 2016, 18, 992-995.