Supplementary Information

Nucleobase-Monofunctionalized Supramolecular Poly(Llactide): Controlled Synthesis, Competitive Crystallization, and Structural Organization

Xing Li^a, Lingling Ni^a, Chenxuan Sun^a, Wenqing Xu^a, Ying Zheng^{a,b}, Guorong Shan^{a,b}, Yongzhong Bao^{a,b}, Pengju Pan^{*,a,b}

^aState Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China ^bInstitute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, 324000, China

*Corresponding author. email: panpengju@zju.edu.cn

Experimental

Synthesis of nonfunctionalized PLLA. A typical synthetic procedure of nonfunctionalized PLLA with a designed M_n of 2.0 kDa is shown as follows. Benzyl alcohol (0.54 g, 0.005 mol) and L-lactide (9.44 g, 0.066 mol) were added into a flask and further dried under reduced pressure at 60 °C for 1 h, followed by the addition of Sn(Oct)₂ (0.04 g, 0.10 mmol). Polymerization was allowed to proceed at 120 °C for 12 h under an argon atmosphere. After reaction, the reaction mixture was precipitated into excess of cold ether (250 mL); the precipitate was dried at 50 °C *in vacuo* for 24 h to attain the benzyl-terminated PLLA, denoted as the nonfunctionalized PLLA. Nonfunctionalized PLLA was coded as PLLA_{xk}, with *x* representing the $M_{n,PLLA}$ (in kDa) of PLLA block measured by ¹H NMR. ¹H NMR of PLLA_{1.9k} (CDCl₃): δ = 7.34 (t, 5H, $-C_6H_5$), 5.18 (t, 28H, $-CH(CH_3)-O-$), 4.37 (t, 1H, $-CH(CH_3)-OH$), 1.75–1.25 (m, 87H, $-CH-CH_3-$).

Fig. S1 ¹H NMR spectra of nonfunctionalized PLLA_{1.9k}. The numerals in brackets denote the integrated area of each peak.

Fig. S2 ¹H NMR spectra of (a) PLLA $_{1.7k}$ -Thy; (b) PLLA $_{4.1k}$ -Thy; (c) PLLA $_{7.4k}$ -Thy. The numerals in brackets denote the integrated area of each peak.

Fig. S3 ¹³C NMR spectra of (a) PLLA_{0.8k}-Thy; (b) PLLA_{1.7k}-Thy; (c) PLLA_{4.1k}-Thy; (d) PLLA_{7.4k}-Thy.

Fig. S4 FTIR spectra of PLLA-Thy and nonfunctionalized PLLA.

Fig. S5 Temperature-dependent ¹H NMR spectra of PLLA_{1.7k}-Thy in DMSO- d_6 . Sample was equilibrated for 10 min at each temperature before measurement.

Fig. S6 Analysis of isothermal crystallization kinetics of PLLA_{1.7k}-Thy at different T_c 's. (a) Changes of relative crystallinity (X_t) of thymine unit and PLLA block; (b) Plot of $lg[-ln(1-X_t)]$ against lgt.

<i>T</i> _c (°C)	Characteristic reflection	q (nm ⁻¹)	d ^a (nm)
(0)	Thy	13.3	0.47
60		16.7	0.38
70	Thy	13.3	0.47
/0		16.7	0.38
90	Thy	13.3	0.47
80		16.7	0.38
00	Thy	13.3	0.47
90		16.7	0.38
	Thy	13.3	0.47
100		16.7	0.38
100	PLLA α _{110/200}	13.5	0.47
	PLLA α_{203}	15.3	0.41
	Thy	13.3	0.47
110		16.7	0.38
110	PLLA α _{110/200}	13.5	0.47
	PLLA α_{203}	15.3	0.41
	Thy	13.3	0.47
120		16.7	0.38
120	PLLA α _{110/200}	13.5	0.47
	PLLA α_{203}	15.3	0.41

Table S1. Scattering data of PLLA_{0.8k}-Thy after isothermal melt crystallization at different T_c 's.

^ad was evaluated from the q value of characteristic reflection by Bragg equation $(d = 2\pi/q)$.

T _c	Characteristic	q	da
(°C)	reflection	(nm ⁻¹)	(nm)
(0)	Thy	13.3	0.47
60		16.7	0.38
	Thy	masked	
70	PLLA α'110/200	13.3	0.47
	PLLA α'_{203}	15.2	0.41
	Thy	masked	
80	PLLA α'110/200	13.3	0.47
	PLLA α'_{203}	15.2	0.41
	Thy	masked	
90	PLLA α _{110/200}	13.5	0.47
	PLLA α_{203}	15.3	0.41
	Thy	masked	
100	PLLA $\alpha_{110/200}$	13.5	0.47
	PLLA α_{203}	15.3	0.41
	Thy	masked	
110	PLLA α _{110/200}	13.5	0.47
	PLLA α_{203}	15.3	0.41
	Thy	masked	
120	PLLA α _{110/200}	13.5	0.47
	PLLA α_{203}	15.3	0.41

Table S2. Scattering data of PLLA_{1.7k}-Thy after isothermal melt crystallization at different T_c 's.

^ad was evaluated from the q value of characteristic reflection by Bragg equation $(d = 2\pi/q)$.

<i>T</i> _c (°C)	Characteristic reflection	<i>q</i> (nm ⁻¹)	d ^a (nm)
(0	PLLA α' _{110/200}	13.3	0.47
60	PLLA α'_{203}	15.2	0.41
70	PLLA α' _{110/200}	13.3	0.47
	PLLA α'_{203}	15.2	0.41
	PLLA α' _{110/200}	13.3	0.47
80	PLLA α'203	15.2	0.41
90	PLLA $\alpha'_{110/200}$	13.3	0.47
	PLLA α'_{203}	15.2	0.41
100	PLLA a110/200	13.5	0.47
	PLLA α_{203}	15.3	0.41
110	PLLA α _{110/200}	13.5	0.47
	PLLA α_{203}	15.3	0.41
120	PLLA α _{110/200}	13.5	0.47
120	PLLA α_{203}	15.3	0.41

Table S3. Scattering data of PLLA_{4.1k}-Thy after isothermal melt crystallization at different T_c 's.

^ad was evaluated from the q value of characteristic reflection by Bragg equation $(d = 2\pi/q)$.