Electronic Supporting Information

Organic-inorganic nanohybrids based on AIE luminogensfunctional polymer and CdTe/ZnS QDs: morphologies, optical properties, and applications

Bingfeng Shi,^a Jianhua Lü, ^b Ying Liu,^a Yang Xiao^a and Changli Lü*^a

^aInstitute of Chemistry, Northeast Normal University, Changchun 130024, P. R.

China.

^bNarcotics Control School, Yunnan Police College, Kunming 650223, P. R. China.

* Corresponding author.

E-mail addresses: lucl055@nenu.edu.cn (C. Lü).

Fig. S1 GPC trace of T-PNI polymer.

Fig. S2 PL spectra of T-PNI in THF/water mixtures with different water contents (1 mg·mL⁻¹), $\lambda ex = 346$ nm.

Fig. S3 (a) TEM image of CdTe/ZnS QDs in water and their size-distribution histogram

(inset); (b) HRTEM image of CdTe/ZnS QDs.

Fig. S4 PL excitation spectra of T-PNI, red-emitting CdTe@ZnS QDs, and T-PNI@QDs systems in water at 25 °C.

Fig. S5 Optical transmittance (a) and the relative transmittance at 600 nm (b) of aqueous solutions of T-PNI at different temperatures

Fig. S6 (a) PL emission spectra of T-PNI at different temperatures. (b) Temperature dependence PL intensity of T-PNI.

Fig. S7 (a) PL emission spectra of T-PNI-SH at different temperatures. (b) Temperature dependence PL intensity of T-PNI-SH.

Fig. S8 PL intensity of T-PNI@QDs-5 at different pH values: (a) pH=1-7; (b) pH=7-14. (c) PL intensities of T-PNI@QDs-5 in different pH values. Blue bars: intensity at 473 nm; red bars: intensity at 613 nm.

Fig. S9 (a) Fluorescence decay curves of blue-light of T-PNI@QDs-5 and T-PNI@QDs-5+PA; (a) Fluorescence decay curves of red-light of T-PNI@QDs-5 and T-PNI@QDs-5+PA.

Scheme S1 Structures of different nitro-compounds used in the experiments.

Publication	Material used	$K_{SV}(M^{-1})$	Detection limit	Medium Used
Present work	T-PNI@QDs hybrid nanostructure	2.67×10^{4}	4.09 μM (blue light)	Water
		$2.89 imes 10^4$	3.79 μM (red light)	
Sensor Actuat. B Chem., 2017 , 248, 223	Antipyrine Schiff base AIE sensor	1.91 ×10 ⁵	19.1µM	Water
<i>J. Mol. Liq.,</i> 2018 , 262, 446	9-Anthraldehyde-based AIE sensor	$1.89 imes 10^5$	8.07 µM	Water
<i>Chem. Commun.</i> , 2016 , 52, 11284	TPE functionalized metal-organic framework	$2.8 imes 10^4$	_	Methanol
<i>RSC Adv.</i> , 2015 , 5, 76670	TPE-based oxacalixarenes	1.7×10^{4}	0.1 mM	Water/THF (95/5)
<i>Polym. Chem.</i> , 2018 , 9, 3158	CdTe QDs/block copolymer hybrid assemblies		1.27 μM	Water
Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019 , 222, 117168	Barbituric acid derivatives	4.1 × 10 ⁴	2.4 μM,	Water/THF (90/10)
Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020 , 233, 118221	Amine functionalized CdSe@SiO ₂ NPs	4.0 × 10 ⁴	0.05 μΜ,	Water
Mater. Chem. Phys., 2021 , 260 ,124130	Fe ₂ O ₃ -CdSe nanocomposite	4.3×10^{4}	2.2 μM	DMSO

Table S1 A comparative study of the Ksv, detection limit and medium used for PA detection of some recent representative reports.