Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting information

Multicolor mechanochromism of a multinetwork elastomer that can distinguish between low and high stress

Taisheng Wang,^{a,b} Haoxiang Wang,^a Lei Shen,^a Na Zhang^{a,b*}

 ^a School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China.
^b Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 211167, P. R. China.
Correspondence to: Na Zhang (Email: zhangna@njit.edu.cn)

Table of contents

1. Experimental section	.2
2. NMR spectra	.3
3. Mass spectra	.10
4. Compositions of TN	.11
5. IR spectra, DSC and TG profiles	11
6. Uniaxial tension of the elastomers	16
7. Fluorometric and ultraviolet analysis	17

1. Experimental section

RH and AMA were synthesized according to Scheme S1.

Scheme S1. Synthetic routes for the RH and AMA.

Scheme S2. Synthetic route for the reference compound 6

2. NMR spectra

Figure S2. ¹³C NMR spectrum of compound 1 in CDCl₃.

Figure S4. ¹³C NMR spectrum of compound 2 in CDCl₃.

Figure S6. ¹³C NMR spectrum of RH in CDCl₃.

Figure S8. ¹³C NMR spectrum of compound 4 in CDCl₃.

Figure S12. ¹³C NMR spectrum of AMA in CDCl₃.

Figure S14. ¹³C NMR spectrum of reference compound 6 in CDCl₃.

3. Mass spectra

Figure S15. Mass spectrum of compound 4.

Figure S16. Mass spectrum of compound 5.

Figure S17. Mass spectrum of compound AMA.

4. Compositions of TN

	^a λ _{prestretch}	^b Weight percentage			Crosslinker ratio		
Sample		Swt %	Dwt %	Twt %	[AMA] /%	[RH] /%	[EGDMA] /%
TN _{0.5AMA/0.4RH}	2.8	8	15	77	0.04	0.06	0.039
TN _{0.25AMA+0.25RH}	3.2	6	30	64	0.015	0.015	0.047

Table S1. Compositions of TN

^a The prestretch of chains of the first network was determined using the thicknesses: $\lambda_{\text{prestretch}} = h/h_{\text{SN}}$. h_{SN} and h represented the thickness of first network elastomer and the final triple network elastomer.

^b Swt, Dwt and Twt represented the weight percentage of the first, second and third network in the TN elastomer globally.

^c [AMA], [RH] and [EGDMA] represented the corresponding crosslinker ratio in polymer globally.

5. IR spectra, DSC and TG profiles

Figure S18. IR spectrum of pristine $TN_{0.5AMA/0.4RH}$ elastomer.

Figure S19. IR spectrum of $TN_{0.5AMA/0.4RH}$ elastomer after failure.

Figure S20. IR spectrum of pristine $TN_{0.25 AMA + 0.25 RH}$ elastomer.

Figure S21. IR spectrum of $TN_{0.25AMA+0.25RH}$ elastomer after failure.

Figure S22. DSC curve of compound AMA.

Figure S23. DSC curve of the $TN_{0.5AMA/0.4RH}$ elastomer.

Figure S24. DSC curve of the $TN_{0.25AMA+0.25RH}$ elastomer.

Figure S25. TG profile of the $TN_{0.5AMA/0.4RH}$ elastomer.

Figure S26. TG profile of the $TN_{0.25AMA+0.25RH}$ elastomer.

Figure S27. TG profile of the compound AMA.

6. Uniaxial tension of the elastomers

Figure S28. Stress-strain curves of the $TN_{0.5AMA/0.4RH}$ and $DN_{0.5AMA/0.4RH}$ elastomer.

Figure S29. Stress-strain curves of the $TN_{0.25AMA+0.25RH}$ and $DN_{0.25AMA+0.25RH}$ elastomer.

Table S2. Mechanical properties of elastomers; shown are the Young's modulus *E* (Young's modulus was calculated by the slope of the stress-strain curve at the initial stage of the elongation), true stress at break, and strain at break (λ_{break})

Sample	T (<u>°C</u>)	σ (MPa)	$\mathcal{E}_{ ext{break}}$	E (MPa)
TN _{0.5AMA/0.4RH}	25	14.6	4.17	1.01
DN _{0.5AMA/0.4RH}	25	1.4	3.12	0.22
TN _{0.25AMA+0.25RH}	25	6.6	11.1	0.92
DN _{0.25AMA+0.25RH}	25	4.1	4.6	0.25

7. Fluorometric and ultraviolet analysis

Figure S30. Fluorescent spectra of $TN_{0.5AMA/0.4RH}$ elastomer under low stress (<1.8 MPa).

Figure S31. Absorption spectra of $TN_{0.5AMA/0.4RH}$ elastomer under different stress.

Figure S32. Fluorescent spectra of stretched $TN_{0.5AMA/0.4RH}$ elastomer before and after heat treatment (5 minutes at 60 °C).

Figure S33. Fluorescent intensity of TN_{0.25AMA+0.25RH} at 438 and 550 nm as a function of mechanical stress.

Figure S34. Relative intensities of the emission at 550 and 438 nm of $TN_{0.5AMA/0.4RH}$ elastomer as a function of the repeated cycle of stretch (the stress is 6 MPa) and thermal treatment (5 minutes at 60 °C)

Figure S35. Fluorescent spectra of $TN_{0.5AMA/0.4RH}$ elastomer before and after immersed with methane sulfonic acid.

Figure S36. Fluorescent spectrum of the reference compound 6 in THF ($M=1\times10^{-5}$).

Figure S37. Absorption spectrum of the reference compound 6 in THF ($M=1\times10^{-5}$).

Figure S38. Images of the TN_{0.5AMA/0.4RH} elastomer under relatively low and high pressure.