Supplementary materials

Transparent cyclo-linear polyphenylsiloxane elastomer integrating

high refractive index, thermal stability and flexibility
 ${ }^{\text {a }}$, Kun Zheng ${ }^{\text {a }}$, Yongmei Ma ${ }^{\text {a, }}$ * *
${ }^{\text {a Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of }}$ Sciences, Beijing 100190, China.
${ }^{\mathrm{b}}$ School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
${ }^{\text {cBeijing National Laboratory for Molecular Sciences (BNLMS). }}$
*Corresponding authors.

E-mail addresses: xinyucao@iccas.ac.cn (X.Y Cao), maym@iccas.ac.cn (Y. Ma)

Table S1 Abbreviation of molecular name and corresponding molecular structure.

Fig. S1 The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of (a) H-Ph-Linear, (b) ViPh-Cyclo, (c) ViPh-Crosslinker, (d) Vi-ViPh-Crosslinker and (e) Ph-CLS.

Table S2 The molar ratio of different type of H in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of H -Ph-Linear, ViPh-Cyclo, ViPh-Crosslinker, Vi-ViPh-Crosslinker and Ph-CLS.

assignment sample	Hydrogen atom ratio ${ }^{\text {a }}$				
	- $\mathrm{C}_{6} \mathrm{H}_{5}$	- $\underline{\mathrm{CH}}=\mathrm{CH}_{2}$	-Si-H	- $\mathrm{CH}_{2}-\mathrm{CH}_{2}{ }^{-}$	- CH_{3}
	$7.1 \sim 7.7 \mathrm{ppm}$	$5.8 \sim 6.15 \mathrm{ppm}$	$4.7 \sim 4.85 \mathrm{ppm}$	$0.3 \sim 0.5 \mathrm{ppm}$	$-0.25 \sim 0.3 \mathrm{ppm}$
H-Ph-Linear	16.46	1	1.00	1	6.43
ViPh-Cyclo	3.52	1.00	1	1	1.02
ViPh-Crosslinker	3.68	1.00	1	1	0.95
Vi-ViPh- Crosslinker	2.99	1.00	/	1	1.21
Ph-CLS	274.2	1	1.00	32.29	97.32

${ }^{\alpha}$ The peaks of acetone (2.05 ppm), TMS (0.0 ppm) and water (2.84 ppm) in the spectra come from the commercial deuterated acetone solvent.

Table S3 The molar ratio of different groups in H-Ph-Linear, ViPh-Cyclo, ViPh-Crosslinker, Vi-ViPh-Crosslinker and $\mathrm{Ph}-\mathrm{CLS}$ according to ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra.

	Group ratio					
	methods	-Ph	-Si-H	$-\mathrm{CH}_{3}$	$-\mathrm{CH}=\mathrm{CH}_{2}$	$-\mathrm{CH}_{2}-\mathrm{CH}_{2}{ }^{-}$
H-Ph-Linear	${ }^{1} \mathrm{H}-\mathrm{NMR}$	3.29	1.00	2.14		
	${ }^{29} \mathrm{Si}$-NMR	2.97	1.00	2.00		
	Theoretical $(\mathrm{n}=3)$	3.00	1.00	2.00		
ViPh-Cyclo	${ }^{1} \mathrm{H}-\mathrm{NMR}$	2.11		1.02	1.00	
	${ }^{29} \mathrm{Si}$-NMR	2.02		1.00	1.00	
	Theoretical	2.00		1.00	1.00	
ViPh-Crosslinker	${ }^{1} \mathrm{H}-\mathrm{NMR}$	2.21		0.95	1.00	
	${ }^{29} \mathrm{Si}$-NMR	2.22		1.00	1.00	
	Theoretical $(\mathrm{n}=11)$	2.00		1.00	1.00	
Vi-ViPh-Crosslinker	${ }^{1} \mathrm{H}-\mathrm{NMR}$	1.79		1.21	1.00	
	${ }^{29} \mathrm{Si}$-NMR	1.62		1.25	1.00	
	Theoretical $(\mathrm{n}=5,75 \%$ end-capping)	1.54		1.23	1.00	
Ph-CLS	${ }^{1} \mathrm{H}-\mathrm{NMR}$	6.03	0.11	3.66		1.00
	${ }^{29} \mathrm{Si}$-NMR	5.92	0.14	3.31		1.00
	$\begin{aligned} & \text { Theoretical } \\ & (\mathrm{L}: \mathrm{C}=1.17: 1)^{\beta} \end{aligned}$	5.51	0.17	3.34		1.00

β "L" and "C" represents H-Ph-Linear ("L") and ViPh-cyclo ("C") respectively. The molar ratio of Si-H: Si-Vi in the starting materials is $1.2: 1$. The end groups of $\mathrm{Ph}-\mathrm{CLS}$ molecular chain should be $\mathrm{Si}-\mathrm{Hs}$.

Preparation and characterization of PDPh and H-Ph-Linear:

The synthesis of PDPh and H-Ph-Linear is shown in Scheme 1(a). It is worthy mention that in the synthesis of PDPh, DPSD was self-condensed without using any catalyst and solvent. The selfcondensation reaction of DPSD and the end-capping reaction of PDPh with HMM were well carried out which were monitored by FT-IR (Fig. 1(a)), ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (Fig. S1 (a), Table S2 and Table S3), ${ }^{29}$ Si-NMR spectra (Fig. 1(c)) and MALDI-TOF spectra (Fig. S2 (a) and S2 (b)).

In the FT-IR spectra (Fig. 1(a)) of PDPh, the strong absorptions around $1020-1140 \mathrm{~cm}^{-1}$ are assigned to the anti-symmetric stretching of $\mathrm{Si}-\mathrm{O}$ bond, and the peaks at $1593 \mathrm{~cm}^{-1}$ and $1429 \mathrm{~cm}^{-1}$ are assigned to the phenyl $\mathrm{C}=\mathrm{C}$ stretching and Si-phenyl stretching. After the end-capping reaction, the absorptions at $3315 \mathrm{~cm}^{-1}$ and $3626 \mathrm{~cm}^{-1}$ attributed to $\mathrm{Si}-\mathrm{O}-\mathrm{H}$ stretching in PDPh almost disappeared. Instead, new peaks at $2129 \mathrm{~cm}^{-1}$ and $1253 \mathrm{~cm}^{-1}$ assigned to $\mathrm{Si}-\mathrm{H}$ and $\mathrm{Si}-\mathrm{CH}_{3}$
respectively, which appear in the spectrum of H -Ph-Linear which demonstrated that the end-capping reaction has been nearly completed.

In the ${ }^{1} \mathbf{H}$-NMR spectra (Fig. S1 (a)), the peaks at $7.1 \sim 7.7 \mathrm{ppm}, 4.7 \sim 4.85 \mathrm{ppm}$ and $0.0 \sim 0.15 \mathrm{ppm}$ can be assigned to H atoms in $-\mathrm{Si}-\mathrm{C}_{6} \underline{\mathrm{H}}_{5}$, - Si- $\underline{\mathrm{H}}$ and $-\mathrm{Si}-\underline{C H}_{3}$ groups of $\mathrm{H}-\mathrm{Ph}$-Linear, respectively (The integral peak area ratio is shown in Table S2), which is consistent with the FT-IR results. There are no other peaks except for these peaks and the peaks of acetone (2.05 ppm), TMS (0.0 $\mathrm{ppm})$ and water (2.84 ppm) come from the commercial deuterated acetone solvent, indicating that the product is very pure.
 respectively, and the m represents the number of condensed oxygen attached to a Si atom ($\mathrm{Si}-\underline{\mathrm{O}}-\mathrm{Si}$). The peak of $\mathrm{D}^{0}(-33.2 \mathrm{ppm})$ which assigned to Si in monomer DPSD disappears in PDPh, while the

 below, the product is considered linear with no cyclic peaks $\left(\mathrm{D}_{3} \mathrm{Ph}\right.$ at $-33.7 \mathrm{ppm}, \mathrm{D}_{4} \mathrm{Ph}$ at $\left.-42.8 \mathrm{ppm}\right)$ can be observed in ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectrum. The degree of condensation (DOC) of the PDPh can be calculated by the peak area ratio of each kind of Si (presents in Table 1) according to eqn (S1-1). It shows that the DOC of PDPh is 66% and the average molecular weight calculated according to eqn (S1-2) is 583 corresponding to $\mathrm{n}=\sim 3$.

DOC (\%) of PDPh =

$$
\begin{equation*}
\frac{D^{1}+2 D^{2}}{2\left(D^{0}+D^{1}+D^{2}\right)} \times 100 \tag{S1-1}
\end{equation*}
$$

Molecular weight of $\mathrm{PDPh}=$

$$
\begin{equation*}
\frac{2\left(D^{1}+D^{2}\right) \cdot M_{D P S D}}{D^{1}} \tag{S1-2}
\end{equation*}
$$

In addition, $\mathrm{M}_{\mathrm{DPSD}}\left(-\mathrm{Ph}_{2} \mathrm{Si}-\mathrm{O}-\right)=198.3 \mathrm{~g} / \mathrm{mol}$.
After the end-capping reaction, the $\mathrm{D}^{1}(-39.6 \mathrm{ppm})$ peak representing $-\mathrm{Ph}_{2} \underline{\mathrm{Si}}-\mathrm{OH}$ in $\mathrm{H}-\mathrm{Ph}$-Linear, nearly disappeared, and the M^{H} peak (-4.1 ppm) assigned to Si of $-\mathrm{Me}_{2} \mathrm{Si}-\mathrm{H}$ present. The DOC and degree of end-capping of H-Ph-Linear can be calculated according to eqn (S2-1) and (S2-2) respectively (presents in Table 1), and the molar ratio of each type of Si can be obtained from the corresponding peak area ratio of ${ }^{29} \mathrm{Si}$ NMR. The calculated end-capping ratio of H -Ph-Linear is ca. 98.6% and the average molecular weight calculated according to eqn (S2-3) is 715 .

DOC (\%) of H-Ph-Linear $=$

$$
\begin{equation*}
\frac{D^{1}+2 D^{2}+M^{H}}{2\left(D^{0}+D^{1}+D^{2}\right)+M^{H}} \times 100 \tag{S2-1}
\end{equation*}
$$

End-capping ratio (\%) of $\mathrm{H}-\mathrm{Ph}-$ Linear $=$

$$
\begin{equation*}
\frac{M^{H}}{D^{1}+M^{H}} \times 100 \tag{S2-2}
\end{equation*}
$$

Molecular weight of $\mathrm{H}-\mathrm{Ph}-$ Linear $=$

$$
\begin{equation*}
\frac{2\left[M^{H} \cdot M_{H M M}+\left(D^{1}+D^{2}\right) \cdot M_{D P S D}\right]}{M^{H}+D^{1}} \tag{S2-3}
\end{equation*}
$$

$$
\mathrm{M}_{\mathrm{HMM}}\left(-\mathrm{O}_{1 / 2}-\mathrm{Me}_{2} \mathrm{Si}-\mathrm{H}\right)=67.1 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\mathrm{DPSD}}\left(-\mathrm{Ph}_{2} \mathrm{Si}-\mathrm{O}-\right)=198.3 \mathrm{~g} / \mathrm{mol} .
$$

The MALDI-TOF result (Fig. S2(a)) of PDPh shows that the m/z peaks 634.9 and 833.3 perfectly match the proposed molecular formula combined with Na^{+}for n of 3 and 4 respectively, and the MALDI-TOF result (Fig. S2(b)) of H-Ph-Linear shows that the m/z peaks 552.8, 750.2 and 949.1 match the proposed molecular formula after end-capping combined with Na^{+}for n of 2, 3 and 4 respectively. Moreover, the main peak in the spectrum is at $n=3$, which generally agrees with the results from FT-IR and ${ }^{29} \mathrm{Si}-\mathrm{NMR}$.

Preparation and characterization of ViPh-Cyclo, ViPh-Crosslinker and Vi-ViPhCrosslinker:

ViPh-Cyclo and ViPh-Crosslinker were prepared as described in scheme 1(b) and 1(c). The molecular structure of ViPh-Cyclo was confirmed by FT-IR (Fig. 1(b)), ${ }^{1} \mathbf{H}$-NMR spectra (Fig. S1 (b-d), Table S2 and Table S3), ${ }^{29}$ Si-NMR (Fig. 1(d)) and MALDI-TOF (Fig. S2 (c-e), Table S4 and Table S5).

Characterization of ViPh-Cyclo:

In the FT-IR spectra (Fig. 1(b)) of ViPh-Cyclo, the strong absorption around $1020-1140 \mathrm{~cm}^{-1}$ are assigned to the anti-symmetric stretching of $\mathrm{Si}-\mathrm{O}$ bond, and the peaks at $1593 \mathrm{~cm}^{-1}$ and $1429 \mathrm{~cm}^{-1}$ is assigned to the phenyl $\mathrm{C}=\mathrm{C}$ stretching and Si-phenyl stretching respectively. In addition, peaks at $961 \mathrm{~cm}^{-1}$ and $1256 \mathrm{~cm}^{-1}$ assigned to vinyl group and $\mathrm{Si}-\mathrm{CH}_{3}$ respectively appear in the spectrum. There is no -OH peak in the range of $3100-3800 \mathrm{~cm}^{-1}$ because of its cyclic structure.

In the ${ }^{\mathbf{1}} \mathbf{H}$-NMR spectra (Fig. S1 (b) and Table S2), the peaks at $7.1 \sim 7.7 \mathrm{ppm}, 5.8 \sim 6.15 \mathrm{ppm}$ and $0.2 \sim 0.25 \mathrm{ppm}$ can be assigned to H atoms in $-\mathrm{Si}-\mathrm{C}_{6} \underline{\mathrm{H}}_{5},-\mathrm{Si}-\mathrm{C} \underline{\mathrm{H}}=\mathrm{CH}_{2}$ and $-\mathrm{Si}-\underline{\mathrm{C}}_{3}$ groups of ViPhCyclo, respectively. The molar ratio of "- $\mathrm{Ph} ": "-\mathrm{CH}_{3} ": "-\mathrm{CH}=\mathrm{CH}_{2} "$ groups is 2.11:
1.02: 1.00 (The integral peak area ratio is shown in Table S3), which is consistent with the expected structure (scheme $1(\mathrm{~b})$).

In the ${ }^{29} \mathbf{S i}$-NMR spectra (Fig. 1(d)) of ViPh-Cyclo, only the peaks of $\mathrm{D}^{2}(-44.8 \mathrm{ppm}$, assigned
 of $-\mathrm{Ph}_{2} \underline{\mathrm{Si}-\mathrm{O}-:-\mathrm{MeViSi}-\mathrm{O}-\text { is } 0.99: 1 \text { (Table } 1 \text {), which is completely consistent with our expected }}$ structure (scheme 1(b)).

The molecular structure was further verified by MALDI-TOF (Fig. S2(c)), the results show that the m / z peak 591 perfectly matches the proposed molecular formula combined with Na^{+} (568+23) for ViPh-Cyclo.

Characterization of ViPh-Crosslinker:

In the FT-IR spectra (Fig. 1(b)) of ViPh-Crosslinker, the strong absorption around 1020-1140 cm^{-1} is assigned to the anti-symmetric stretching of $\mathrm{Si}-\mathrm{O}$ bond, and the peaks at $961 \mathrm{~cm}^{-1}$ and $1256 \mathrm{~cm}^{-1}$ are assigned to vinyl group and $\mathrm{Si}-\mathrm{CH}_{3}$. There is only a small amount of silanol (peak at $3620 \mathrm{~cm}^{-}$ ${ }^{1}$, $\mathrm{Si}-\mathrm{OH}$ in $-\mathrm{Ph}_{2} \underline{\mathrm{Si}-\mathrm{OH} \text { and }-\mathrm{MeVi} \underline{\mathrm{Si}-\mathrm{OH})} \text { remained after the reaction, indicating that the }}$ condensation reaction is nearly completed.

In the ${ }^{\mathbf{1}} \mathbf{H}$-NMR spectra (Fig. S1 (c) and Table S2), the peaks at $7.1 \sim 7.7 \mathrm{ppm}, 5.8 \sim 6.15 \mathrm{ppm}$ and
 Crosslinker, respectively. The molar ratio of "- $\mathrm{Ph} ": ~ "-\mathrm{CH}_{3} "$: " $\mathrm{CH}=\mathrm{CH}_{2} "$ groups is 2.21: 0.95: 1.00 (The integral peak area ratio is shown in Table S3), which is consistent with the expected structure (scheme 1(b)).

In the ${ }^{\mathbf{2 9}} \mathbf{S i}-\mathbf{N M R}$ result (Fig. 1(d)) of ViPh-Crosslinker, the large amount of $\mathrm{D}^{2 \prime}(-33.1$ to -34.2 ppm, assigned to Si of $-\mathrm{MeViSi}-\mathrm{O}-)$ and $\mathrm{D}^{2}\left(-46.5\right.$ to -47.7 ppm , assigned to Si of $-\mathrm{Ph}_{2} \underline{\mathrm{Si}-\mathrm{O}-) \text { were }}$ clearly detected, which verified the fully condensation of Si-O-Si. Moreover, the relatively low
 assigns to Si of $-\mathrm{Ph}_{2} \underline{\mathrm{Si}-\mathrm{OH}) \text { were also found. The } \mathrm{DOC} \text { and the molecular weight of } \mathrm{ViPh}-1.0 \mid}$ Crosslinker can be calculated according to eqn (S3-1) and (S3-2), and the results are listed in Table 1, which shows the DOC of the ViPh-Crosslinker is 95.6% and the molecular weight is 3281 .

DOC (\%) of ViPh-Crosslinker =

$$
\begin{equation*}
\frac{D^{1}+D^{1^{\prime}}+2 D^{2}+2 D^{2^{\prime}}}{2\left(D^{0}+D^{1}+D^{2^{\prime}}+D^{2}+D^{2^{\prime}}\right)} \times 100 \tag{S3-1}
\end{equation*}
$$

Molecular weight of ViPh-Crosslinker =

$$
\begin{equation*}
\frac{2\left[\left(D^{1}+D^{2}\right) \cdot M_{D P S D}+\left(D^{1^{\prime}}+D^{2^{\prime}}\right) \cdot M_{D M V S}\right]}{D^{1}+D^{1^{\prime}}} \tag{S3-2}
\end{equation*}
$$

$$
\mathrm{M}_{\mathrm{DPSD}}\left(-\mathrm{Ph}_{2} \mathrm{Si}-\mathrm{O}-\right)=198.3 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\mathrm{DMVS}}(-\mathrm{MeViSi}-\mathrm{O}-)=86.1 \mathrm{~g} / \mathrm{mol} .
$$

The MALDI-TOF result of ViPh-Crosslinker (Fig. S2 (d) and Table S4) shows that the m/z peaks, $1374.7,1658.9,1942.9,2227.0$ and 2510.7 perfectly match the proposed molecular formula combined with Na^{+}for x of 4, 5, 6, 7 and 8 respectively. In Table S 4 , the results show that most of the peaks of ViPh-Crosslinker correspond to linear polymers, but there are some peaks correspond to cyclosiloxanes ($\sim 13.5 \%$, marked with red * in Fig. S2 (d)), which are from 3:3 to 8:8 macrocyclic structures. Combining with the MALDI-TOF results of Vi-ViPh-Crosslinker (Fig. S2 (e), Table S5), it shows that these cyclosiloxanes disappeared due to the ring-opening and end-capping reaction.

Characterization of Vi-ViPh-Crosslinker:

Vi-ViPh-Crosslinker was prepared as mentioned in scheme 1(c) by further end-capping reaction conducted by ViPh-Crosslinker. The molecular structure of Vi-ViPh-Crosslinker was confirmed by FT-IR (Fig. 1(b)) and ${ }^{29}$ Si-NMR (Fig. 1(d)).

In the FT-IR spectra (Fig. 1(b)) of Vi-ViPh-Crosslinker, the silanols (peak at $3620 \mathrm{~cm}^{-1}$, Si$\mathrm{OH})$ of $-\mathrm{Ph}_{2} \underline{\mathrm{Si}-\mathrm{OH}}$ and $-\mathrm{MeVi} \underline{\mathrm{Si}-\mathrm{OH}}$ remained obviously weaker than that of ViPh-Crosslinker, indicating that the end-capping reaction does reduce the existence of - OH groups.

In the ${ }^{\mathbf{1}} \mathbf{H}$-NMR spectra (Fig. S1 (d) and Table S2), the peaks at $7.1 \sim 7.7 \mathrm{ppm}, 5.8 \sim 6.15 \mathrm{ppm}$ and $0.0 \sim 0.3 \mathrm{ppm}$ can be assigned to H atoms in $-\mathrm{Si}_{\mathrm{Si}}^{6} \mathrm{H}_{5},-\mathrm{Si}-\mathrm{CH}=\mathrm{CH}_{2}$ and $-\mathrm{Si}^{-} \mathrm{CH}_{3}$ groups of Vi-ViPh-Crosslinker, respectively. The molar ratio of "- $\mathrm{Ph} ": ~ "-\mathrm{CH}_{3} "$: " $\mathrm{CH}=\mathrm{CH}_{2}$ " is 1.79: 1.21: 1.00 , which is consistent with the expected structure (Scheme 1(c)). The integral peak area ratio is shown in Table S3.

In the ${ }^{29} \mathbf{S i}$-NMR (Fig. 1(d)) of Vi-ViPh-Crosslinker, comparing to the result of ViPhCrosslinker, the peaks of D^{1} ' species (-27.4 to -27.8 ppm , assigned to Si of $-\mathrm{MeViSi}-\mathrm{OH}$) and D^{1}
 capped characteristic peaks assigned to Si of $-\mathrm{Me}_{2} \underline{\mathrm{Si}-\mathrm{Vi}}$ appear at $\mathrm{M}^{1}(-1.4$ to $-1.8 \mathrm{ppm})$ and $\mathrm{M}^{1}(-$ 2.7 to -3.1 ppm). The DOC, degree of end-capping and average molecular weight of Vi-ViPhCrosslinker can be calculated according to eqn (S4-1), (S4-2) and (S4-3) respectively (presents in Table 1). The results show that the DOC of the Vi-ViPh-Crosslinker is 97.4%, the end-capping ratio is 73.9% and its average molecular weight is 1493 (Table 1).

DOC (\%) of Vi-ViPh-Crosslinker $=$

$$
\begin{equation*}
\frac{D^{1}+D^{1^{\prime}}+2 D^{2}+2 D^{2^{\prime}}+M^{1}+M^{1^{\prime}}}{2\left(D^{0}+D^{1}+D^{2^{\prime}}+D^{2}+D^{2^{\prime}}\right)+M^{1}+M^{1^{\prime}}} \times 100 \tag{S4-1}
\end{equation*}
$$

Molecular weight of $\mathrm{Vi}-\mathrm{ViPh}-$ Crosslinker $=$

$$
\begin{equation*}
\frac{2\left[\left(M^{1}+M^{1^{\prime}}\right) \cdot M_{V i M M}+\left(D^{1}+D^{2}\right) \cdot M_{D P S D}+\left(D^{1^{\prime}}+D^{2^{\prime}}\right) \cdot M_{D M V S}\right]}{M^{1}+M^{1^{\prime}}+D^{1}+D^{1^{\prime}}} \tag{S4-2}
\end{equation*}
$$

End-capping ratio (\%) of Vi-ViPh-Crosslinker $=$

$$
\begin{equation*}
\frac{M^{1}+M^{1^{\prime}}}{D^{1}+M^{1}+M^{1}} \times 100 \tag{S4-3}
\end{equation*}
$$

$\mathrm{M}_{\mathrm{DPSD}}\left(-\mathrm{Ph}_{2} \mathrm{Si}-\mathrm{O}-\right)=198.3 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\mathrm{DMVS}}(-\mathrm{MeViSi}-\mathrm{O}-)=86.1 \mathrm{~g} / \mathrm{mol}$ and $\mathrm{M}_{\mathrm{ViMM}}\left(-\mathrm{O}_{1 / 2}-\mathrm{Me}_{2} \mathrm{Si}-\mathrm{Vi}\right)$ $=93.2 \mathrm{~g} / \mathrm{mol}$. In addition, $\mathrm{M}_{\mathrm{DPSD}}$ and $\mathrm{M}_{\mathrm{DMVS}}$ are the molar molecular weights of the repeating unit formed after the copolymerization reaction.

The results of MALDI-TOF spectra of Vi-ViPh-Crosslinker are shown in Fig. S2 (e) and Table S5, and the peak assignments of Vi-ViPh-Crosslinker are listed in Table S5. By comparison, it is found that the peak shifts perfectly match the proposed molecular formula combined with Na^{+}, which generally agrees with the results from FT-IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{29} \mathrm{Si}-\mathrm{NMR}$. In Table S5, there is no peak attributed to the macrocycle among the 37 main peaks (marked with *), which indicates that the macrocycle in ViPh-Crosslinker undergo ring-opening and end-capping reaction in the further reaction progress. All the peaks can be corresponded to linear polysiloxane.

Fig. S2 MALDI-TOF results and analysis of PDPh (a), H-Ph-Linear (b), ViPh-Cyclo (c), ViPhCrosslinker (d) Vi-ViPh-Crosslinker (e) and Ph-CLS (f). (In (d), (e) and (f), the assignments of peaks marked with * were shown in Table S4, Table S5 and Table S6, respectively)

Table S4 Peak assignment in MALDI-TOF spectrum of ViPh-Crosslinker.

Peak position	Peak intensity	Peak assignment
874.6	3001	$3: 3$ cyclosiloxane $\left(\mathrm{M}+\mathrm{Na}^{+}-\mathrm{H}^{+}\right)$
1090.6	560	$4: 4$ cyclosiloxane $\left(\mathrm{M}+\mathrm{Na}^{+}-\mathrm{H}^{+}\right)$
1158.7	1018	$\left(\mathrm{M}+\mathrm{Na}^{+}\right)$
1177.8	1511	

1374.7	684	
1442.6	738	5:5 cyclosiloxane ($\mathrm{M}+\mathrm{Na}^{+}-\mathrm{H}^{+}$)
1460.6	431	
1572.9	93	
1658.9	988	
1674.4	318	
1726.8	197	6:6 cyclosiloxane ($\mathrm{M}+\mathrm{Na}^{+}-\mathrm{H}^{+}$)
1744.9	325	
1942.9	1050	
1958.3	341	
2010.4	164	7:7 cyclosiloxane ($\mathrm{M}+\mathrm{Na}^{+}-\mathrm{H}^{+}$)
2028.6	317	
2140.6	106	
2227.0	957	
2242.5	286	
2294.8	129	8:8 cyclosiloxane ($\mathrm{M}+\mathrm{Na}^{+}-\mathrm{H}^{+}$)

2312.6	295	
2424.8	91	
2510.7	788	
2528.0	231	
2597.1	215	
2794.5	597	
2810.4	161	
2880.1	168	
3078.9	425	(M+Na+-
3095.1	116	
3163.7	119	
3363.0	287	
3378.8	80	
3448.7	82	

3647.2	191	49
3732.6	118	$\left(\mathrm{M}+\mathrm{Na}^{+}\right)$
3931.1		

Table S5 Peak assignment in MALDI-TOF spectrum of Vi-ViPh-Crosslinker.

Peak position	Peak intensity	Peak assignment
1087.5	21521	
1156.6	14219	-
1172.7	39764	
1196.1	44620	-
1257.8	31395	
1286.8	9367	-
1344.1	16787	
1371.2	24694	
1429.8	5123	
1457.7	28666	
1543.0	21514	

1571.3	8434	
1629.1	9539	
1657.2	14244	
1714.2	3528	
1743.0	16737	
1828.8	12925	
1856.4	5561	
1913.9	6653	
1942.9	9192	
2000.3	2568	
2028.3	12645	
2114.0	9983	
2141.4	3625	
2199.8	4613	

2227.4	6253	
2284.7	1823	
2313.4	8647	
2399.5	6232	$\left(\mathrm{M}+\mathrm{Na}^{+}\right)$
2484.2	3251	
2511.8	4195	
2598.2	4949	$\left(\mathrm{M}+\mathrm{Na}^{+}\right)$
2684.2	3545	$\left(\mathrm{M}+\mathrm{Na}^{+}\right)$
2769.4	2052	
2797.5	2333	$\left(\mathrm{M}+\mathrm{Na}^{+}\right)$
2883.4	2289	
2969.1	2070	

In Table S6, MALDI-TOF spectrum peak assignment of $\mathrm{Ph}-\mathrm{CLS}$, "L" and "C" represent precursor materials for the preparation of hydrosilylation of cyclo-linear structure, and the molecular structure is as follows.

Table S6 Peak assignment in MALDI-TOF spectrum of Ph-CLS.

Peak position	Peak intensity	Peak assignment	The ratio of "linear" and "cyclo" contained in the molecular chain or macrocycle.
1119.1	8976	-	-
1149.2	2690	-	-
1318.5	3012	$\left(\mathrm{L}_{3}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	1:1 (linear or macrocycle)
1352.4	2181	-	-
1488.7	1167	-	-
1594.1	1402	$\left(\mathrm{L}_{2}+\mathrm{L}_{2}{ }^{+}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)
1652.5	1651	$\left(2 \mathrm{~L}_{2}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)
1734.8	1427	$\left(\mathrm{L}_{2}{ }^{+}+\mathrm{L}_{3}{ }^{+}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)
1792.6	5449	$\left(\mathrm{L}_{2}+\mathrm{L}_{3}{ }^{\prime}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)
1850.9	9388	$\left(\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)
1932.3	1544	$\left(2 L_{3}{ }^{\prime}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)
1991.1	6537	$\left(\mathrm{L}_{3}+\mathrm{L}_{3}{ }^{\prime}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)
2049.5	15014	$\left(2 \mathrm{~L}_{3}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)
2189.4	2335	$\left(\mathrm{L}_{3}+\mathrm{L}_{4}{ }^{+}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)
2248.3	6314	$\left(\mathrm{L}_{3}+\mathrm{L}_{4}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)

2446.5	893	$\left(2 \mathrm{~L}_{4}+\mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	2:1(linear)
2896.6	1456	$\left(2 \mathrm{~L}_{2}+\mathrm{L}_{3}{ }^{\prime}+2 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	3:2(linear)
2953.9	2354	$\left(2 \mathrm{~L}_{2}+\mathrm{L}_{3}+2 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	3:2(linear)
3095.1	2752	$\left(\mathrm{L}_{2}{ }^{+}+2 \mathrm{~L}_{3}+2 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	3:2(linear)
3153.3	5541	$\left(\mathrm{L}_{2}+2 \mathrm{~L}_{3}+2 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	3:2(linear)
3292.8	2362	$\left(2 \mathrm{~L}_{3}+\mathrm{L}_{3}{ }^{\prime}+2 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	3:2(linear)
3351.7	5887	$\left(3 \mathrm{~L}_{3}+2 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	3:2(linear)
3492.2	1074	$\left(2 \mathrm{~L}_{3}+\mathrm{L}_{4}{ }^{+}+2 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	3:2(linear)
3550.3	2463	$\left(2 \mathrm{~L}_{3}+\mathrm{L}_{4}+2 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	3:2(linear)
4054.0	751	$\left(3 \mathrm{~L}_{2}+\mathrm{L}_{3}+3 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	4:3(linear)
4197.3	864	$\left(2 \mathrm{~L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{3}{ }^{\prime}+3 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	4:3(linear)
4255.0	1711	$\left(2 \mathrm{~L}_{2}+2 \mathrm{~L}_{3}+3 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	4:3(linear)
4396.3	1094	$\left(\mathrm{L}_{2}+2 \mathrm{~L}_{3}+\mathrm{L}_{3}{ }^{\prime}+3 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	4:3(linear)
4453.7	2767	$\left(\mathrm{L}_{2}+3 \mathrm{~L}_{3}+3 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	4:3(linear)
4594.3	869	$\left(3 \mathrm{~L}_{3}+\mathrm{L}_{3}{ }^{+}+3 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	4:3(linear)
4652.3	2461	$\left(4 L_{3}+3 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	4:3(linear)
4849.1	1163	$\left(3 \mathrm{~L}_{3}+\mathrm{L}_{4}+3 \mathrm{C}\right)\left(\mathrm{M}+\mathrm{Na}^{+}\right)$	4:3(linear)

(a)

Fig. S3 (a) FT-IR spectra of ViPh-Cyclo, ViPh-Crosslinker and Vi-ViPh-Crosslinker. (b) FT-IR
spectra of $\mathrm{H}-\mathrm{Ph}-L i n e a r$, ViPh-Cyclo and $\mathrm{Ph}-\mathrm{CLS}$. (c) The ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectrum of $\mathrm{Ph}-\mathrm{CLS}$.

Table S7 The molar ratio of precursors of "H-Ph-Linear/ViPh-Cyclo", "H-Ph-Linear/Vi-ViPhCrosslinker" and "H-Ph-Linear/ViPh-Cyclo/Vi-ViPh-Crosslinker".

	H-Ph-Linear (Si-H)	ViPh-Cyclo (Si-Vi)	Vi-ViPh-Crosslinker (Si-Vi)
"H-Ph-Linear/ViPh-Cyclo"	4	3	
"H-Ph-Linear/Vi-ViPh-Crosslinker"	4		1
"H-Ph-Linear/ViPh-Cyclo/Vi-ViPh- Crosslinker"	4	3	1

Fig. S4 GPC result of Ph-CLS.

Fig. S5 The molecular simulation result of the cyclo-linear siloxane Ph-CLS with two repeat unit. (The chemical structures were drawn by ChemDraw Ultra 12.0)

Fig. S6 The proposed chain arrangement corresponding to the XRD results.

Fig. S7 DSC curves of Ph-CLS/Ph-CLS-Es.

Ph-CLS-E3
Fig. S8 Schematic diagram of bending sample of Ph-CLS-E3.

