Supporting Information for:

## Homo- and copolymerization of norbornene using tridentate

#### IzQO palladium catalysts with dimethylaminoethyl as a side arm

Jie Dong<sup>a</sup> and Baiquan Wang\*a,b

<sup>a</sup>State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China and <sup>b</sup>State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China

| 1. Additional Polymerization results                                       | 2    |
|----------------------------------------------------------------------------|------|
| 2. NMR spectra of the compounds $1-2$ and complexes 3 and $4a-4d$          | 3    |
| 3. NMR spectra of polymers                                                 | . 11 |
| 4. GPC curves of polymers                                                  | .21  |
| 5. TGA curves of polymers                                                  | 28   |
| 6. DSC curves of polymers                                                  | .30  |
| 7. X-ray crystallography of complexes <b>3</b> , <b>4a</b> , and <b>4b</b> | .35  |

#### 1. Additional polymerization results

| entry | cat.(µmol) | T (°C) | Al/Pd | t (min) | Conv. (%) | activity <sup>b</sup> |
|-------|------------|--------|-------|---------|-----------|-----------------------|
| 1     | 4a (1)     | 20     | 500   | 2       | 31.0      | 9.3                   |
| 2     | 4a (1)     | 40     | 500   | 2       | 99.9      | 30.0                  |
| 3     | 4a (1)     | 60     | 500   | 2       | 47.3      | 14.2                  |
| 4     | 4a (1)     | 80     | 500   | 2       | 27.7      | 8.3                   |
| 5     | 4a (1)     | 40     | 200   | 2       | 92.3      | 27.7                  |
| 6     | 4a (1)     | 40     | 200   | 1       | 97.7      | 58.6                  |
| 7     | 4a (1)     | 40     | 100   | 1       | 98.8      | 59.3                  |
| 8     | 4a (0.5)   | 40     | 100   | 1       | 66.3      | 79.6                  |
| 9     | 4b (0.5)   | 40     | 100   | 1       | 60.3      | 72.4                  |
| 10    | 4c (0.5)   | 40     | 100   | 1       | 99.9      | 119.9                 |
| 11    | 4c (0.3)   | 40     | 100   | 1       | 97.2      | 194.4                 |
| 12    | 4d (0.5)   | 40     | 100   | 1       | 55.9      | 67.1                  |
| 13    | 3 (0.5)    | 40     | 100   | 1       | 38.6      | 46.3                  |

Table S1 Norbornene polymerization catalyzed by 3 and 4a-4d activated by Et<sub>2</sub>AlCl<sup>a</sup>

<sup>*a*</sup>Polymerization conditions: solvent, 1,2-dichlorobenzene;  $V_{\text{total}}$ , 10 mL; norbornene, 1.0 g; Et<sub>2</sub>AlCl, 2.0 M in hexane. <sup>*b*</sup>In units of 10<sup>6</sup> g of PNB (mol of Pd)<sup>-1</sup> h<sup>-1</sup>.

Table S2 NB-UA copolymerization catalyzed by **3** and **4a–4d** activated by  $Et_2AlCl$  or MAO<sup>*a*</sup>

| entry | cat.       | Cocat.               | n (total monomer) | comonomer<br>(mol%) | Yield (mg) |
|-------|------------|----------------------|-------------------|---------------------|------------|
| 1     | <b>4</b> c | Et <sub>2</sub> AlCl | 10                | 5                   | 28         |
| 2     | <b>4</b> c | Et <sub>2</sub> AlCl | 10                | 5                   | 10         |
| $3^b$ | <b>4</b> c | MAO                  | 10                | 5                   | 5.6        |
| 4     | <b>4</b> a | Et <sub>2</sub> AlCl | 10                | 5                   | 2          |
| 5     | 4b         | Et <sub>2</sub> AlCl | 10                | 5                   | trace      |
| 6     | <b>4d</b>  | Et <sub>2</sub> AlCl | 10                | 5                   | 5.3        |
| 7     | 3          | Et <sub>2</sub> AlCl | 10                | 5                   | trace      |

<sup>*a*</sup>Polymerization conditions: [Pd], 5  $\mu$ mol; solvent, 1,2-dichlorobenzene;  $V_{total}$ , 15 mL; n<sub>total monomer</sub>, 10 mmol; Et<sub>2</sub>AlCl, 2.0 M in hexane, Al/Pd = 200; 40 °C, 1 h. <sup>*b*</sup>MAO instand of Et<sub>2</sub>AlCl, MAO, 1.5 M in toluene; Al/Pd = 1000.





Figure S1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of compound 1.



Figure S2. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra of compound 1.



Figure S3. <sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O) spectra of compound 2.



Figure S4. <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O) spectra of compound 2.



Figure S5. <sup>1</sup>H NMR (400 MHz, DMSO) spectra of complex 3.



Figure S6. <sup>13</sup>C NMR (101 MHz, DMSO) spectra of complex 3.



Figure S7. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>) spectra of complex 4a.



Figure S8. <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>) spectra of complex 4a.



Figure S9. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of complex 4b.



Figure S10. <sup>13</sup>C NMR (101 MHz, DMSO) spectra of complex 4b.



Figure S11. <sup>1</sup>H NMR (400 MHz, DMSO) spectra of complex 4c.



Figure S12. <sup>13</sup>C NMR (101 MHz, DMSO) spectra of complex 4c.



Figure S13. <sup>19</sup>F NMR (376 MHz, DMSO) spectra of complex 4c.



Figure S14. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of complex 4d.



Figure S15. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra of complex 4d.

## 3. NMR spectra of polymers.



**Figure S16.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of norbornene homopolymers (Table 1 entry 8.).



**Figure S17.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-BVE copolymer obtained by **4c** (entry 2, Table 2).

The incorporation (mol%) of BVE in copolymer:

$$\mathbf{x} = \frac{\frac{I_a}{3}}{\frac{I_a}{3} + \frac{I_b - \frac{I_a}{3} \times 9}{10}} \quad \mathbf{x} \ 100\% = \frac{10I_a}{3I_b + I_a}$$

Ia – The integration of methylene (–CH<sub>2</sub>-O-) and methyne (–CH-O-) in BVE units; Ib – The integration of the peaks from 0.75–2.75 ppm.



**Figure S18.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-BVE copolymer obtained by **4c** (entry 3, Table 2).



**Figure S19.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-BVE copolymer obtained by **4c** (entry 4, Table 2).



**Figure S20.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-BVE copolymer obtained by **4a** (entry 6, Table 2).



**Figure S21.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-BVE copolymer obtained by **4b** (entry 7, Table 2).



**Figure S22.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-BVE copolymer obtained by **4d** (entry 8, Table 2).



**Figure S23.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-BVE copolymer obtained by **3** (entry 9, Table 2).



**Figure S24.** <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) spectra of NB-BVE copolymer obtained by **4c** (entry 4, Table 2).



Figure S25. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-UA copolymer obtained by 4c (entry 11, Table 2).

The incorporation (mol%) of UA in copolymer:

$$\mathbf{x} = \frac{\frac{I_a}{3}}{\frac{I_a}{3} + \frac{I_b - \frac{I_a}{3} \times 19}{10}} \quad \mathbf{x} \ 100\% = \frac{10I_a}{3I_b - 9I_a}$$

Ia – The integration of methyl (CH<sub>3</sub>-O-) in UA units; Ib – The integration of the peaks from 0.75–2.75 ppm.



**Figure S26.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-UA copolymer obtained by **4c** (entry 12, Table 2).



Figure S27. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-UA copolymer obtained by 4a (entry 14, Table 2).



**Figure S28.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-UA copolymer obtained by **4b** (entry 15, Table 2).



**Figure S29.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-UA copolymer obtained by **4d** (entry 16, Table 2).



**Figure S30.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of NB-UA copolymer obtained by **3** (entry 17, Table 2).

## 4. GPC curves of polymers



| ļ |                      |                 | Broad           | Unknow          | n Relativ       | e Peak            | Table          |          | 2        |
|---|----------------------|-----------------|-----------------|-----------------|-----------------|-------------------|----------------|----------|----------|
|   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons) | Mz<br>(Daltons) | Mz+1<br>(Daltons) | Polydispersity | Mz/Mw    | Mz+1/Mw  |
|   |                      | 27737           | 45039           | 42424           | 64903           | 86662             | 1.623798       | 1.441061 | 1.924164 |

Figure S31. GPC curve of NB-BVE copolymer obtained by table 2 entry 2.



Figure S32. GPC curve of NB-BVE copolymer obtained by table 2 entry 3.



|   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons) | Mz<br>(Daltons) | Mz+1<br>(Daltons) | Polydispersity | Mz/Mw    | Mz+1/Mw  |  |  |  |  |  |
|---|----------------------|-----------------|-----------------|-----------------|-----------------|-------------------|----------------|----------|----------|--|--|--|--|--|
| 1 |                      | 18480           | 34683           | 27583           | 58814           | 87801             | 1.876769       | 1.695722 | 2.531505 |  |  |  |  |  |

Figure S33. GPC curve of NB-BVE copolymer obtained by table 2 entry 4.



|   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons)     | Mz<br>(Daltons) | Mz+1<br>(Daltons) | Polydispersity | Mz/Mw    | Mz+1/Mw  |
|---|----------------------|-----------------|-----------------|---------------------|-----------------|-------------------|----------------|----------|----------|
| 1 |                      | 28161           | 43397           | <mark>3992</mark> 5 | 61937           | 81964             | 1.540995       | 1.427236 | 1.888713 |

Figure S34. GPC curve of NB-BVE copolymer obtained by table 2 entry 6.



|    | Broad | Unknow | n Relativ | /е Реак | lable          |    |
|----|-------|--------|-----------|---------|----------------|----|
| Mn | Mw    | MP     | Mz        | Mz+1    | Polydispersity | Mz |

|   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons) | Mz<br>(Daltons) | Mz+1<br>(Daltons) | Polydispersity        | Mz/Mw    | Mz+1/Mw  |
|---|----------------------|-----------------|-----------------|-----------------|-----------------|-------------------|-----------------------|----------|----------|
| 1 |                      | 32211           | 51225           | 48862           | 73205           | 97275             | <mark>1.590291</mark> | 1.429099 | 1.898985 |

Figure S35. GPC curve of NB-BVE copolymer obtained by table 2 entry 7.



|   |                      |                 | Broad           | Unknow          | n Relativ       | e Peak            | able           |          |          |
|---|----------------------|-----------------|-----------------|-----------------|-----------------|-------------------|----------------|----------|----------|
|   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons) | Mz<br>(Daltons) | Mz+1<br>(Daltons) | Polydispersity | Mz/Mw    | Mz+1/Mw  |
| 1 |                      | 27516           | 43779           | 41690           | 62774           | 83771             | 1.591023       | 1.433900 | 1.913497 |

Figure S36. GPC curve of NB-BVE copolymer obtained by table 2 entry 8.



Broad Unknown Relative Peak Table

|   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons) | Mz<br>(Daltons) | Mz+1<br>(Daltons) | Polydispersity | Mz/Mw    | Mz+1/Mw  |
|---|----------------------|-----------------|-----------------|-----------------|-----------------|-------------------|----------------|----------|----------|
| 1 |                      | 21148           | 37927           | 35193           | 58048           | 79585             | 1.793362       | 1.530538 | 2.098381 |

Figure S37. GPC curve of NB-BVE copolymer obtained by table 2 entry 9.



|   | 1                    |                 | Divau           | UIIKIIUW        | II Nelau         | Fean               | able           |          |          |
|---|----------------------|-----------------|-----------------|-----------------|------------------|--------------------|----------------|----------|----------|
|   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons) | Mz<br>(Daltons ) | Mz+1<br>(Daltons ) | Polydispersity | Mz/Mw    | Mz+1/Mw  |
| 1 |                      | 19599           | 35885           | 32447           | 56152            | 78016              | 1.830949       | 1.564787 | 2.174086 |

Figure S38. GPC curve of NB-UA copolymer obtained by Table 2 entry 11.



Broad Unknown Relative Peak Table

|   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons) | Mz<br>(Daltons ) | Mz+1<br>(Daltons) | Polydispersity          | Mz/Mw    | Mz+1/Mw  |
|---|----------------------|-----------------|-----------------|-----------------|------------------|-------------------|-------------------------|----------|----------|
| 1 |                      | 15732           | 33861           | 25236           | 62263            | 95707             | 2.1 <mark>5</mark> 2355 | 1.838778 | 2.826438 |

Figure S39. GPC curve of NB-UA copolymer obtained by Table 2 entry 12.



Figure S40. GPC curve of NB-UA copolymer obtained by Table 2 entry 14.



|   |                      |                 | able            |                 |                 |                   |                |          |          |
|---|----------------------|-----------------|-----------------|-----------------|-----------------|-------------------|----------------|----------|----------|
|   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons) | Mz<br>(Daltons) | Mz+1<br>(Daltons) | Polydispersity | Mz/Mw    | Mz+1/Mw  |
| 1 |                      | 25185           | 34187           | 27549           | 45854           | 59224             | 1.357417       | 1.341280 | 1.732357 |

Figure S41. GPC curve of NB-UA copolymer obtained by Table 2 entry 15.



| Broad Unknown Relative Peak Table |                      |                 |                 |                 |                  |                   |                |          |          |
|-----------------------------------|----------------------|-----------------|-----------------|-----------------|------------------|-------------------|----------------|----------|----------|
|                                   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons) | Mz<br>(Daltons ) | Mz+1<br>(Daltons) | Polydispersity | Mz/Mw    | Mz+1/Mw  |
| 1                                 |                      | 23145           | 40007           | 35468           | 61048            | 84242             | 1.728531       | 1.525931 | 2.105667 |

Figure S42. GPC curve of NB-UA copolymer obtained by Table 2 entry 16.



| Broad | Unknown | Relative | Peak | Table |
|-------|---------|----------|------|-------|

|   | Distribution<br>Name | Mn<br>(Daltons) | Mw<br>(Daltons) | MP<br>(Daltons ) | Mz<br>(Daltons ) | Mz+1<br>(Daltons) | Polydispersity | Mz/Mw    | Mz+1/Mw  |  |
|---|----------------------|-----------------|-----------------|------------------|------------------|-------------------|----------------|----------|----------|--|
| 1 |                      | 18989           | 37703           | 29653            | 64800            | 96374             | 1.985485       | 1.718694 | 2.556118 |  |

Figure S43. GPC curve of NB-UA copolymer obtained by Table 2 entry 17.

## 5. TGA curves of polymers.



Figure S45. TGA of NB-BVE copolymer.



Figure S46. TGA of NB-UA copolymer.

#### 6. DSC curves of polymers



Figure S47. DSC thermograms of PNB obtained by Table 1 entry 8.



Figure S48. DSC thermograms of NB-BVE copolymer obtained by table 2 entry 2.



Figure S49. DSC thermograms of NB-BVE copolymer obtained by table 2 entry 3.



Figure S50. DSC thermograms of NB-BVE copolymer obtained by table 2 entry 4.



Figure S51. DSC thermograms of NB-BVE copolymer obtained by table 2 entry 6.



Figure S52. DSC thermograms of NB-BVE copolymer obtained by table 2 entry 7.



Figure S53. DSC thermograms of NB-BVE copolymer obtained by table 2 entry 8.



Figure S54. DSC thermograms of NB-BVE copolymer obtained by table 2 entry 9.



Figure S55. DSC thermograms of NB-UA copolymer obtained by Table 2 entry 11.



Figure S56. DSC thermograms of NB-UA copolymer obtained by Table 2 entry 12.



Figure S57. DSC thermograms of NB-BVE copolymer obtained by Table 2 entry 14.



Figure S58. DSC thermograms of NB-UA copolymer obtained by Table 2 entry 15.



Figure S59. DSC thermograms of NB-UA copolymer obtained by Table 2 entry 16.



Figure S60. DSC thermograms of NB-UA copolymer obtained by Table 2 entry 17.

| Complex                                | [3-3]·CH <sub>2</sub> Cl <sub>2</sub> | 4a                                                   | 4b.0.13 CH <sub>2</sub> Cl <sub>2</sub> |
|----------------------------------------|---------------------------------------|------------------------------------------------------|-----------------------------------------|
| Empirical formula                      | $C_{37}H_{54}Cl_4N_6O_2Pd_2$          | C <sub>32</sub> H <sub>34</sub> ClN <sub>3</sub> OPd | $C_{34.13}H_{38.25}Cl_{1.25}N_3O_3Pd\\$ |
| Formula weight                         | 969.46                                | 618.47                                               | 689.14                                  |
| Temperature                            | 113.15 K                              | 113(2) K                                             | 113.15 K                                |
| Crystal system                         | triclinic                             | Monoclinic                                           | monoclinic                              |
| space group                            | P-1                                   | P2(1)/n                                              | I2/a                                    |
| Unit cell dimensions                   | a = 9.5481(5) Å                       | a = 13.427(3) Å                                      | 18.1028(7) Å                            |
|                                        | b = 15.1927(7) Å                      | b = 10.938(2) Å                                      | 14.4854(5) Å                            |
|                                        | c = 15.9838(8) Å                      | c = 19.798(4)  Å                                     | 24.8028(9) Å                            |
|                                        | $\alpha = 62.136(5)^{\circ}$          | $\alpha = 90^{\circ}$                                | $\alpha = 90^{\circ}$                   |
|                                        | $\beta = 84.247(4)^{\circ}$           | $\beta = 107.14(3)^{\circ}$                          | $\beta = 101.780(4)^{\circ}$            |
|                                        | $\gamma = 84.451(4)^{\circ}$          | $\gamma = 90$ °                                      | $\gamma = 90^{\circ}$                   |
| Volume                                 | 2036.21(19) Å <sup>3</sup>            | 2778.5(11) Å <sup>3</sup>                            | 6367.0(4) Å <sup>3</sup>                |
| Ζ                                      | 2                                     | 4                                                    | 8                                       |
| Calculated density                     | 1.581 g/cm <sup>3</sup>               | 1.478 g/cm <sup>3</sup>                              | 1.438 g/cm <sup>3</sup>                 |
| Absorption coefficient                 | 1.186 mm <sup>-1</sup>                | 0.794 mm <sup>-1</sup>                               | 0.726 mm <sup>-1</sup>                  |
| F(000)                                 | 988.0                                 | 1272                                                 | 2842.0                                  |
| Crystal size                           | $0.2 \ x \ 0.18 \ x \ 0.16 \ mm^3$    | $0.200 \ x \ 0.180 \ x \ 0.120 \ mm^3$               | $0.19 \ x \ 0.17 \ x \ 0.15 \ mm^3$     |
| 20 range for data collection           | 4.988 to 52.744 °                     | 1.634 to 27.879 °                                    | 3.354 to 52.734 °                       |
| Index ranges                           | $-11 \le h \le 11$ ,                  | $-17 \le h \le 17$ ,                                 | $-22 \le h \le 22$ ,                    |
| Reflections collected                  | 21597                                 | 32586                                                | 33438                                   |
| Independent reflections                | 8298 [R(int) = 0.0574,                | 6620 [R(int) = 0.0548]                               | 6509 [R(int) = 0.0692,                  |
|                                        | R(sigma) = 0.0681]                    |                                                      | R(sigma) = 0.0513]                      |
| Data / restraints / parameters         | 8298/0/472                            | 6620 / 6 / 349                                       | 6509/21/414                             |
| Goodness-of-fit on F <sup>2</sup>      | 1.064                                 | 1.081                                                | 1.043                                   |
| Final R indices [ $I \ge 2\sigma(I)$ ] | R1 = 0.0392, wR2 = 0.0816             | R1 = 0.0375, wR2 = 0.0863                            | R1 = 0.0402, $wR2 = 0.0822$             |
| R indices (all data)                   | R1 = 0.0524, wR2 = 0.0916             | R1 = 0.0446, wR2 = 0.0908                            | R1 = 0.0544, wR2 = 0.0900               |
| Largest diff. peak and hole            | 0.68/-0.93 e Å <sup>-3</sup>          | 1.204/-0.963 e Å <sup>-3</sup>                       | 0.57/-0.53 e Å <sup>-3</sup>            |
|                                        |                                       |                                                      |                                         |

# 7. X-ray crystallography of complexes 3, 4a, and 4b