Supporting Information

Elucidating the Role of Acetylene in Ortho-Phthalimide Functional

Benzoxazines: Design, Synthesis, and Structure-Property

Investigations

Yin Lu,¹ Xinye Yu,¹ Corey J. Evans,² and Shengfu Yang,^{*,2} and Kan Zhang,^{*,1}

¹Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu

University, Zhenjiang 212013, China.

²Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom.

*: Corresponding authors

E-mails: sfy1@le.ac.uk (S.Y.); zhangkan@ujs.edu.cn (K.Z.).

Figure S1. FTIR spectrum of *o*PPac.

Figure S2. ¹H NMR spectrum of *o*PPac (DMSO-d₆, 20°C).

Figure S3. ¹³C NMR spectrum of *o*PPac (DMSO-d₆, 20°C).

Figure S4. 2D 1 H- 13 C HMQC NMR spectrum of *o*PP-ac.

Figure S5. 2D ¹H-¹³C HMQC NMR spectrum of *o*PPac-ac.

Figure S6. TGA vs DSC plots of benzoxazine monomers (heating rate: 10 °C/min, under a N₂ atmosphere): (a) PH-a and (b) *o*PP-a.

Figure S7. DSC thermograms of PH-a (a), *o*PP-a (b), *o*PP-ac (c) and *o*PPac-ac (d) at different heating rates.

Figure S8. Representations of the Kissinger method for the calculation of activation energy for PH-a (a) and *o*PP-a (b), and representations of the Ozawa method for PH-a (c) and *o*PP-a (d).

Table S1. The thermal properties of benzoxazines obtained in this work comparing with other imide-containing benzoxazine and difunctional benzoxazines.

Sample	Monomer Structure	T _g (DSC) (°C)	T _g (DMA) (°C)	T _{d5} (°C)	T _{d10} (°C)	Yc (%)	LOI* (%)	Reference
poly(PH-a)		/	133	292	351	38	32.7	
poly(<i>o</i> PP-a)		1	194	307	336	56	39.9	
poly(<i>o</i> PP-ac)		/	231	341	396	55	39.5	this work
poly(<i>o</i> PPac-ac)	<pre></pre>	/	297	404	474	65	43.5	
poly(<i>o</i> HTI-a)		/	241	305	346	47	36.3	S1
poly(<i>p</i> HTI-a)		/	215	334	377	28	28.7	
poly(oPP-ddm)	0{-8 ⁻⁰⁻⁰ -8-30	201	/	303	354	58	40.7	
poly(pPP-a)		162	/	289	318	39	33.1	S2

poly(pPP-ddm)	204	/	343	384	53	38.7	
poly(<i>o</i> HTI-a)	233	/	342	382	48	36.7	
poly(<i>o</i> HHI-a)	180	/	340	375	28	28.7	S3
poly(<i>o</i> MHI-a)	173	/	327	367	26	27.9	
poly(4,4'-BF-a)	/	161	263	341	53	38.7	
poly(2,4'-BF-a)	/	180	294	349	51	37.9	S4
poly(2,2'-BF-a)	/	218	353	403	61	41.9	
poly(<i>o</i> - hydroxyamide)	/	212	250	280	53	38.7	
poly(<i>p</i> - hydroxyamide)	/	/	280	320	50	37.5	S5

/: not reported

*: LOI value was calculated by Krevelen equation.

Atomic Coordinates of the Atoms in Calculated Equilibrium Structures.

PH-a

C(1)	-1.7298	0.6036	-0.5147
C(2)	-2.7692	0.2971	-1.4015
C(3)	-3.7186	-0.6606	-1.0505
C(4)	-3.6369	-1.3189	0.1828
C(5)	-2.5902	-1.0136	1.0538
C(6)	-1.6223	-0.0581	0.7215
C(7)	-0.4685	0.2891	1.6453
N(8)	0.6144	0.9787	0.9342
C(9)	0.0673	2.0283	0.1213
O(10)	-0.8192	1.5476	-0.9173
C(11)	1.6784	0.2086	0.3749
C(12)	1.5869	-1.1742	0.1513
C(13)	2.6798	-1.8825	-0.3585
C(14)	3.8708	-1.2271	-0.6734
C(15)	3.9639	0.1528	-0.4607
C(16)	2.8861	0.8608	0.0677
H(17)	-2.8144	0.8195	-2.3526
H(18)	-4.5255	-0.8929	-1.7409
H(19)	-4.3762	-2.0660	0.4579
H(20)	-2.5129	-1.5313	2.0091
H(21)	-0.0666	-0.6018	2.1351
H(22)	-0.8116	0.9571	2.4492
H(23)	0.8463	2.5720	-0.4096
H(24)	-0.5047	2.7129	0.7605
H(25)	0.6597	-1.7019	0.3496
H(26)	2.5861	-2.9530	-0.5243
H(27)	4.7151	-1.7805	-1.0751
H(28)	4.8882	0.6788	-0.6873

H(29)	2.9836	1.9239	0.2716

Total Energy = -671.303245 **au**

oPP-a

C(1)	3.8371	-2.0787	-0.9873
C(2)	3.4855	-0.8208	-0.4675
C(3)	3.7272	-0.5615	0.8900
C(4)	4.3130	-1.5376	1.7024
C(5)	4.6477	-2.7892	1.1838
C(6)	4.4006	-3.0551	-0.1674
N(7)	2.9253	0.1466	-1.3585
C(8)	2.9850	1.5668	-0.9946
C(9)	1.7434	2.0201	-0.2462
C(10)	0.5846	1.2271	-0.3172
O(11)	0.5458	0.0480	-1.0003

C(12)	1.6450	-0.1575	-1.9275
C(13)	1.7098	3.1978	0.5066
C(14)	0.5563	3.5908	1.1870
C(15)	-0.5921	2.8004	1.1080
C(16)	-0.5824	1.6260	0.3583
N(17)	-1.7480	0.8115	0.2661
C(18)	-2.2367	0.0020	1.3175
C(19)	-3.3974	-0.7417	0.7452
C(20)	-3.5438	-0.3718	-0.5931
C(21)	-2.4865	0.6277	-0.9258
C(22)	-4.2507	-1.6601	1.3430
C(23)	-5.2690	-2.2066	0.5490
C(24)	-5.4172	-1.8339	-0.7951
C(25)	-4.5511	-0.9038	-1.3876
O (26)	-1.7850	-0.0456	2.4433
O (27)	-2.2846	1.1975	-1.9783
H(28)	-4.6577	-0.6079	-2.4270
H(29)	-4.1277	-1.9410	2.3849
H(30)	-5.9556	-2.9301	0.9804
H(31)	-6.2165	-2.2741	-1.3853
H(32)	-1.5030	3.0867	1.6250
H(33)	0.5497	4.5045	1.7738
H(34)	2.6080	3.8103	0.5671
H(35)	3.8902	1.7491	-0.4096
H(36)	3.0932	2.1424	-1.9257
H(37)	1.5703	-1.2052	-2.2118
H(38)	1.4675	0.4888	-2.7951

H(39)	3.4386	0.3889	1.3274
H(40)	4.4889	-1.3172	2.7524
H(41)	5.0966	-3.5467	1.8204
H(42)	4.6672	-4.0201	-0.5915
H(43)	3.6889	-2.2765	-2.0459

Total Energy = -1183.212877 au

C(1)	-2.7367	1.1392	-0.5804
C(2)	-3.1584	-0.1751	-0.8492
C(3)	-4.5031	-0.5084	-0.5965
C(4)	-5.3910	0.4329	-0.0912
C(5)	-4.9749	1.7547	0.1664
C(6)	-3.6334	2.0875	-0.0925
N(7)	-2.2978	-1.1538	-1.4078
C(8)	-2.1595	-2.4532	-0.7308

C(9)	-0.8942	-2.4982	0.1136
C(10)	0.1103	-1.5358	-0.0848
O(11)	-0.0086	-0.5308	-1.0026
C(12)	-1.0527	-0.7543	-1.9819
C(13)	-0.7044	-3.4736	1.0980
C(14)	0.4515	-3.5024	1.8784
C(15)	1.4474	-2.5460	1.6699
C(16)	1.2818	-1.5684	0.6917
N(17)	2.2932	-0.5917	0.4588
C(18)	2.5501	0.5072	1.3110
C(19)	3.6131	1.3032	0.6297
C(20)	3.9279	0.6787	-0.5789
C(21)	3.0831	-0.5441	-0.7134
C(22)	4.2488	2.4708	1.0318
C(23)	5.2225	3.0033	0.1748
C(24)	5.5399	2.3754	-1.0386
C(25)	4.8930	1.1957	-1.4336
O(26)	2.0028	0.7224	2.3730
O(27)	3.0618	-1.3578	-1.6138
C(28)	-5.8903	2.7266	0.6763
C(29)	-6.6684	3.5502	1.1088
H(30)	5.1320	0.7013	-2.3706
H(31)	3.9964	2.9482	1.9741
H(32)	5.7410	3.9166	0.4540
H(33)	6.2996	2.8115	-1.6817
H(34)	2.3583	-2.5503	2.2607
H(35)	0.5774	-4.2624	2.6437

H(36)	-1.4838	-4.2160	1.2607
H(37)	-3.0347	-2.6250	-0.1010
H(38)	-2.1445	-3.2504	-1.4882
H(39)	-1.1477	0.1848	-2.5249
H(40)	-0.7019	-1.5442	-2.6570
H(41)	-4.8615	-1.5075	-0.8287
H(42)	-6.4254	0.1561	0.0903
H(43)	-3.2864	3.0957	0.1142
H(44)	-1.6982	1.4195	-0.7191
H(45)	-7.3515	4.2755	1.4910

Total Energy = -1259.362995 au

oPPac-ac

C(1)	-2.9620	1.4000	-0.5013
C(2)	-3.5197	0.1927	-0.9582

C(3)	-4.9098	0.0092	-0.8274
C(4)	-5.7110	0.9911	-0.2583
C(5)	-5.1569	2.2078	0.1882
C(6)	-3.7697	2.3921	0.0507
N(7)	-2.7463	-0.8162	-1.5864
C(8)	-2.8183	-2.1941	-1.0743
C(9)	-1.6341	-2.5040	-0.1699
C(10)	-0.5076	-1.6641	-0.1852
O(11)	-0.4342	-0.5504	-0.9727
C(12)	-1.4231	-0.5171	-2.0318
C(13)	-1.6383	-3.6058	0.6916
C(14)	-0.5556	-3.8778	1.5284
C(15)	0.5625	-3.0417	1.5020
C(16)	0.5901	-1.9419	0.6479
N(17)	1.7280	-1.0845	0.6000
C(18)	2.0556	-0.1404	1.6013
C(19)	3.2529	0.5866	1.0893
C(20)	3.5754	0.0790	-0.1709
C(21)	2.5987	-0.9992	-0.5101
C(22)	3.9990	1.6047	1.6700
C(23)	5.0859	2.1066	0.9485
C(24)	5.4208	1.5978	-0.3277
C(25)	4.6497	0.5605	-0.8998
C(26)	6.5400	2.1336	-1.0379
C(27)	7.4882	2.5875	-1.6401
O(28)	1.4649	0.0137	2.6504
O(29)	2.5441	-1.6865	-1.5083

C(30)	-5.9818	3.2228	0.7643
C(31)	-6.6833	4.0830	1.2530
H(32)	4.8951	0.1594	-1.8779
H(33)	3.7441	1.9960	2.6503
H(34)	5.6937	2.9032	1.3663
H(35)	1.4197	-3.2351	2.1396
H(36)	-0.5807	-4.7332	2.1967
H(37)	-2.5124	-4.2543	0.7126
H(38)	-3.7521	-2.3244	-0.5238
H(39)	-2.8444	-2.8902	-1.9251
H(40)	-1.3619	0.4844	-2.4549
H(41)	-1.1223	-1.2598	-2.7805
H(42)	-5.3694	-0.9001	-1.2047
H(43)	-6.7818	0.8313	-0.1729
H(44)	-3.3186	3.3152	0.4028
H(45)	-1.8898	1.5582	-0.5441
H(46)	-7.2989	4.8403	1.6844
H(47)	8.3236	2.9862	-2.1723

Total Energy = -1335.510271 au

Reference

- S1. X. Yu, Z. Shang and K. Zhang, *Thermochimica Acta*, 2019, **675**, 29-37.
- S2. K. Zhang, J. Liu, S. Ohashi, X. Liu, Z. Han and H. Ishida, J. Polym. Sci., Part A: Polym. Chem., 2015, 53, 1330-1338.
- S3. K. Zhang, Y. Liu, Z. Shang, C. J. Evans and S. Yang, *Polymers*, 2019, **11**, 399.
- S4. J. Liu and H. Ishida, *Macromolecules*, 2014, **47**, 5682-5690.
- S5. T. Agag, J. Liu, R. Graf, H. W. Spiess and H. Ishida, *Macromolecules*, 2012, 45, 8991-8997.