Electronic Supplementary Information

Anion-Induced Thermoresponsiveness in Cationic Polycysteine and DNA Binding

Mahammad Anas, Priyanka Dinda, Mahuya Kar and Tarun K. Mandal*

School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

Contents

Page No.

Scheme S1.	Synthesis scheme for PCys-Cl and P[Cys-PPh ₃] ⁺ [Cl ⁻]	S 3
Figure S1.	FTIR spectra of all the compounds	S 4
Figure S2.	ESI-MS spectrum of 2-BrEt-Ac	S5
Figure S3.	¹ H-NMR spectrum of 2-BrEt-Ac	S 6
Figure S4.	¹³ C-NMR spectra of 2-BrEt-Ac, Cys-Br, Cys-Br NCA and PCys-Br-1	S 7
Figure S5.	ESI-MS spectrum of Cys-Br	S 8
Figure S6.	¹ H-NMR spectrum of Cys-Br	S 9
Figure S7.	ESI-MS spectrum of Cys-Cl	S 10
Figure S8.	¹ H-NMR spectra of Cys-Cl, Cys-Cl NCA, PCys-Cl, P[Cys-PPh ₃] ⁺ [Cl ⁻]	S11
Figure S9.	ESI-MS spectrum of Cys-Br NCA	S12
Figure S10.	¹ H-NMR spectrum of Cys-Br NCA	S13
Figure S11.	MALDI-TOF-MS of Cys-Cl NCA	S14
Figure S12.	¹ H-NMR spectrum of PCys-Br-1	S15
Figure S13.	¹ H-NMR spectrum of P[Cys-PPh ₃] ⁺ [Br ⁻]-1	S16
Figure S14.	³¹ P-NMR spectrum of P[Cys-PPh ₃] ⁺ [Br ⁻]-1	S17
Figure S15.	¹ H-NMR spectrum of P[Cys-PPh ₃] ⁺ [Br ⁻]-2	S18
Figure S16.	UV-Vis absorption spectra of neat ctDNA and Calibration curve	S19
Figure S17.	Zeta potential distribution of P[Cys-PPh ₃] ⁺ [Br ⁻]-1	S20
Figure S18.	MALDI-TOF-MS of PCys-Br-1	S21

Figure S19.	SEC traces of PCys-Br-1, P[Cys-PPh ₃] ⁺ [Br ⁻]-1 and P[Cys-PPh ₃] ⁺ [Br ⁻]-1	S22
Figure S20.	CD spectra of PCys-Br-1 and P[Cys-PPh ₃] ⁺ [Br ⁻]-1	S23
Figure S21.	TEM image of P[Cys-PPh ₃] ⁺ [Br ⁻]-1	S24
Table S1.	Particle size of anion induced P[Cys-PPh ₃] ⁺ [Br ⁻]-1 aggregates	S25
Figure S22.	FESEM images of P[Cys-PPh ₃] ⁺ [Br ⁻]-1 in presence of anions	S26
Figure S23.	Heating/cooling cycles vs % transmittance plot	S27
Figure S24.	Temperature dependent <i>D_h</i> variation of P[Cys-PPh ₃] ⁺ [Br ⁻]-1 aggregates	S28
Figure S25.	Turbidity plot of P[Cys-PPh ₃] ⁺ [Br ⁻]-2 solution with SCN ⁻	S29
Figure S26.	Turbidity plot of $P[Cys-PPh_3]^+[Br^-]$ and $P[Cys-PPh_3]^+[Cl^-]$ with BF_4^-	S 30
Figure S27.	Turbidity plots of P[Cys-PPh ₃] ⁺ [Br ⁻]-1 vs. polypeptide concentration	S31
Figure S28.	Turbidity plots of P[Cys-PPh ₃] ⁺ [Br ⁻]-1 vs. anion concentration	S32
Figure S29.	Turbidity plot of P[Cys-PPh ₃] ⁺ [Br ⁻]-1 in presence of SDS	S33
Scheme S2.	Polyplex formation of P[Cys-PPh ₃] ⁺ [Br ⁻]-1 with ctDNA	S34
Figure S30.	The cell viability of KB cells with P[Cys-PPh ₃] ⁺ [Br ⁻]-1	S35
Figure S31.	Titration plot of P[Cys-PPh ₃] ⁺ [Br ⁻]-1 solution in presence of ctDNA	S36
Figure S32.	Optical spectra of neat EtBr and EtBr-ctDNA intercalated complex	S37
Figure S33.	Photographs of the ctDNA-EtBr complex with P[Cys-PPh ₃] ⁺ [Br ⁻]-1	S38
Figure S34.	Emission spectra of P[Cys-PPh ₃] ⁺ /ctDNA vs NaCl concentration	S39

Scheme S1. Synthesis scheme for PCys-Cl and its cationization to P[Cys-PPh₃]⁺[Cl⁻]

Figure S1. FT-IR spectra of all the as-synthesized compounds.

Figure S2. ESI-MS spectrum of 2-BrEt-Ac in DCM.

Figure S3. ¹H-NMR spectrum of 2-BrEt-Ac in CDCl₃.

Figure S4. ¹³C-NMR spectra of 2-BrEt-Ac in CDCl₃ (A), Cys-Br in D₂O (B), Cys-Br NCA in CDCl₃ (C) and PCys-Br-1 in DMSO-d₆ (D).

Figure S5. ESI-MS spectrum of Cys-Br in H₂O: MeOH (1:1) mixture.

Figure S6. ¹H-NMR spectrum of Cys-Br in D_2O .

Figure S7. ESI-MS spectrum of Cys-Cl in H₂O: MeOH (1:1) mixture.

Figure S8. ¹H-NMR spectra of Cys-Cl (A), Cys-Cl NCA (B), PCys-Cl (C) in DMSO-d₆ and $P[Cys-PPh_3]^+[Cl^-]$ (D) in D₂O.

Figure S9. ESI-MS spectrum of Cys-Br NCA in DCM.

Figure S10. ¹H-NMR spectrum of Cys-Br NCA in CDCl₃.

Figure S11. MALDI-TOF-MS of Cys-Cl NCA in THF using DCTB matrix and NaI.

Figure S12. ¹H-NMR spectrum of PCys-Br-1in DMSO-d₆.

Figure S13. ¹H-NMR spectrum of $P[Cys-PPh_3]^+[Br^-]-1$ in D_2O .

Figure S14. ³¹P-NMR spectrum of $P[Cys-PPh_3]^+[Br^-]-1$ in D₂O.

Figure S15. ¹H-NMR spectrum of $P[Cys-PPh_3]^+[Br^-]-2$ in D_2O .

Figure S16. UV-Vis absorption spectra of neat ctDNA in Tris-HCl buffer against the variation of its concentration (A). Calibration curve of neat ctDNA in Tris-HCl buffer (B).

Figure S17. Zeta potential (ξ) curve of 0.1 wt% P[Cys-PPh₃]⁺[Br⁻]-1 in H₂O.

Figure S18. MALDI-TOF-MS of PCys-Br-1 in DMF using DHB matrix and NaI.

Figure S19. SEC chromatograms of PCys-Br-1, P[Cys-PPh₃]⁺[Br⁻]-1 and P[Cys-PPh₃]⁺[Br⁻]-2.

Figure S20. CD spectra of PCys-Br-1 and P[Cys-PPh₃]⁺[Br⁻]-1 showing antiparallel β -sheet like secondary structure.

Figure S21. TEM image of P[Cys-PPh₃]⁺[Br⁻]-1(1 mg/mL) in water.

Table S1. Sizes of aggregates of $P[Cys-PPh_3]^+[Br^-]-1$ (0.5 wt%) in the presence ofanions in water obtained from DLS experiment

Polypeptide	Anion	[Anion]min	^{<i>a</i>} D _h at	${}^{b}T_{cp}\left({}^{\circ}\mathrm{C} ight)$	T_{cp} (°C)	T_{cp} (°C)
		(mM)	25 °C	(DLS)	(Turbidity)	(Turbidity)
			(nm)	(Heating)	(Heating)	(Cooling)
	BF_4^-	115	1700	36	39	37
P[Cys-PPh ₃] ⁺ [Br ⁻]-1	I-	65	1200	40	45	47
(0.5 wt%)	ClO ₄ -	35	850	49	57	57.4
	SCN-	15	800	58	66	67

^a *D*_h – Hydrodynamic diameter

^b T_{cp} – Cloud point (data obtained from the temperature-dependent DLS study as shown in Figure S13)

Figure S22. FESEM images of $P[Cys-PPh_3]^+[Br^-]-1$ (0.5 wt%) aggregates in water in the presence of 115 mM BF₄⁻ (A), 65 mM I⁻ (B), 35 mM ClO₄⁻ (C) and 15 mM SCN⁻ (D), showing spherical morphologies.

Figure S23. Temperature-dependent % transmittance of 0.5 wt% aqueous $P[Cys-PPh_3]^+[Br^-]-1$ solutions in the presence of different chaotropic anions. Each data point was obtained after equilibrating the corresponding sample solution at the particular temperature for 5 min.

Figure S24. Variation of the D_h s of aggregates of P[Cys-PPh₃]⁺[Br⁻]-1 (0.5 wt%) in the presence of 115 mM BF₄⁻ (A), 65 mM I⁻ (B), 35 mM ClO₄⁻ (C) and 15 mM SCN⁻ (D) at different temperatures.

Figure S25. Turbidity plot (λ = 500 nm) of aqueous P[Cys-PPh₃]⁺[Br⁻]-2 (0.5 wt%) solution in the presence of 22 mM SCN⁻.

Figure S26. Turbidity plot (λ = 500 nm) of aqueous P[Cys-PPh₃]⁺[Br⁻] and P[Cys-PPh₃]⁺[Cl⁻] (0.5 wt%) solution in the presence of 115 mM BF₄⁻.

Figure S27. Turbidity plots (λ = 500 nm) of aqueous P[Cys-PPh₃]⁺[Br⁻]-1 solutions with varying polypeptide concentration in the presence of 115 mM BF₄⁻ (A), 65 mM I⁻ (B), 35 mM ClO₄⁻ (C) and 15 mM SCN⁻ (D).

Figure S28. Turbidity plots (λ = 500 nm) of 0.5 wt% aqueous P[Cys-PPh₃]⁺[Br⁻]-1 solutions with varying concentration of BF₄⁻ (A), I⁻ (B), ClO₄⁻ (C) and SCN⁻ (D).

Figure S29. UCST-type turbidity curve (λ = 500 nm) of 0.5 wt% aqueous solution of P[Cys-PPh₃]⁺[Br⁻]-1 in the presence of 500 μ M of SDS; heating and cooling run showed huge hysteresis.

Figure S30. The cell viability of KB cells with different concentrations of P[Cys-PPh₃]⁺[Br⁻]-1 with after 24 h of incubation.

Scheme S2. Schematics of polyplex formation of P[Cys-PPh₃]⁺[Br⁻] with ctDNA in aqueous solution.

Figure S31. Titration plot, showing the % transmittance of 0.5 wt% aqueous P[Cys-PPh₃]⁺[Br⁻]-1 solution in the presence of different concentration of ctDNA.

Figure S32. Absorption (A) and emission (B) spectra of neat EtBr in water and EtBrctDNA complex in Tris-HCl buffer. Inset of the Figure B showed the change in colour of EtBr solution before (a) and after (b) the intercalation with ctDNA.

Figure S33. Photographs showing the decrease in colour intensity of the ctDNA-EtBr complex with increase in P[Cys-PPh₃]⁺[Br⁻]-1 concentration in Tris-HCl buffer, indicating the leaching out of EtBr from its intercalated state into the bulk solvent.

Figure S34. Emission spectra of EtBr-ctDNA complex in the presence of different amount of P[Cys-PPh₃]⁺[Br⁻]-1 with 0.1 M NaCl (A) and 0.2 M NaCl (B) showing the decrease in extent of fluorescence quenching with increase of the ionic strength. The insets of the both figures showed the plot of I_0/I vs respective [P[Cys-PPh₃]⁺[Br⁻]-1], revealing the decrease in fluorescence quenching of EtBr-ctDNA complex by P[Cys-PPh₃]⁺[Br⁻]-1.