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1. Synthetic route and characterization of TMSS and StNPOSS monomer.
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Scheme S1. Synthetic route of TMSS monomer.
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Figure S1. '"H NMR spectrum of TMSS monomer. (400 MHz, CDCl;)

'H NMR (400 MHz, CDCl3) § 7.55 (d, J = 6.4 Hz, Ar-H, 2H), 7.45 (d, J = 6.4 Hz, Ar-H, 2H),
6.76 (dd, J = 14.4, 9.2 Hz, -CH=CH,, 1H), 5.85 (d, J = 14.4 Hz, -CH=CH,, 1H), 5.30 (d, J =
9.2 Hz, -CH=CH,, 1H), 0.33 (s, -Si(CH});, 9H).
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Scheme S2. Synthetic route of StNPOSS monomer.
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Figure S2. '"H NMR spectrum of SINPOSS monomer. (400 MHz, CDCl5)

'H NMR (400 MHz, CDCL3) § 7.72 (d, J = 7.9 Hz, Ar-H, 2H), 7.45 (d, J= 7.9 Hz, Ar-H, 2H),
6.74 (dd, J = 17.6, 10.8 Hz, -CH=CH,, 1H), 6.15 (s, -NH-, 1H), 5.83 (d, J= 17.6 Hz, -CH=CH.,,
1H), 5.35 (d, J = 10.8 Hz, -CH=CH,, 1H), 3.45 (q, J = 6.7 Hz, -CH2-NH-, 2H), 1.86 (dq, J =
13.8, 6.7 Hz, -CH,CH-, 7TH), 1.72 (p, J = 7.2 Hz, -CH,-CH,-NH-, 2H), 0.95 (d, J = 6.6 Hz, -
CH(CH,),, 42H), 0.75 — 0.37 (m, Si-CH,-, 16H).
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2. Synthesis and Characterization of Si- and F-containing BCPs.

Scheme S3. Synthetic route of PHFBMA homopolymer (macro-CTA).
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Figure S3. 'H, ’F NMR spectrums of PHFBMA homopolymer (macro RAFT CTA ). (400
MHz, CDCl;)




a PTMSS-b-PHFBMA NMR (CDCl,) b PTMSS-b-PPDFMA NMR (CDCly)
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Figure S4. Full '"H NMR spectrum of a) PTMSS-56-PHFBMA (400 MHz, CDCl3), b) PTMSS-
b-PPDFMA (400 MHz, CDCl;), ¢) PSEINPOSS-5-PHFBMA (400 MHz, CDCl;) and d) Poly(St-
co-StNPOSS)-b-PHFBMA (400 MHz, Acetone-ds) block copolymer.

Table S1. Characterization of PSINPOSS-b-PHFBMA with shorter chain length.

Mn?®

Sample (kg-mol) PDI® DPgpposs” DPirsma® N Morphology®
PStNPOSS | -b-PHBMFA | 8.4 1.07 1.5 30 88 DIS
PStNPOSS, -b-PHBMFA | 8.7 1.09 3.2 30 104 DIS
PSINPOSS, ,-b-PHBMFA | 10.0 1.07 6.3 30 135 DIS
PStNPOSS, .-b-PHBMFA 8.8 1.08 4.5 25 105 DIS

a) The number-average molecular weights (M,,) and polydispersity indexes (PDI) were obtained
by GPC in THF against PS standards. b) The degrees of polymerization of PStNPOSS-b-
PHFBMA were calculated by '"H-NMR. c¢) Calculation of the total degree of polymerization
(N) was performed based on a 118 A3 reference volume (v,) using the densities of PHFBMA
(1.55 g-cm3) and PSINPOSS (1.44 g-cm-3). d) Morphology was characterized by SAXS.
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Figure SS. a) and b) were SAXS profiles of PTMSS-6-PPDFMA and PTMSS-b6-PHFBMA
block copolymers after annealing completion (10 h at 160 °C), respectively. ¢) and d) were
SAXS profiles of PStNPOSS-b-PHFBMA block copolymers after annealing completion (1 h
at 160 °C). The morphologies and d-spacings were presented above the end of each SAXS
profile. D-spacings equaled to 2 n/q*, where q* was position of the first-order peak in SAXS.



3. Determination of y by temperature-dependent SAXS

Equations used to fit the disordered state scattering of a block copolymer are shown below. 2

(@) =A/S(@/W(a)—-2x)

S(q) = <S5 5i(Q)>+2<S5 r(@)>+<Sp r(q)>

W(q) = <Ss;51(@)><Sk r(@)>-<Ss; r(q)>*
<Sxx()>=1:fx*gPx(q)

<SsH@)>=7f5frgVsi (@ gPr (@)
re=WsNs+veNg/ (vsi- v)'/?
9Dx(q) ={1-[yx(q)Bx—1)+1] PV} /yx(q)
9Px(@) = 2{-1+yx(@+[yx(q)- Px-1)+1] P, D}/yx(q)?
yx(q) = Nxax*/6:q?

Dy=Myx/Mx

Where Si = Si-containing block (PTMSS or PStNPOSS), F = fluorinated block (£,
PHFBMA or PPDFMA), and X = Si-containing block or fluorinated block according to specific
BCP system, Py is the dispersity index determined by GPC, a is the statistical segment length,
N is volume-based degree of polymerization normalized by using 118 A3 as a reference volume,
f is the volume fraction of two segments, and v is the molar volume calculated by bulk density
of each segment.
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Figure S6. (a) SAXS data and fitlines for disordered PTMSS-b-PPDFMA at various
temperatures. The best fit was obtained by changing y as one of the adjustable parameters using
Leibler’s mean-field theory. (b) Temperature dependence of y between PTMSS and PPDFMA
and the corresponding best fitline. (c) to (f) are corresponding results of PTMSS-b-PHFBMA
and PStNPOSS-»-PHFBMA.
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Figure S7. Temperature dependence fitline of y value of fluorinated BCPs and conventional
PS-b-PMMA.

Table S2. y value of fluorinated BCPs and conventional PS-6-PMMA.

BCP Relation between T and y Xett (@150 °C)
PStNPOSS-b-PHFBMA x =40.45/T-0.0358 0.060
PTMSS-b-PPDFMA x =47.93/T+0.123 0.236
PTMSS-6-PHFBMA x =119.89/T-0.062 0.221
PS-b-PPDFMA? x ="78.51/T+0.167 0.353
PS-b-PHFBMA3 x =30.80/T+0.206 0.279
P2VP-b-PPDFMA* x =48.79/T+0.272 0.387
P2VP-b-PHFBMA* x =2.29/T+0.342 0.347
P3HS-b-PPDFMAS x =4.4/T+0.4742 0.485
P6AzOMe-b-PPDFMA® x=715.7/T-1.061 0.630

PS-6-PMMA / 0.030




4. Self-assembly performance of BCPs with one POSS or TMSS block
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Figure S8. (a) SAXS profiles of PTMSSs-b-PPDFMA; | after thermal annealing at 80 °C (1
min and 5 min), 160 °C (1 min, 5 min and 10 h). (b) SAXS profiles of PStNPOSS, 7-6-PHFBM A4
after thermal annealing at 80 °C (1 min), 100 °C (1 min and 1 h) and 160 °C (1 min, 1 h).
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Figure S9. (a) DSC curves of PTMSS 5 3-b-PPDFMA; | (T, 61 °C and 99 °C) and PTMSS; 5 o-
b-PHFBMA 4 (T, 62 °C and 116 °C) compared to PTMSS (T,, 113 °C) homopolymer. (b)
DSC curves of PStNPOSS,;-b-PHFBMA;5 (T,, 54 °C and 78 °C) and PStNPOSS,,;-b-
PHFBMA, (T, 54 °C; Ty, 130 °C) compared to PSINPOSS (T,,,, 150 °C) homopolymer.



5. Characterization of Poly(St-co-StNPOSS)-b-PHFBMA BCP

Poly(St;¢ 3-c0-StNPOSS o) -b-HFBMA s

*

13.0 nm
V3g* °
N 160°C1 h

\ /
~ \_ 160°C 1 min

e
sty
e R

100°C1h

Intensity (a.u.)

100°C 1 min

\k 80°C 1 min
" L " 1

0.0 0.5 1.0 1.5 2.0
q (nm™)

Figure S10. SAXS profiles of Poly(Sty3-co-StNPOSS)-b-PHFBMA 5 after thermal annealing
at 80 °C (1 min), 100 °C (1 min and 1 h) and 160 °C (1 min, 1 h).
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Figure S11. Styrene, StNPOSS and total monomer conversion against molecular weight in



second step RAFT polymerization of Poly(St-co-StNPOSS)-b-PHFBMA.
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Figure S12. SAXS profiles of Poly(St-co-StNPOSS)-b-PHFBMA block copolymers after
annealing completion (1 h at 160 °C). The morphologies and d-spacings were presented above
the end of each SAXS profile. D-spacings equaled to 2 n/q*, where q* was position of the first-
order peak in SAXS.
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Figure S13. DSC curves of Poly (St-co-StNPOSS)-6-PHFBMA BCP samples.
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Figure S14. GPC traces of synthesized PTMSS-b-PHFBMA.
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Figure S15. GPC traces of synthesized PStINPOSS-b-PHFBMA.
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Figure S16. GPC traces of synthesized Poly (St-co-StNPOSS)-b-PHFBMA.
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Figure S17. WAXS profiles of PolyStINPOSS¢ o-b-PHFBMA 4, under room temperature (black)
and after 1 hour at 160 °C, peaks positioned at 2.2 nm™! and 3.6 nm'! exists in both profiles.

5. Etch resistance characterization

Table S3. Polymers used for etch resistance characterization

Polymer Si wt% M.®  Change of Film Thickness® (nm, 60 s)
PMMA / 18.1 59.5
PS / 3.8 34.8
PHFBMA / 5.1 44.1
PTMSS 15.9% 3.5 18.1
Poly(St-co-StNPOSS)? 18.5% 5.7 12.9
PStNPOSS 22.3% 9.6 6.2

a) The molar ratio between PS and PStNPOSS, calculated by 'H NMR, was 2:1. b) Molecular weight

was measured by GPC in THF against PS standards. ¢) Change of film thickness after etching for
60 s.
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