Supporting Information

Multi-stimuli Responsive Bottlebrush-Colloid Janus Nanoparticles Toward Emulsion Interfacial Manipulation and Catalysis

Xi Chen, ${ }^{*}{ }^{\text {ab }}$ Zhangyan Chen, ${ }^{\mathrm{c}}$ and Li Ma ${ }^{\text {ab }}$
${ }^{\text {a}}$ Department of Materials Science, Fudan University, Shanghai 200433, China
${ }^{\text {b }}$ Zhuhai Fudan Innovation Institute, Zhuhai 518057, China
cSchool of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
*E-mail:xichen1678f@163.com

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PVBC}_{11.0 \mathrm{k}}-b-\mathrm{PMAA}_{11.2 \mathrm{k}}$.

Fig. S2 Relationship between relative viscosity and the concentration of $\mathrm{PVBC}_{11.0 \mathrm{k}}-b$ -

PMAA $_{11.2 \mathrm{k}}$ solution in DMF, deviating from the Einstein's viscosity equation at $0.4 \mathrm{mg} / \mathrm{mL}$.

Fig. S3 (a) TEM image and (b) DLS trace of PVBC- b-PMAA after crosslinking with Co^{2+} at a polymer concentration of $10 \mathrm{mg} / \mathrm{mL}$.

Fig. S4 Zeta potential of (1) PVBC-b-PMAA in DMF, (2) after the deprotonation by adding NaOH and (3) after the crosslinking with Co^{2+}.

Fig. S5 (a) TEM image and (b) DLS trace of PVBC-b-PMAA after electrostatic-mediated intramolecular crosslinking with Co^{2+} at a polymer concentration of $10 \mathrm{mg} / \mathrm{mL}$.

Fig. S6 DLS trace of PVBC-b-PMAA after electrostatic-mediated intramolecular crosslinking with $\mathrm{Co}^{2+}(22 \%$ molar ratio with respect to MAA) at a polymer concentration of $30 \mathrm{mg} / \mathrm{mL}$.

Fig. S7 TEM image (a) and DLS trace (b) of PVBC-b-PMAA after electrostatic-mediated intramolecular crosslinking with $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ at a polymer concentration of $30 \mathrm{mg} / \mathrm{mL}$.

Fig. S8 TGA trace of PVBC-cPMAA@Co.
For PVBC-cPMAA@Co, the theoretic weight fraction of cobalt can be calculated as:
$f_{\mathrm{Co}}=m_{\mathrm{Co}} /\left(m_{\mathrm{Co}}+m_{\text {polymer }}\right) \times 100 \%$
In the experimental section, $21.0 \mathrm{mg}(0.071 \mathrm{mmol})$ of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was reacted with 60 $\mathrm{mg}\left(2.73 \times 10^{-3} \mathrm{mmol}\right)$ of $\mathrm{PVBC}_{11 \mathrm{k}}-b-\mathrm{PMAA} 11.2 \mathrm{k}$. The weight fraction of Co in $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is 0.203 . Therefore, the theoretical of $m_{\mathrm{Co}}=21 \times 0.203=4.26 \mathrm{mg}$ in the final product. The
theoretical weight of PVBC-cPMAA $@ \mathrm{Co}=m_{\mathrm{Co}}+m_{\text {polymer }}=4.26+60=64.26 \mathrm{mg}$. The theoretical cobalt weight ratio is: $f_{\mathrm{Co}}=4.26 / 64.26 \times 100 \%=6.6 \%$.

The TGA is conducted in air to achieve a full elimination of the polymer, and the final product is $\mathrm{Co}_{3} \mathrm{O}_{4} \cdot{ }^{1}$ Therefore, the weight fraction of Co in the PVBC-cPMAA@Co is $177 / 241 \times 8.7 \%=6.4 \%$, which is in a good agreement of the theoretical value.

Fig. S9 TEM image (a) and XRD pattern (b) of PVBC-cPMAA@Pd after reduction.

Fig. S10 TGA trace of PVBC-cPMAA@Co-PDMEAMA.
Calculation of the weight faction of PDMEAMA:
The weight fraction of Co in the PVBC-cPMAA@Co-PDMEAMA JNP is $177 / 241 \times 5.1 \%=3.7 \%$. The weight ratio of the total polymer to Co is $96.3 / 3.7=26.027$. The weight ratio of the PVBC-cPMAA to Co is $93.6 / 6.4=14.625$ based on the TGA data in Fig. S8. The weight ratio of PDMEAMA to Co is $26.027-14.625=11.402$. Therefore, the weight fraction of PDMEAMA in PVBC-cPMAA@Co-PDMEAMA is $11.402 /(26.027+1) \times 100 \%$ $=42.1 \%$.

Fig. S11 TGA trace of PVBC- g-PNIPAM-cPMAA@Co-PDMEAMA.
Calculation of the weight faction of PNIPAM:
The weight fraction of Co in the PVBC- g-PNIPAM-cPMAA@Co-PDMEAMA JNP is $177 / 241 \times 2.3 \%=1.7 \%$. The weight ratio of total polymer to Co is $98.3 / 1.7=57.824$. The weight ratio of the polymer of PVBC-cPMAA and PDMEAMA to Co is 26.027 as calculated in Fig. S10. The weight ratio of the PNIPAM to Co is $57.824-26.027=31.796$. Therefore, the weight fraction of PNIPAM in PVBC- g-PNIPAM-cPMAA@Co-PDMEAMA is $31.796 /(57.824+1) \times 100 \%=54.1 \%$. The weight fraction of PDMEAMA in PVBC-cPMAA@Co-PDMEAMA is 42.1% as calculated in Fig. S12. Therefore, the weight fraction of PDMEAMA in PVBC- g-PNIPAM-cPMAA@Co-PDMEAMA is (1$0.541) * 0.421 * 100 \%=19.3 \%$. The weight ratio of PNIPAM/PDMEAMA $=51.4 / 20.4=2.8 / 1.0$. Calculation of the average DP of the grafted PNIPAM side chain:

The weight fraction of PVBC to Co is $11000 /(11000+112000) \times 93.6 / 6.4=7.247$ based on the TGA data in Fig. S6. The number of repeat unit of VBC is $11000 / M_{\mathrm{VBC}}(152.5)=72$. The weight ratio of PNIPAM $/ \mathrm{PVBC}=31.796 / 7.247=4.371 / 1=72 \times M_{\text {NIMA }}(113) \times \mathrm{DP}_{\text {PNIPAM }} / 11000$ $\mathrm{DP}_{\text {PNIPAM }}$ is calculated to be ~ 6.

Fig. S12 TEM image (a) and DLS trace (b) of PVBC- g-POEGMA-cPMAA@CoPDMEAMA.

Fig. S13 (a) Toluene/water emulsion stabilized with the PVBC- g-PNIPAM-cPMAA@CoPDMEAMA JNP at $35^{\circ} \mathrm{C}, \mathrm{pH}=6$ and (b) after increasing pH to 8; (c) CLSM images of bottom aqueous phase and inset the top oil phase after de-emulsification.

Fig. S14 (a) The conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in aqueous solution along increasing reaction time, catalyzed by PVBC- g-PNIPAM-cPMAA@CoPDMEAMA JNP at (1) $25^{\circ} \mathrm{C}, \mathrm{pH}=6$, (2) $35^{\circ} \mathrm{C}, \mathrm{pH}=6$, (3) $25^{\circ} \mathrm{C}, \mathrm{pH}=8$ and (4) $35^{\circ} \mathrm{C}, \mathrm{pH}=8$; (b) The conversion of nitrobenzene to aniline along increasing reaction time, catalyzed by PVBC- g-PNIPAM-cPMAA@Co-PDMEAMA JNP at (1) $35{ }^{\circ} \mathrm{C}, \mathrm{pH}=6$, (2) $25^{\circ} \mathrm{C}, \mathrm{pH}=8$, (3)
$25^{\circ} \mathrm{C}, \mathrm{pH}=6$ and (4) $35^{\circ} \mathrm{C}, \mathrm{pH}=8$.

References

1. T. Zhou, T. Zhang, J. Deng, R. Zhang, Z. Lou and L. Wang, Sensor Actu. B-Chem., 2017, 242, 369-377.
