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Abstract: The application of sodium ion batteries (SIBs) in future large-scale energy storage equipment is facing great 
challenges due to its unstable cathode materials. Herein, monocrystalline orthorhombic Na0.44Mn0.9Li0.1O2 with high 
crystallinity has been designed and synthesized via a simple sol–gel method. The wide tunnel structure of 
Na0.44Mn0.9Li0.1O2 can not only adapt to structural strain in the electrochemical process, but also provide the rapid 
migration path for Na+. Furthermore, the introduction of Li promotes the transformation from trivalent manganese to 
tetravalent manganese so that the structural distortion caused by Jahn-Teller effect is effectively alleviated. High Na+ 
mobility and low Na+ diffusion resistance are another guarantee of its excellent rate performance. As a consequence, 
Na0.44Mn0.9Li0.1O2 electrode delivers an initial discharge capacity of 111.71 mAh g−1 at 1 C with extreme retention of 
80% after 900 cycles. So far, to the best of our knowledge, the as-systhesized Na0.44Mn0.9Li0.1O2 shows the most 
exellent stability at 1 C. Such a material with superior stability and high rate performance is suggested to be one of the 
promising cathodes for SIBs.
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Results and Discussion

Figure S1. XRD patterns of NM.

Figure S2. Cycling performance of NML at 0.2C.
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Figure S3. Average voltage of NML and NM.

Figure S4. (a) Cycling performance of NML0.2 at 1C; (b) Charge-discharge profiles of different cycles 
at 1C.

Figure S5. Rate capabilities of NML and NM.
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Figure S6. CV profiles of NML and NM in the thired cycle within the voltage range of 2.0-4.0V.

Figure S7. E- plot of single titration of NML during the charging process.
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Figure S8.Linear fitting diagram of E-1/2 during charging process.

Figure S9. E- plot of single titration of NML during the discharging process.



SUPPORTING INFORMATION        

6

Figure S10. Linear fitting diagram of E-1/2 during charging process.

Table S1. ICP results of Na0.44Mn0.9Li0.1O2  and Na0.44MnO2 sample.

Table S2. Crystallographic parameters of Na0.44Mn0.9Li0.1O2 refined by the Rietveld method.

Na0.44Mn0.9Li0.1O2

Space group Pbam(No.55)
Rwp
Rp
2

a(Å)
b(Å)
c(Å)
V(Å3)

2.41%
1.81%
1.742
9.08265(6)
26.35667(4)
2.82499(2)
676.27(1)

Measured atomic ratiosamples Na    Mn     Li
Na0.44Mn0.9Li0.1O2 0.4407       0.9032        0.0968
Na0.44MnO2 0.4378       1.0202      0
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Table S3. Redox peak and mechanism in CV curve of NML

Anodic peak(V) cathodic peak(V) Difference(V) Mechanism

2.28 2.09 0.19 1/4 Na3

2.53 2.26 0.27 1/4 Na2

2.73 2.55 0.18
1/4 Na3 + 1/4 

Na1

3.04 2.95 0.09 1/4 Na2

3.27 3.17 0.10
1/4 Na2 + 1/4 

Na1

3.48 3.42 0.06 1/4 Na2

Table S4. Summary of Na+ diffusion coefficients for sodium ion batteries in recent years.

Cathode materials DNa (cm-2 s-1 ) Method Ref.

Na0.44Mn0.89Ti0.11O2 3.6 × 10−15 −8.6 × 10−14 GITT [1]

Na0.44MnO2  NWs 1.17× 10−13 GITT [2]

Na0.44MnO2 NF 2.98 × 10−16 −5.60 × 10−15 GITT [3]

Na0.44MnO2 NR 0.81 × 10−19 −1.46 × 10−18 GITT [3]

Na0.67Mn0.55Ni0.25Li0.2O2

Na2/3Fe2/9Ni2/9Mn5/9O2

Na2/3Fe1/2Mn1/2O2

Na2/3Ni1/3Mn5/9Al1/9O2

Na0.62Ti0.37Cr0.63O2

9.81 × 10−14

10−12 – 10-11

1.83 × 10−13

2.49 × 10-12

2 × 10-13 - 1 ×10-12

PITT

GITT

GITT

GITT

GITT

[4]

[5]

[6]

[7]

[8]

Na0.44Mn0.9Li0.1O2 0.25×10−10 - 2.27×10−10 GITT This work



SUPPORTING INFORMATION        

8

Table S5 Fitting parameters for the equivalent circuit model shown in Fig 6c

RΩ Rf Rct Total(RΩ+Rf+Rct)
5th cycles 11.93 19.97 9.205 53.035
50th cycles 10.19 15.07 7.993 33.253
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