S1

Supplemental Information

Extraction of the Trivalent Transplutonium Actinides Americium through Einsteinium by the Sulfur Donor Cyanex 301

Nathan Bessen^a, Qiang Yan^b, Ning Pu^b, Jing Chen^b, Chao Xu^{b,*}, Jenifer Shafer^{a,*}

a: Colorado School of Mines, 1500 Illinois St, Golden, CO 80401

b: Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

Table of Contents

Table S1. Emission wavelengths of lanthanides used in ICP-OES
Table S2. Calculated thermodynamic parameters for the reaction $M(C301)3 + NO3 - \rightleftharpoons MC3012(NO3) + C301 - \Delta G$ is calculated at a temperature of 298.15 K4
Figure S1. Structure of 3,4,3-LI(1,2-HOPO)5
Figure S2. The pH corrected distribution ratio of the lanthanides Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu
Figure S3. FTIR spectra of 20% tributyl phosphate (TBP) dissolved in n-dodecane following contact with 15 M HNO ₃ . The TBP organic phase contains 0.17 M H ₂ O in this system. No broad The band at 1648 cm ⁻¹ is from the TBP·HNO ₃ species and no -OH stretch around 3000 cm ⁻¹ is observed.
Optimized Geometries
Am(C301) ₃
Am(C301) ₂ (NO ₃)
Nd(C301) ₃
Nd(C301) ₂ (NO ₃)

Wavelength	Motal	Wavelength
(nm)	Metal	(nm)
398.852	Dy	353.171
422.293	Но	345.600
430.358	Er	337.271
443.432	Tm	384.802
393.048	Yb	328.937
342.247	Lu	547.669
	Wavelength (nm) 398.852 422.293 430.358 443.432 393.048 342.247	Wavelength (nm) Metal 398.852 Dy 422.293 Ho 430.358 Er 443.432 Tm 393.048 Yb 342.247 Lu

Table S1. Emission wavelengths of lanthanides used in ICP-OES.

Metal	ΔG	ΔΗ	ΔS
	(kJ/mol)	(kJ/mol)	(J/mol·K)
Lanthanide			
Ce	15.82	18.58	9.25
Pr	12.97	15.48	8.41
Pm	16.40	20.96	15.27
Sm	12.80	31.30	61.97
Eu	19.54	30.96	38.20
Tb	17.28	31.34	47.11
Dy	15.23	26.44	37.57
Но	8.24	30.96	76.27
Er	6.90	27.20	67.95
Tm	4.48	31.34	90.17
Lu	6.95	26.19	64.68
Actinide			
Am	19.04	21.84	9.29
Cm	18.62	22.51	13.01
Bk	23.22	29.16	20.04
Cf	21.09	27.07	20.08
Es	23.81	31.05	24.31

Table S2. Calculated thermodynamic parameters for the reaction $M(C301)_3 + NO_3^- \rightleftharpoons M(C301)_2(NO_3) + C301^-$. ΔG is calculated at a temperature of 298.15 K.

Figure S1. Structure of 3,4,3-LI(1,2-HOPO).

Figure S2. The pH corrected distribution ratio of the lanthanides Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu with 0.5024 M HC301 at an average pC_{H^+} of 4.46. The value for n_{H^+} (1.13) was obtained from radiotracer experiments with Eu.

Figure S3. FTIR spectra of 20% tributyl phosphate (TBP) dissolved in n-dodecane following contact with 15 M HNO₃. The TBP organic phase contains 0.17 M H₂O in this system. No broad The band at 1648 cm⁻¹ is from the TBP·HNO₃ species and no -OH stretch around 3000 cm⁻¹ is observed. Water content was determined by Karl Fischer titration.

[1] Ferraro, J.R., Borkowski, M., Chiarizia, R. and McAlister, D.R., 2001. FT-IR spectroscopy of nitric acid in TBP/octane solution. Solvent Extraction and Ion Exchange, 19(6), pp.981-992.

Optimized Geometries.

Coordinates are representative of the optimized structures of all lanthanide and actinide complexes modeled.

Am(C301)₃

С	-3.34540759	-2.90041902	0.80716076
S	2.44053787	-0.81160548	-1.48082444
Am	0.17554057	-0.00000000	-0.00000000
S	2.44053787	0.81160548	1.48082444
S	-0.27618505	2.42071506	-1.38337778
S	-1.75162280	-1.42866993	-1.48995462
S	-1.75162280	1.42866993	1.48995462
S	-0.27618505	-2.42071506	1.38337778
Р	-1.71980314	-2.82918494	-0.00364666
Р	-1.71980314	2.82918494	0.00364666
Р	3.59035078	-0.00000000	-0.00000000
С	4.68474461	1.27289595	-0.69646039
С	-1.44489696	-4.47974795	-0.71433944
С	-3.34540759	2.90041902	-0.80716076
С	-1.44489696	4.47974795	0.71433944
С	4.68474461	-1.27289595	0.69646039
Η	-3.32497382	-3.67550359	1.58562711
Η	-4.10999205	-3.14000985	0.05556288
Η	-3.56102288	-1.92437908	1.25910754
Η	5.31075974	1.68282731	0.10785318
Η	4.07270692	2.07017125	-1.13521300
Η	5.31654123	0.81759495	-1.47115287
Η	-0.47477649	-4.49393937	-1.22550142
Η	-2.24814063	-4.69827238	-1.43117171
Η	-1.45141463	-5.22076609	0.09693026
Η	-3.32497382	3.67550359	-1.58562711
Η	-4.10999205	3.14000985	-0.05556288
Η	-3.56102288	1.92437908	-1.25910754
Η	-0.47477649	4.49393937	1.22550142
Η	-2.24814063	4.69827238	1.43117171
Η	-1.45141463	5.22076609	-0.09693026
Η	5.31075974	-1.68282731	-0.10785318
Н	4.07270692	-2.07017125	1.13521300
Η	5.31654123	-0.81759495	1.47115287
••••			

Am(C	2301	$)_{2}(N$	$O_3)$	
------	------	-----------	--------	--

0	-2.08009326	-3.99843583	0.40082905
S	2.18503174	-1.06214484	-1.43257272

Am	-0.22581121	-0.33847483	-0.18537492
S	1.81115292	0.61258194	1.47816941
S	-0.42862827	2.02988095	-1.69289553
0	-2.07550158	-1.98287868	-0.49752654
S	-2.12141053	1.27884741	1.11901539
0	-0.40104486	-2.61139321	0.76577400
Ν	-1.54344889	-2.90751348	0.22868136
Р	-1.61680622	2.75740601	-0.20119486
Р	3.12959341	-0.00910651	0.04456802
С	3.97320927	1.43349830	-0.67198059
Н	4.94116695	-0.43405572	1.57194302
С	-3.11924119	3.49887800	-0.90255620
С	-0.75991216	4.09689564	0.67904529
С	4.43131120	-1.02668117	0.80018601
Н	-3.67090351	2.73459940	-1.46272703
Н	0.16662852	3.70022558	1.11260115
Н	-1.41284028	4.47829379	1.47587948
Н	4.49913692	1.97177275	0.12854954
Н	3.22460969	2.08941724	-1.13273979
Н	4.69094063	1.09174139	-1.42983871
Н	-0.52709858	4.90033821	-0.03287213
Η	5.14594848	-1.32513548	0.02091284
Н	3.97664751	-1.91690877	1.25133182
Н	-2.83074773	4.32038971	-1.57261928
Н	-3.73985718	3.88419863	-0.08201920

Nd(C301)₃

С	-3.43167915	-3.09919259	0.62759237
S	2.37064894	-0.65924721	-1.55212679
Nd	0.08229736	-0.00000000	-0.00000000
S	2.37064894	0.65924721	1.55212679
S	-0.50374026	2.31632678	-1.53587528
S	-1.68989403	-1.59942057	-1.54110284
S	-1.68989403	1.59942057	1.54110284
S	-0.50374026	-2.31632678	1.53587528
Р	-1.73044472	-2.92027327	0.01701285
Р	-1.73044472	2.92027327	-0.01701285
Р	3.52405082	-0.00000000	-0.00000000
С	4.61646956	1.33571405	-0.56576223
С	-1.23073930	-4.56859465	-0.55986451
С	-3.43167915	3.09919259	-0.62759237
С	-1.23073930	4.56859465	0.55986451
С	4.61646956	-1.33571405	0.56576223
Н	-3.44229504	-3.82804748	1.44939736

Η	-4.07041458	-3.44969504	-0.19454435
Η	-3.78812902	-2.12657711	0.98777975
Η	5.24215518	1.66563980	0.27453171
Η	4.00389783	2.17136438	-0.92469667
Η	5.24878762	0.95946486	-1.38125829
Η	-0.20384353	-4.51751827	-0.94127244
Η	-1.91114049	-4.88751262	-1.36120420
Η	-1.28281311	-5.27357326	0.28082098
Η	-3.44229504	3.82804748	-1.44939736
Η	-4.07041458	3.44969504	0.19454435
Η	-3.78812902	2.12657711	-0.98777975
Η	-0.20384353	4.51751827	0.94127244
Η	-1.91114049	4.88751262	1.36120420
Η	-1.28281311	5.27357326	-0.28082098
Η	5.24215518	-1.66563980	-0.27453171
Η	4.00389783	-2.17136438	0.92469667
Η	5.24878762	-0.95946486	1.38125829

 $Nd(C301)_2(NO_3)$

0	-1 99653200	-3 46276900	0.05279800
Š	2 32270100	-0 52985600	-1 54692900
Nd	0.05199000	0.12449100	-0.00637000
S	2 27862100	0.40235400	1 69382900
S	-0 79490500	2 19237700	-1 72250200
0	-1 30872800	-1 66254000	-1 02562600
s	-1 59892900	1 82262600	1 53178000
0	-1.57672700	-1.02202000	1.08672400
N N	1 3032/500	2 30628400	0.03018500
IN D	-1.39324300	2.59028400	0.03918300
г D	-1.64212400	2.90030000	-0.14469100
r C	5.45252400	-0.10141200	0.11084000
C II	4.66/90300	1.13819400	-0.23954900
Н	5.02132300	-1.42238/00	1.43626400
C	-3.60344300	3.07343800	-0.56995500
С	-1.29550500	4.66585900	0.18221900
С	4.40252700	-1.64418100	0.55637100
Η	-3.98452600	2.06635800	-0.77667500
Н	-0.23051000	4.65747500	0.44254100
Н	-1.88167700	5.07304900	1.01709400
Н	5.28257500	1.30660800	0.65499000
Н	4.13884200	2.06021500	-0.50852600
Н	5.30059700	0.81285400	-1.07634700
Н	-1.45510000	5.27091900	-0.72059000
Н	5 04172100	-1 92327000	-0 29201000
Н	3 70740000	-2 46091800	0 78487900
Н	-3 71585000	3 70650700	-1 46039800
Н	-4 14914400	3 51410300	0 27542200
H H H H	5.04172100 3.70740000 -3.71585000 -4.14914400	-1.92327000 -2.46091800 3.70650700 3.51410300	-0.29201000 0.78487900 -1.46039800 0.27542200