Electronic Supporting Information

Geometrically Isomeric Pt₂Ag₂ Acetylide Complexes of

2,6-Bis(diphenylphosphino)pyridine: Luminescent and Vapochromic

Properties

Jian Quan,^{a,c} Zhong-Hui Chen,^a Xu Zhang,^a Jin-Yun Wang,^{a,*} Li-Yi Zhang,^a and Zhong-Ning

Chen^{a,b,*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. E-mail: czn@fjirsm.ac.cn

^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China

^c University of Chinese Academy of Sciences, Beijing, 100039, China

Experimental Section

General Procedures and Materials. All operations were carried out under dry argon atmosphere by using Schlenk techniques at ambient temperature and vacuum-line system unless specified. The solvents were dried, distilled and degassed prior to use except those for spectroscopic measurements were of spectroscopic grade. $Ag(tht)(SO_3CF_3)$, $Pt(COD)Cl_2$ (COD = 1,5-cycloocatadiene) and alkynl ligands were accessible by similar synthetic procedures in the literatures.¹⁻³ 2,6-Dichloropyridine, AgSbF₆, HC=CC₆H₅, and HC=CC₆H₄CF₃-4 were commercially available.

2,6-Bis(diphenylphosphino)pyridine ((Ph₂P)₂py). Ph₂PCl (12 mL, 65 mmol) in THF (20 mL) was added slowly to THF (100 mL) with lithium (500 mg, 72 mmol). Upon stirring for 1 h, the reaction mixture gradually turned to deep red, which was then refluxed at 70 °C for 3 h. Upon cooling down, the excess Li was removed and the deep red solution was kept at 0 °C in an ice bath. To the solution was added dropwise a THF (30 mL) solution of 2,6-dichloropyridine (4.0 g, 27 mmol). The reaction mixture was warmed to room temperature and then refluxed at 70 °C for 1 h to give a pale-yellow suspension. Upon cooling to room temperature, the solvent was removed under reduced pressure and a saturated NH₄Cl solution (60 mL) was added. The product as extracted with CH₂Cl₂ (3 × 50 mL) and the combined organic layers were washed with saturated NaCl solution (50 mL) and dried with MgSO₄. After concentrated under vacuum, the residue was purified by crystallization in ethanol as white solid. Yield: 80% (9.6 g). m.p.: 124-125 °C. Anal. Calcd for C₂₉H₂₃NP₂: C, 77.84; H, 5.18; N, 3.13. Found: C, 77.67; H, 5.20; N, 3.09. ¹H NMR (400 MHz, CDCl₃, ppm): 7.01 (m, 3,5-py-H, 2H), 7.08-7.48 (m, 4-Py-H, C₆H₅, 21H). ³¹P NMR (162 MHZ, CDCl₃, ppm): -4.09 ppm. ESI-MS: m/z 448.6 ([M + H]⁺).

Physical Measurements. The ¹H and ³¹P NMR spectra were measured on a Bruker Avance III (400 MHz) spectrometer. The UV-Vis absorption spectra were measured on a Perkin-Elmer Lambda 25 UV-vis spectrophotometer. The infrared spectra (IR) were recorded on a Magna 750 FT-IR spectrophotometer with KBr pellets. The elemental analyses (C, H, N) were carried out on a Perkin-Elmer model 240 C elemental analyzer. The electrospray ion mass spectra (ESI-MS) were recorded on a Finnigan DECAX-30000 LCQ mass spectrometer using dichloromethane/methanol as mobile phase. The emission and excitation spectra together with the emission lifetimes in various states were determined on an Edinburgh FLS920 fluorescence spectrometer. The emission quantum yield (Φ_{em}) in various states were determined by the integrating

sphere (142 mm in diameter) using an Edinburgh FLS920 Spectrofluorophotometer. The emission quantum yield (Φ_{em}) in degassed dichloromethane solution at room temperature was estimated using [Ru(bpy)₃](PF₆)₂ in acetonitrile as the reference standard ($\Phi_{em} = 0.062$). Luminescence vapochromic experiments were performed upon sufficient exposure of the quartz slices to various saturated VOC vapors at ambient temperature for about 10 min. The PMMA films were made on quartz slides (2.5 cm × 4 cm) by spin-coating.

Crystal Structural Determination. Crystals suitable for X-ray crystallographic measurement were grown by layering n-heptane onto the corresponding solutions. Single crystals were measured on Rigaku Saturn 70 CCD or Bruker D8 VENTURE diffractometer by the ω scan technique at room temperature using graphite-monochromated Mo-Ka ($\lambda = 0.71073 \text{ A}^{\circ}$) radiation. The CrystalClear or APEX III software package was used for data reduction and empirical absorption correction. The structures were solved by direct method and the heavy atoms were located from E-map. The remaining non-hydrogen atoms were determined from the successive difference Fourier syntheses. The non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were generated geometrically with isotropic thermal parameters. The structures were refined on F^2 by full-matrix least-squares method using the SHELXTL-97 program package.⁴ In the crystal structure of **2b**-2.5MeCN, the solvate molecules were treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON due to severe disorder of these solvate molecules in the lattices. The number of solvate molecules of crystal **2b**-2.5MeCN was calculated by void volume and residual electron density in crystal lattice, and further confirmed by weight loss according to thermogravimetry-mass spectrometry (TG-MS) analysis.

Computational Methodology. All the calculations were performed in Gaussian 09 program package.⁵ Firstly, the geometrical structures as isolated molecules of **2b** in the ground state (G_0) and **1b**, **2b** and **4b** in the lowest-energy triplet state (T_1) were optimized, respectively, by the restricted and unrestricted density functional theory (DFT) method with the B3LYP functional.⁶ The initial structures were extracted from the crystal structural parameters by X-ray crystallography. Then, in order to analyze the spectroscopic properties, 80 singlet (for **2b** based on the optimized G_0 structure) and 6 triplet (for **1b**, **2b** and **4b** on the optimized T_1 structures) excited states of these complexes were calculated by time-dependent DFT (TD-DFT) method⁷⁻⁹ with the same functional used in the optimization process. The solvent effects of CH₂Cl₂ was included by using the

polarizable continuum model method (PCM).^{10,11} To understand deeply the emission properties of **2b** with different intramolecular conformations, the calculations of triplet excited state were also implemented for **2b**·3CH₂Cl₂ and **2b**·2.5MeCN on the basis of the crystal structural data without geometrical optimization. In these calculations, the Stuttgart-Dresden (SDD) basis set and the effective core potentials (ECPs)¹² were used to describe the Pt and Ag atoms, while other non-metal atoms of P, F, O, N, C and H were described by the all-electron basis set of 6-31G**. Visualization of the frontier molecular orbitals were performed by GaussView. The contributions of fragments to orbitals in the electronic excitation process were analysed by the Ros & Schuit method¹³ (C-squared population analysis method, SCPA) in Multiwfn 3.8 program.¹⁴

	2a •11/4CH ₂ Cl ₂	3a •5/2CH ₂ Cl ₂	1b·4CH ₂ Cl ₂	2b	2b ·3CH ₂ Cl ₂	2b·5/2MeCN	4b
chemical formula	$\begin{array}{c} C_{94.75}H_{71.5}Ag_2Cl_{5.5}\\ F_6N_2O_6P_4Pt_2\ S_2 \end{array}$	$\begin{array}{c} C_{98.5}H_{67}Ag_2Cl_5F_{18}\\ N_2O_6P_4Pt_2S_2 \end{array}$	$\begin{array}{l} C_{108}H_{98}Ag_{2}Cl_{8}\\ F_{6}N_{2}O_{18}P_{4}Pt_{2}S_{2} \end{array}$	$\begin{array}{c} C_{92}H_{66}Ag_{2}F_{6}N_{2}\\ O_{6}P_{4}Pt_{2}S_{2} \end{array}$	$C_{95}H_{72}Ag_2Cl_6F_6\\N_2O_6P_4Pt_2S_2$	$\begin{array}{c} C_{97}H_{73.5}Ag_{2}F_{6}\\ N_{4.5}O_{6}P_{4}Pt_{2}S_{2} \end{array}$	$\begin{array}{c} C_{100}H_{58}Ag_2F_{30} \\ N_2O_6P_4Pt_2S_2 \end{array}$
formula weight	2436.93	2687.71	2903.40	2203.38	2458.16	2306.02	2747.40
Crystal system	orthorhombic	triclinic	triclinic	orthorhombic	monoclinic	monoclinic	monoclinic
space group	Pbca	P 1	$P \overline{1}$	<i>C</i> 2221	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/c$
<i>T</i> (K)	293(2)	293(2)	293(2)	293(2)	100(2)	150(2)	298(2)
<i>a</i> (Å)	13.6978(10)	21.242(3)	14.5178(2)	19.271(2)	14.8764(6)	13.9577(10)	27.930(4)
<i>b</i> (Å)	27.641(2)	25.331(3)	15.031(2)	19.620(2)	41.6942(17)	25.4328(17)	13.1649(16)
<i>c</i> (Å)	50.357(4)	25.716(4)	16.7816(3)	22.773(3)	16.0997(6)	25.5005(14)	26.744(4)
α (°)		117.242(6)	115.005(4)				
β (°)		94.361(11)	111.540(7)		116.1220(10)	102.251(2)	104.657(2)
γ (°)		109.512(8)	92.567(6)				
$V(Å^3)$	19066(3)	11155(3)	2998.87(17)	14245	8966.0(6)	8846.1(10)	9514(2)
Z	8	4	1	4	4	4	4
density (g/cm ³)	1.698	1.600	1.608	1.700	1.821	1.731	1.918
μ (mm ⁻¹)	3.660	3.139	2.984	3.878	3.907	3.779	3.565
$R_{ m int}$	0.0406	0.1229	0.0342	0.0558	0.362	0.0792	0.0435
R_1^a [I>2 σ (I)]	0.0524	0.0820	0.0438	0.0352	0.0741	0.0483	0.0374
wR_2^b [I>2 σ (I)]	0.1416	0.2084	0.1252	0.0898	0.1724	0.1105	0.1128
GOF	1.083	1.023	1.042	1.036	1.169	1.039	0.849
${}^{a}R_{1} = \Sigma \mathbf{F}_{o} - \mathbf{F}_{c} / \Sigma]$	$F_{o} , \qquad {}^{b}wR_{2} = [\Sigma w(F$	$F_{o} - F_{c})^{2}/\Sigma w F_{o} ^{2}]^{1/2}.$					

Table S1. Crystallographic Data for cis-Pt₂Ag₂ Complexes 2a and 3a and trans-Pt₂Ag₂ Complexes 1b·4CH₂Cl₂, 2b, 2b·3CH₂Cl₂, 2b·2.5MeCN and 4b.

2a ·11/4CH ₂ Cl ₂	$3a \cdot 5/2CH_2Cl_2$	3a ·5/2CH ₂ Cl ₂		2b		2b·3CH ₂ Cl ₂		2b·5/2MeCN	
Pt1-Ag1 3.1251(6)	Pt1-Ag1	3.0975(11)	Pt1-Ag1	2.9648(6)	Pt1-Ag1	2.9352(7)	Pt1-Ag1	3.0862(6)	
Pt1-Ag2 3.0607(6)	Pt1-Ag2	3.0606(11)			Pt1-Ag2	2.9942(8)	Pt1-Ag1a	3.1521(6)	
Pt2-Ag1 3.0811(6)	Pt2-Ag1	3.2940(12)	Pt2-Ag1	2.9992(6)	Pt2-Ag1	3.0587(8)	Pt2-Ag2	3.0349(6)	
Pt2-Ag2 2.9921(6)	Pt2-Ag2	2.9298(11)			Pt2-Ag2	2.9873(8)	Pt2-Ag2a	3.0500(6)	
Ag1-Ag2 3.0234(8)	Ag1-Ag2	3.0611(15)							
Pt1-C59 2.011(6)	Pt1-C117	2.036(10)	Pt1-C30	2.013(6)	Pt1-C59	2.001(9)	Pt1-C1	2.005(6)	
Pt1-C67 2.004(6)	Pt1-C126	1.990(11)			Pt1-C67	2.008(9)	Pt1-C9	1.997(6)	
Pt1-P1 2.3290(15) Pt1-P1	2.342(3)	Pt1-P1	2.3082(16)	Pt1-P1	2.307(2)	Pt1-P1	2.3097(16)	
Pt1-P3 2.3314(15) Pt1-P3	2.307(3)			Pt1-P2	2.313(2)	Pt1-P2	2.3156(16)	
Pt2-C75 2.019(6)	Pt2-C135	2.003(11)	Pt2-C38	2.006(7)	Pt2-C75	1.994(9)	Pt2-C46	2.008(6)	
Pt2-C83 2.006(6)	Pt2-C144	2.031(14)			Pt2-C83	2.024(10)	Pt2-C54	2.002(5)	
Pt2-P2 2.3229(15) Pt2-P2	2.321(3)	Pt2-P2	2.3063(18)	Pt2-P3	2.311(2)	Pt2-P3	2.3162(14)	
Pt2-P4 2.3062(14) Pt2-P4	2.320(3)			Pt2-P4	2.311(2)	Pt2-P4	2.3077(14)	
Ag1-C67 2.281(6)	Ag1-C117	2.270(7)	Ag1-C30	2.290(5)	Ag1-C59	2.323(9)	Ag1-C1	2.301(5)	
Ag1-C75 2.254(6)	Ag1-C135	2.282(10)	Ag1-C38	2.359(7)	Ag1-C75	2.296(9)	Ag1-C9	2.288(5)	
Ag2-C59 2.259(6)	Ag2-C126	2.324(7)	Ag2-C83	2.329(9)	Ag2-C67	2.338(9)	Ag2-C46	2.346(5)	
Ag2-C83 2.322(6)	Ag2-C144	2.341(8)					Ag2-C54	2.341(5)	
Ag2-N2 2.626(5)	Ag2-N2	2.379(8)							
C67-Pt1-P3 170.37(17) C117-Pt1-P3	173.9(3)	C30-Pt1-C30a	175.3(3)	C59-Pt1-C67	167.7(4)	C1-Pt1-C9	169.7(2)	
C59-Pt1-P1 174.78(17) C126-Pt1-P1	169.5(3)	P1-Pt1-P1a	171.14(8)	P1-Pt1-P2	172.32(8)	P1-Pt1-P2	170.82(5)	
C75-Pt2-P4 176.84(18) C135-Pt2-P4	175.4(3)	C38-Pt2-C38	164.7(4)	C75-Pt2-C83	170.5(4)	C54-Pt2-C46	167.0(2)	
C83-Pt2-P2 170.61(16) C144-Pt2-P2	169.6(2)	P2-Pt2-P2a	170.73(9)	P3-Pt2-P4	168.90(8)	P4-Pt2-P3	171.98(5)	
C75-Ag1-C6 174.1(2)	C117-Ag1-C135	156.2(3)	C30-Ag1-C38	161.7(2)	C75-Ag1-C5	165.9(3)	C9-Ag1-C1	168.4(2)	
Č59-Ag2-C8 153.2(2)	C126-Ag2-C144	127.8(3)			Ĉ83-Ag2-C6	163.7(3)	C54-Ag2-C4	154.64(19)	
Č59-Ag2-N2 90.24(17)	C126-Ag2-N2	112.3(3)			-		-		
C83-Ag2-N2 112.20(18) C144-Ag2-N2	117.5(4)							

Table S2. Selected Interatomic Distances (Å) and Bond Angles (°) for cis-Pt₂Ag₂ Complexes 2a and 3a and trans-Pt₂Ag₂ Complexes 2b, $2b \cdot 3CH_2Cl_2$ and $2b \cdot 2.5MeCN$.

orbital	energy (eV)	MO contribution (%)							
orona	energy (Pt	(s/p/d)	Ag (s/p/d)		C≡CC ₆ H ₅	(Ph ₂ P) ₂ py			
LUMO	-2.60	19	.60 (30/58/13)	19.88 (47/49/4	4)	38.35	22.17			
HOM	-6.50	11.	.42 (2/5/93)	31.18 (48/4/4	8)	53.45	3.95			
HOM	D-1 -6.73	15	.30 (16/9/74)	14.48 (41/15/-	44)	64.05	6.18			
HOM	D-3 -6.91	24	.58 (10/4/86)	16.75 (58/11/2	31)	53.06	5.61			
state	<i>E</i> , nm (eV)	O.S.	transition (co	ntrib.)	assig	nment	measured (nm)			
S_1	373 (3.32)	0.2274	HOMO→LU	MO (96%)	¹ MC	/ ¹ IL/ ¹ LLCT	359			
S_2	350 (3.54)	0.2566	HOMO-1→L	UMO (92%)	¹ MC	^{/1} IL/ ¹ LLCT	340			
S_5	330 (3.76)	0.2639	HOMO - 3→L	UMO (92%)	^{1}MC	^{/1} IL/ ¹ LLCT				

Table S3. The Partial Molecular Orbital Compositions (%) by SCPA Approach (C-squared Population Analysis Proposed by Ros & Schuit) in the Ground State and Absorption Transitions for cis- Pt_2Ag_2 complex **2a** in CH₂Cl₂ Solution Calculated by the TD-DFT Method at the B3LYP Level.

Table S4. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and Emission Transitions for for cis- Pt_2Ag_2 complex **2a** in CH₂Cl₂ Solution Calculated by TD-DFT Method at the B3LYP Level.

orbital	energy (eV)	MO contribution (%)						
oronar	chergy (cv)	Pt (s/p/d)	Ag (s/p/d)	C≡CC ₆ H ₅	(Ph ₂ P) ₂ py			
LUMO	-3.07	24.63 (14/30/56)	12.67 (64/29/7)	32.81	29.89			
HOMO	-6.19	23.29 (9/6/85)	18.42 (5/9/86)	51.96	6.34			
H-1	-6.55	9.33 (5/9/87)	27.12 (45/12/44)	58.93	4.62			
H-2	-6.69	13.90 (11/9/80)	13.71 (36/22/41)	66.37	6.02			
Н-3	-6.89	17.18 (10/8/81)	17.52 (57/11/32)	58.91	6.39			

state	<i>E</i> , nm (eV)	O.S.	transition (contrib.)	assignment	measured (nm)
T1	646 (1.92)	0.0000	HOMO→LUMO (83%)	³ MC/ ³ IL/ ³ LLCT	642
T_2	456 (2.72)	0.0000	H-1→LUMO (51%)	³ MC/ ³ IL/ ³ LLCT	
			H-2→LUMO (9%)	³ IL/ ³ MC/ ³ LLCT/ ³ LMCT	
T ₃	446 (2.78)	0.0000	H-3→LUMO (46%)	³ MC/ ³ IL/ ³ LLCT	

orbital		energy (e	eV)	MO contribution (%)						
			Pt (s	a/p/d)	Ag (s/p/d)		C≡CC ₆ H ₅	(Ph ₂ P) ₂ py		
LUMC)+6	-1.80	17.8	6 (46/15/39)	14.39 (92/6	/1)	7.46	60.29		
LUMC)+1	-2.29	17.3	2 (37/30/32)	6.10 (68/23	/9)	8.78	67.80		
LUMC)	-2.91	29.6	9 (43/23/34)	10.33 (46/4	8/6)	23.27	36.71		
HOMO)	-6.41	21.9	0 (0/6/94)	28.29 (64/3	/34)	47.65	2.15		
HOMO	D-1	-6.48	30.1	9 (0/3/97)	6.01 (13/46	/41)	61.67	2.14		
HOMO	D-3	-6.99	20.5	3 (39/3/58)	19.26 (38/9	/53)	53.95	6.26		
HOMO	D - 4	-7.14	66.9	9 (27/1/72)	7.21 (4/1/9	5)	10.62	15.17		
state	E, nn	n (eV)	O.S.	transition (con	trib.)	assign	ment	measured (nm)		
\mathbf{S}_1	424 (2.92)	0.0272	HOMO→LUN	AO (96%)	^I MC/ ^I	LLCT/ ¹ IL			
S_2	419 (2.96)	0.4510	HOMO-1→LU	JMO (94%)	¹ LLC	$\Gamma/^{1}MC/^{1}IL$	397		
S_4	361 (3.43)	0.1354	HOMO-4→LU	JMO (72%)	¹ MC/ ¹	MLCT/ ¹ IL			
				HOMO-3→LU	JMO (18%)	${}^{1}MC/{}^{1}$	LLCT/ ¹ IL			
S_7	350 (3.54)	0.0922	HOMO→LUN	4O+1 (75%)	¹ LLC	Γ/ ¹ MLCT/ ¹ MC			
S ₂₆	307 (4.03)	0.1570	HOMO→LUN	AO+6 (61%)	¹ LLC	Γ/ ¹ MC/ ¹ MLCT	319		

Table S5. The Partial Molecular Orbital Compositions (%) by SCPA Approach (C-squared Population Analysis Proposed by Ros & Schuit) in the Ground State and Absorption Transitions for for trans-Pt₂Ag₂ complex **2b** in CH₂Cl₂ Solution Calculated by the TD-DFT Method at the B3LYP Level.

Table S6. The Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and Emission Transitions for trans-Pt₂Ag₂ complex **2b** in CH₂Cl₂ Solution TD-DFT Method at the B3LYP Level.

orbital	energy (eV))	MO Contribution (%)				
		Pt (s/p	p/d)	Ag (s/p/d)	$C = CC_6H_5$	(Ph ₂ P) ₂ py	
LUMO+1	-2.44	31.77	(37/19/45)	3.12 (30/38/31)	23.34	41.76	
LUMO	-3.40	31.96	(43/24/33)	17.56 (76/20/4)	19.35	31.12	
HOMO	-5.93	27.16	(0/3/97)	16.09 (3/8/88)	55.56	1.19	
HOMO-1	-6.49	19.64	(0/4/96)	27.88 (67/20/13)	50.77	1.72	
HOMO-2	-6.69	32.84	(27/7/66)	13.42 (0/5/95)	44.23	9.51	
state	<i>E</i> , nm (eV)	O.S.	transition (co	ontrib.)	assignment	measured (nm)	
T1	661 (1.87)	0.0000	HOMO→LU	JMO (94%)	³ MC/ ³ LLCT/ ³ IL	643	
T_2	567 (2.19)	0.0000	HOMO-1→	LUMO (71%)	³ MC/ ³ LLCT/ ³ IL		
			HOMO→LU	JMO+1 (18%)	³ MC/ ³ LLCT/ ³ IL		
T ₃	528 (2.35)	0.0000	HOMO-2→	LUMO (84%)	³ MC/ ³ LLCT/ ³ IL		

Table S7. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and Emission Transitions for trans-Pt₂Ag₂ complex **1b** in CH₂Cl₂ Solution Calculated by TD-DFT Method at the B3LYP Level.

orbital	energy (eV)	MO contribution (%)						
		Pt (s/p/d)	Ag (s/p/d)	$C \equiv CC_6H_2(OMe)_3-3,4,5$	(Ph ₂ P) ₂ py		
LUMO	-3.31	31.77 (4	4/24/32)	16.48 (76/20/4)	19.67	32.08		
НОМО	-5.48	13.13 (1	/3/96)	8.68 (14/16/69)	77.09	1.10		
HOMO-1	-5.68	7.14 (17	/17/66)	19.66 (80/13/7)	72.18	1.02		
НОМО-2	-6.11	8.42 (20	/19/62)	13.08 (71/9/20)	76.13	2.38		
state	<i>E</i> , nm (eV)	O.S.	transitio	n (contrib.)	assignment	measured (nm)		
T ₁	712 (1.74)	0.0000	HOMO	→LUMO (92%)	³ LLCT/ ³ LMCT/ ³ MC	705		
T ₂	581 (2.13)	0.0000	HOMO-	1→LUMO (88%)	³ LLCT/ ³ MC/ ³ LMCT			
T ₃	564 (2.20)	0.0000	HOMO-	2→LUMO (76%)	³ LLCT/ ³ LMCT/ ³ MC			

Table S8. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and Emission Transitions for trans-Pt₂Ag₂ complex **4b** in CH₂Cl₂ Solution Calculated by TD-DFT Method at the B3LYP Level.

energy (e	eV)	MO contribution (%)						
	Pt (s	e/p/d)	Ag (s/p/d)		$C = CC_6H_3(CF_3)_2 - 2$,4 (Ph ₂ P) ₂ py		
-1 -2.79	20.2	2 (31/26/44)	4.77 (34/39/2	28)	52.09	22.91		
-3.60	32.8	8 (48/26/26)	20.50 (82/15/	/4)	22.16	24.46		
-6.37	28.8	3 (0/5/95)	18.42 (7/11/8	32)	51.79	0.97		
-1 -6.92	21.7	6 (0/4/96)	19.34 (57/19/	(23)	55.62	3.29		
-2 -6.99	31.9	0 (21/6/73)	10.68 (1/3/96	5)	45.60	11.82		
-3 -7.10	38.2	5 (18/3/79)	14.44 (7/3/90))	35.95	11.36		
<i>E</i> , nm (eV)	O.S.	transition (con	ntrib.)	assign	ment	measured (nm)		
602 (2.06)	0.0000	HOMO→LU	MO (92%)	³ MC/ ³	LLCT/ ³ IL	584		
538 (2.30)	0.0000	HOMO-1→L	UMO (60%)	$^{3}MC/^{3}$	IL/ ³ LLCT/ ³ LMCT			
		HOMO→LU	MO+1 (29%)	$^{3}IL/^{3}N$	1LCT/ ³ MC			
512 (2.42)	0.0000	HOMO-2→L	UMO (67%)	$^{3}MC/^{3}$	IL/ ³ LLCT/ ³ LMCT			
		HOMO-3→L	UMO (18%)	³ MC/ ³	IL/ ³ LLCT			
	energy (6 -1 -2.79 -3.60 -6.37 1 -6.92 2 -6.99 3 -7.10 <i>E</i> , nm (eV) 602 (2.06) 538 (2.30) 512 (2.42)	energy (eV) Pt (s -1 -2.79 20.2 -3.60 32.8 -6.37 28.8 1 -6.92 21.7 2 -6.99 31.9 3 -7.10 38.2 E , nm (eV) O.S. 602 (2.06) 0.0000 538 (2.30) 0.0000	energy (eV) $Pt (s/p/d)$ $\cdot 1$ -2.79 $20.22 (31/26/44)$ -3.60 $32.88 (48/26/26)$ -6.37 $28.83 (0/5/95)$ 1 -6.92 $21.76 (0/4/96)$ 2 -6.99 $31.90 (21/6/73)$ 3 -7.10 $38.25 (18/3/79)$ E , nm (eV)O.S.transition (con $602 (2.06)$ 0.0000 HOMO \rightarrow LU $538 (2.30)$ 0.0000 HOMO $-1 \rightarrow$ L $512 (2.42)$ 0.0000 HOMO $-2 \rightarrow$ LHOMO-3 \rightarrow LHOMO-3 \rightarrow L	energy (eV) MO $(\frac{1}{Pt (s/p/d)} - \frac{1}{Pt (s/p/d)} - \frac{20.22 (31/26/44)}{4.77 (34/39/2)} - \frac{3.60}{32.88 (48/26/26)} - \frac{20.50 (82/15/2)}{20.50 (82/15/2)} - \frac{6.37}{28.83 (0/5/95)} - \frac{18.42 (7/11/8)}{11 - \frac{6.92}{21.76 (0/4/96)} - \frac{19.34 (57/19/2)}{19.34 (57/19/2)} - \frac{21.76 (0/4/96)}{19.34 (57/19/2)} - \frac{19.34 (57/19/2)}{10.68 (1/3/96)} - \frac{10.68 (1/3/96)}{33 - 7.10 - 38.25 (18/3/79)} - \frac{14.44 (7/3/90)}{14.44 (7/3/90)} - \frac{14.44 (7/3/90)}{14.44 (7/3/90)} - \frac{10.68 (1/3/96)}{1000} - \frac{10000}{1000} + \frac{1000}{1000} - \frac{10000}{1000} + \frac{1000}{1000} + \frac{1000}{100} + \frac{1000}{1000} + \frac{1000}{100} + \frac{100}{100} + \frac{100}$	model contributionPt (s/p/d)MO contributionPt (s/p/d)Ag (s/p/d)-1-2.7920.22 (31/26/44)4.77 (34/39/28)-3.6032.88 (48/26/26)20.50 (82/15/4)-6.3728.83 (0/5/95)18.42 (7/11/82)1-6.9221.76 (0/4/96)19.34 (57/19/23)2-6.9931.90 (21/6/73)10.68 (1/3/96)3-7.1038.25 (18/3/79)14.44 (7/3/90)E, nm (eV)O.S.transition (contrib.)assign602 (2.06)0.0000HOMO->LUMO (92%) $^3MC/^3$ 538 (2.30)0.0000HOMO-1->LUMO (60%) $^3MC/^3$ 512 (2.42)0.0000HOMO-2->LUMO (67%) $^3MC/^3$ HOMO-3->LUMO (18%) $^3MC/^3$	energy (eV) MO contribution (%) Pt (s/p/d) Ag (s/p/d) C=CC ₆ H ₃ (CF ₃) ₂ -2 1 -2.79 20.22 (31/26/44) 4.77 (34/39/28) 52.09 -3.60 32.88 (48/26/26) 20.50 (82/15/4) 22.16 -6.37 28.83 (0/5/95) 18.42 (7/11/82) 51.79 1 -6.92 21.76 (0/4/96) 19.34 (57/19/23) 55.62 2 -6.99 31.90 (21/6/73) 10.68 (1/3/96) 45.60 3 -7.10 38.25 (18/3/79) 14.44 (7/3/90) 35.95 E, nm (eV) O.S. transition (contrib.) assignment $\overline{602}$ (2.06) 0.0000 HOMO→LUMO (92%) ${}^{3}MC/{}^{3}LLCT/{}^{3}LMCT$ HOMO→LUMO (60%) ${}^{3}MC/{}^{3}LLCT/{}^{3}LMCT$ HOMO→LUMO+1 (29%) ${}^{3}MC/{}^{3}LLCT/{}^{3}LMCT$ HOMO-3→LUMO (18%) ${}^{3}MC/{}^{3}LLCT/{}^{3}LMCT$		

orbital	energy (eV)		MO contribution (%)					
		Pt (s/p/d)		Ag (s/p/d)	C≡CC ₆ H ₅	(Ph ₂ P) ₂ py		
LUMO	-6.26	34.99 (51	/33/16)	16.79 (68/25/6)	14.72	33.51		
HOMO	-9.54	25.89 (0/	5/95)	15.08 (17/25/58)	55.55	3.49		
HOMO-	1 -9.75	17.72 (1/	7/92)	25.95 (61/7/32)	53.03	3.30		
HOMO-2	2 -10.03	13.21 (24	/11/65)	13.56 (41/7/52)	64.25	8.98		
state	<i>E</i> , nm (eV)	O.S.	transitior	n (contrib.)	assignment			
T ₁	510 (2.43)	0.0000	HOMO-	→LUMO (90%)	³ MC/ ³ LLCT/ ³ IL/	/		
T_2	468 (2.65)	0.0000	HOMO-	1→LUMO (83%)	³ MC/ ³ LLCT/ ³ IL			
T3	418 (2.97)	0.0000	HOMO-2	2→LUMO (78%)	³ MC/ ³ LLCT/ ³ LN	ИСТ		

Table S9. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and Emission Transitions for Crystal $2b \cdot 3CH_2Cl_2$ Calculated by TD-DFT Method at the B3LYP Level.

Table S10. The Partial Molecular Orbital Compositions (%) by SCPA Approach in the Lowest-Energy Triplet State and Emission Transitions for Crystal **2b**·2.5MeCN Calculated by TD-DFT Method at the B3LYP Level.

orbital	energy (eV)	MO Contribution (%)					
		Pt (s/p/d)	Ag (s/p/d)	C≡CC	H_5 (Ph ₂ P) ₂ py		
LUMO	-6.48	29.63 (36/37/27)	14.59 (72/24/4)	14.72	41.06		
НОМО	-9.55	22.11 (2/1/97)	14.10 (7/18/74)	60.50	3.30		
HOMO-1	-9.78	9.89 (7/14/78)	5.20 (1/24/75)	75.11	9.80		
НОМО-3	-9.99	17.02 (19/6/75)	21.01 (67/13/19)	59.04	2.93		
state	<i>E</i> , nm (eV)	O.S. 1	transition (contrib.)		assignment		
T_1	550 (2.25)	0.0000	HOMO→LUMO (90%)		³ LLCT/ ³ MC/ ³ IL		
T_2	471 (2.63)	0.0000	HOMO-1→LUMO (93%	(0)	³ LLCT/ ³ LMCT/ ³ MC/ ³ IL		
T ₃	457 (2.71)	0.0000	HOMO-3→LUMO (80%	(0)	³ LLCT/ ³ MC/ ³ IL		

Fig. S1 ¹H NMR (400 MHz) spectrum of cis-[Pt₂{(Ph₂P)₂py}₂{C=CC₆H₂(OMe)₃-3,4,5}₄] in d_6 -DMSO.

Fig. S2 ³¹P NMR (162 MHz) spectrum of cis-[Pt₂{(Ph₂P)₂py}₂{C=CC₆H₂(OMe)₃-3,4,5}₄] in d_6 -DMSO.

Fig. S3 ¹H NMR (400 MHz) spectrum of cis- $[Pt_2{(Ph_2P)_2py}_2(C \equiv CC_6H_5)_4]$ in d_6 -DMSO.

Fig. S4 ³¹P NMR (162 MHz) spectrum of cis- $[Pt_2{(Ph_2P)_2py}_2(C \equiv CC_6H_5)_4]$ in *d*₆-DMSO.

Fig. S5 ¹H NMR (400 MHz) spectrum of cis- $[Pt_2{(Ph_2P)_2py}_2(C=CC_6H_4CF_3-4)_4]$ in *d*₆-DMSO.

Fig. S6 ³¹P NMR (162 MHz) spectrum of cis-[Pt₂{(Ph₂P)₂py}₂(C=CC₆H₄CF₃-4)₄] in d_6 -DMSO.

Fig. S7 ¹H NMR (400 MHz) spectrum of cis-[Pt₂Ag₂{(Ph₂P)₂py}₂{C=CC₆H₂(OMe)₃-3,4,5}₄](SO₃CF₃)₂ (**1a**) in CD₂Cl₂.

Fig. S8 ³¹P NMR (162 MHz) spectrum of cis-[Pt₂Ag₂{(Ph₂P)₂py}₂{C=CC₆H₂(OMe)₃-3,4,5}₄](SO₃CF₃)₂ (1a) in CD₂Cl₂. S14

Fig. S9 ¹H NMR (400 MHz) spectrum of cis- $[Pt_2Ag_2{(Ph_2P)_2py}_2(C=CC_6H_5)_4](SO_3CF_3)_2$ (**2a**) in *d*₆-DMSO.

Fig. S10 ³¹P NMR (162 MHz) spectrum of cis- $[Pt_2Ag_2{(Ph_2P)_2py}_2(C=CC_6H_5)_4](SO_3CF_3)_2$ (**2a**) in *d*₆-DMSO.

Fig. S11 ¹H NMR (400 MHz) spectrum of cis- $[Pt_2Ag_2{(Ph_2P)_2py}_2(C \equiv CC_6H_4CF_3-4)_4](SO_3CF_3)_2$ (**3a**) in d_6 -DMSO.

Fig. S12 ³¹P NMR (162 MHz) spectrum of cis- $[Pt_2Ag_2{(Ph_2P)_2py}_2(C \equiv CC_6H_4CF_3-4)_4](SO_3CF_3)_2$ (**3a**) in *d*₆-DMSO.

Fig. S13 ¹H NMR (400 MHz) spectrum of trans- $[Pt_2Ag_2{(Ph_2P)_2py}_2(C=CC_6H_2(OMe)_3-3,4,5)_4](SO_3CF_3)_2$ (**1b**) in CD₂Cl₂.

Fig. S14 ³¹P NMR (162 MHz) spectrum of trans-[Pt₂Ag₂{(Ph₂P)₂py}₂(C=CC₆H₂(OMe)₃-3,4,5)₄](SO₃CF₃)₂ (**1b**) in CD₂Cl₂.

Fig. S15 ¹H NMR (400 MHz) spectrum of trans- $[Pt_2Ag_2\{(Ph_2P)_2py\}_2(C \equiv CC_6H_5)_4](SO_3CF_3)_2$ (**2b**) in d_6 -DMSO.

Fig. S16 ³¹P NMR (162 MHz) spectrum of trans- $[Pt_2Ag_2\{(Ph_2P)_2py\}_2(C \equiv CC_6H_5)_4](SO_3CF_3)_2$ (**2b**) in *d*₆-DMSO.

Fig. S17 ¹H NMR (400 MHz) spectrum of trans- $[Pt_2Ag_2{(Ph_2P)_2py}_2(C=CC_6H_4CF_3-4)_4](SO_3CF_3)_2$ (**3b**) in d_6 -DMSO.

Fig. S18 ³¹P NMR (162 MHz) spectrum of trans- $[Pt_2Ag_2\{(Ph_2P)_2py\}_2(C=CC_6H_4CF_3-4)_4](SO_3CF_3)_2$ (**3b**) in *d*₆-DMSO.

Fig. S19 ¹H NMR (400 MHz) spectrum of trans- $[Pt_2Ag_2{(Ph_2P)_2py}_2(C \equiv CC_6H_3(CF_3)_2 - 2, 4]_4](SO_3CF_3)_2$ (**4b**) in *d*₆-DMSO.

Fig. S20 ³¹P NMR (162 MHz) spectrum of trans- $[Pt_2Ag_2\{(Ph_2P)_2py\}_2(C \equiv CC_6H_3(CF_3)_2 - 2, 4\}_4](SO_3CF_3)_2$ (4b) in *d*₆-DMSO.

Fig. S21 Perspective view (30% thermal ellipsoids) of cis-binuclear complex cis-Pt₂{(Ph₂P)₂py}₂(C=CC₆H₄CF₄-4)₄. The 4-trifluoromethyl-1-phenyl rings were depicted without using thermal ellipsoids. Phenyl rings on the phosphorus atoms are omitted for clarity.

Fig. S22 Perspective view (30% thermal ellipsoids) of trans- Pt_2Ag_2 complex **1b**. The 3,4,5-trimethoxy-1-phenyl rings were depicted without using thermal ellipsoids. Phenyl rings on the phosphorus atoms are omitted for clarity.

Fig. S23 Perspective view (30% thermal ellipsoids) of trans-Pt₂Ag₂ complex **4b**. The 2,4-bis (trifluoromethyl)-1-phenyl rings were depicted without using thermal ellipsoids. Phenyl rings on the phosphorus atoms are omitted for clarity.

Fig. S24 Dihedral angles in crystal structures of 2b·3CH₂Cl₂ (left) and 2b·2.5MeCN (right).

Fig. S25 A view of crystal packing of $2a \cdot 11/4CH_2Cl_2$ along a-axis.

Fig. S26 A view of crystal packing of $3a \cdot 5/2CH_2Cl_2$ along b-axis.

Fig. S27 A view of crystal packing of $1b \cdot 4CH_2Cl_2$ along a-axis.

Fig. S28 A view of crystal packing of 2b along a-axis.

Fig. S29. A view of crystal packing of 2b·3CH₂Cl₂ along a-axis.

Fig. S30. A view of crystal packing of 2b 2.5MeCN along a-axis.

Fig. S31. A view of crystal packing of 4b along b-axis.

Fig. S32 Emission spectra of solid-state 1b with various vapours at ambient temperature.

Fig. S33 Emission spectra of solid-state 3b with various vapours at ambient temperature.

Fig. S34 Emission spectra of solid-state 4b with various vapours at ambient temperature.

Fig. S35 Emission spectra of the PMMA film doped with 3% 1b upon exposure to various vapours at ambient temperature.

Fig. S36 Emission spectra of the PMMA film doped with 3% **3b** upon exposure to various vapours at ambient temperature.

Fig. S37 Emission spectra of the PMMA film doped with 3% **4b** upon exposure to various vapours at ambient temperature.

Fig. S38 Thermal gravitational curve (a) and quadrupole mass spectrometry (b) for crystalline sample 2b·2.5MeCN showing weight loss of solvate MeCN.

Fig. S39 Plots of energy level of frontier molecular orbitals in the lowest-energy triplet states for complexes **2a**, **1b**, **2b**, and **4b**, respectively, in the CH₂Cl₂ solution calculated by TD-DFT method at the B3LYP level.

HOMO

HOMO-2

Fig. S40 Plots of the frontier molecular orbitals involved in the emission transition for complex 2a by TD-DFT method at the B3LYP level (isovalue = 0.02).

Fig. S41 Plots of the frontier molecular orbitals involved in the emission transition for complex **1b** by TD-DFT method at the B3LYP level (isovalue = 0.02).

LUMO+1

LUMO

HOMO-1

Fig. S42 Plots of the frontier molecular orbitals involved in the emission transition for complex 2b by TD-DFT method at the B3LYP level (isovalue = 0.02).

Fig. S43 Plots of the frontier molecular orbitals for $2b \cdot 3CH_2Cl_2$ and $2b \cdot 2.5MeCN$ in the crystal states calculated by TD-DFT Method at the B3LYP Level (isovalue = 0.02).

References

- 1 D. Reddy, D. Jaganyi, Dalton. Trans., 2008, 6724.
- 2 J. Benito, J. R. Berenguer, J. Forniés, B. Gil, J. Gómez, E. Lalinde, Dalton. Trans., 2003, 4331.
- 3 R. Severin, J. Reimer, S. Doye, J. Org. Chem., 2010, 75, 3518.
- 4 G. M. Sheldrick, *SHELXL-97*, *Program for the Refinement of Crystal Structures*; University of Göttingen: Göttingen, Germany, **1997**.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09, revision D.01*. Gaussian, Inc., Wallingford CT, 2013.
- 6. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 7. R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454.
- 8. M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys., 1998, 108, 4439.
- 9. R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys., 1998, 109, 8218.
- 10. V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys., 1997, 107, 3210.
- 11. M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys., 2002, 117, 43.
- 12. D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta., 1990, 77, 123.
- 13. P. Ros, G. C. A. Schuit, Theo. Chim. Acta (Berl.), 1966, 4, 1.
- 14. T. Lu, F. W. Chen, J. Comp. Chem., 2012, 33, 580.