Electronic Supplementary Information

An Antimony (III) Borate with Large Birefringence Exhibiting Unwonted [B₅O₁₁] Fundamental Building Block and Dimeric [Sb₂O₆] Cluster

Zhen Chen,^{a,b,#} Hao Zeng,^{a,#} Shujuan Han,^{a,b}* Zhihua Yang,^{a,b} and Shilie Pan^{a,b}*

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments,

Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory

of Electronic Information Materials and Devices, 40 - 1 South Beijing Road, Urumqi

830011, China.

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, China.

[#]These authors contributed equally to this work.

*Corresponding author, E-mail: <u>slpan@ms.xjb.ac.cn</u>

Empirical formula	SbB ₅ O ₉
Temperature	296.15 K
Crystal system, space group	Monoclinic, $P2_1/c$
Unit cell dimensions (Å)	a = 4.3535(4)
	$b = 26.18(2)$ $\beta = 113.526(5)$
	c = 6.6465(6)
Volume (Å ³⁾	694.57(11)
Z, Calculated density (g/cm^3)	4, 3.058
Absorption coefficient(mm ⁻¹)	4.000
<i>F</i> (000)	592
Theta range for data collection(°)	3.113 - 25.242
Limiting indices	$-5 \le h \le 5, -31 \le k \le 34, -8 \le l \le 8$
Reflections collected / unique	8877 / 1597 [<i>R</i> (int) = 0.0556]
Completeness to theta	99.90%
Goodness-of-fit on F^2	1.110
Final <i>R</i> indices $[F_o^2 > 2\sigma(F_c^2)]^a$	$R_1 = 0.0244, wR_2 = 0.0495$
<i>R</i> indices (all data) ^a	$R_1 = 0.0319, wR_2 = 0.0513$
Largest diff. peak and hole (e·Å-3)	0.553 and - 0.733

Table S1. Crystal data and structure refinement for SbB₅O₉.

 ${}^{a}\overline{R_{1}} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \text{ and } wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w F_{o}^{4}]^{1/2} \text{ for } F_{o}^{2} > 2\sigma (F_{o}^{2}).$

		0	-9		
Atoms	Х	у	Z	U(eq)	BVS
Sb (1)	-1867(1)	-559(1)	13937(1)	8(1)	2.83
B(1)	854(11)	-564(2)	10315(7)	8(1)	3.04
B(2)	4533(10)	-577(2)	8146(6)	9(1)	3.07
B(3)	4668(12)	-1530(2)	7579(7)	12(1)	3.04
B(4)	9185(12)	-2086(2)	9577(8)	16(1)	3.06
B(5)	4098(12)	-2430(2)	6998(8)	15(1)	3.07
O(1)	1110(7)	-634(1)	12400(4)	12(1)	2.09
O(2)	3970(6)	-548(1)	10179(4)	9(1)	1.99
O(3)	-1997(6)	-492(1)	8523(4)	10(1)	1.88
O(4)	2395(6)	-209(1)	6453(4)	8(1)	2.21
O(5)	3276(7)	-1069(1)	7054(4)	11(1)	1.87
O(6)	7862(7)	-1604(1)	9116(5)	18(1)	2.00
O(7)	12377(7)	-2141(1)	11031(5)	20(1)	2.09
O(8)	2764(7)	-1951(1)	6493(4)	18(1)	1.95
O(9)	7279(7)	-2499(1)	8513(5)	22(1)	2.02

Table S2. Atomic coordinates (× 10⁴), equivalent isotropic displacement parameters (Å² × 10³) and bond valence sum (BVS) calculations for SbB₅O₉. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Sb(1)-O(1)	1.954(2)	B(2)- O(5)	1.472(5)
Sb(1)-O(2)#2	2.431(2)	B(3)-O(5)	1.333(5)
Sb(1)-O(4)#3	2.030(2)	B(3)-O(6)	1.372(5)
Sb(1)-O(4)#4	2.145(2)	B(3)-O(8)	1.396(5)
B(1)-O(1)	1.358(4)	B(4)-O(6)	1.370(5)
B(1)-O(2)	1.396(5)	B(4)-O(7)	1.347(5)
B(1)-O(3)	1.347(5)	B(4)-O(9)	1.374(5)
B(2)-O(2)	1.468(4)	B(5)#5-O(7)	1.361(5)
B(2)#2-O(3)	1.446(5)	B(5)-O(8)	1.365(5)
B(2)-O(4)	1.491(5)	B(5)-O(9)	1.360(5)
O(1)-Sb(1)-O(2)#2	80.93(10)	O(3)#6-B(2)-O(4)	109.0(3)
O(1)-Sb(1)-O(4)#3	95.56(10)	O(3)#6-B(2)-O(5)	112.1(3)
O(1)-Sb(1)-O(4)#4	84.39(10)	O(5)-B(2)-O(4)	101.3(3)
O(4)#3-Sb(1)-O(2)#2	81.77(9)	O(5)-B(3)-O(6)	122.9(4)
O(4)#4-Sb(1)-O(2)#2	148.61(8)	O(5)-B(3)-O(8)	117.8(4)
O(4)#3-Sb(1)-O(4)#4	72.20(11)	O(6)-B(3)-O(8)	119.3(3)
O(1)-B(1)-O(2)	112.6(3)	O(6)-B(4)-O(9)	119.7(4)
O(2)-B(2)-O(4)	112.2(3)	O(7)-B(4)-O(6)	118.7(4)
O(2)-B(2)-O(5)	109.4(3)	O(7)-B(4)-O(9)	121.6(4)
O(3)-B(1)-O(1)	126.3(3)	O(7)#8-B(5)-O(8)	122.8(4)
O(3)-B(1)-O(2)	121.0(3)	O(9)-B(5)-O(7)#8	116.4(3)
O(3)#6-B(2)-O(2)	112.3(3)	O(9)-B(5)-O(8)	120.8(4)

Table S3. Selected bond lengths (Å) and angles (°) for SbB₅O₉.

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z+3	#2 x-1,y,z	#3 -x,-y,-z+2
#4 x,y,z+1	#5 x+1,-y-1/2,z+1/2	#6 x+1,y,z
#7 x,y,z-1	#8 x-1,-y-1/2,z-1/2	

	Formula	Space group	Band gap (eV)		Sb-O framework	Ref.
			Cal.	Exp.		
Sb ≖	SbB5O9*	$P2_{1}/c$	4.10	4.66	Dimeric [Sb ₂ O ₆] cluster	
	SbB ₃ O ₆	Сс	4.08	3.95	Isolated SbO ₄	1
Sb v	Na ₂ SbB ₃ O ₈	$P2_{1}/c$	4.22	3.89	Isolated SbO ₆	2
	$K_2SbB_3O_8$	$P2_{1}/c$	4.18	3.69	Isolated SbO ₆	2
	Rb ₂ SbB ₃ O ₈	$P2_{1}/c$	4.21	4.82	Isolated SbO ₆	2
	KSbB ₂ O ₆	Сс	3.61	3.63	Corner-sharing SbO ₆	3
	$BaSb_2B_4O_{12}$	C2/c	3.94	4.26	Corner-sharing SbO ₆	3
	$SmSb_2BO_8$	Pnma	/	3.54	Corner-sharing SbO ₆	4
	$EuSb_2BO_8$	Pnma	/	3.46	Corner-sharing SbO ₆	4
	$GdSb_2BO_8$	Pnma	/	3.48	Corner-sharing SbO ₆	4
	$TbSb_2BO_8$	Pnma	/	3.53	Corner-sharing SbO ₆	4
	β -RbSbB ₂ O ₆	Сс	3.639	/	Corner-sharing SbO ₆	2
	$K_3Sb_4BO_{13}$	$P\bar{1}$	/	/	Corner-sharing SbO ₆	5

Table S4. The antimony borates.

* represents the work

Note: the above compounds are all derived from the Inorganic Crystal Structure Database (ICSD), and the antimony inorganic borates except for disorder and obvious errors are listed in the statistical data.

Figure S1. Experimental and calculated XRD patterns of SbB₅O₉.

Figure S2. The fundamental building block (a) [B₅O₁₁] of SbB₅O₉ and (b) [B₈O₁₈] of Bi₂B₈O₁₅; (c) The [Bi₂O₆] dimeric cluster.

Figure S3. The fundamental building blocks $[B_5O_n]$ (n= 10, 11, 12, 13, 14) from different borates.

Figure S4. The IR spectrum of SbB₅O₉.

REFRENCES

- Y. C. Liu, X. M. Liu, S. Liu, Q. R. Ding, Y. Q. Li, L. N. Li, S. G. Zhao, Z. S. Lin, J. H. Luo and M. C. Hong, An unprecedented antimony(III) borate with strong linear and nonlinear optical Responses, *Angew. Chem. Int. Ed.*, 2020, **59**, 7793-7796.
- (2) D. Yan, C. L. Hu and J. G. Mao, A₂SbB₃O₈ (A = Na, K, Rb) and β-RbSbB₂O₆: two types of alkali boroantimonates with 3D anionic architectures composed of SbO₆ octahedra and borate groups, *CrystEngComm*, 2016, **18**, 1655-1664.
- (3) C. Huang, J. H. Zhang, C. L. Hu, X. Xu, F. Kong and J. G. Mao, KSbB₂O₆ and BaSb₂B₄O₁₂: novel boroantimonates with 3D anionic architectures composed of 1D Chains of SbO₆ octahedra and B₂O₅ groups, *Inorg. Chem.*, 2014, **53**, 3847-3853.
- (4) D. Yan, F. F. Mao and J. G. Mao, LnBSb₂O₈ (Ln= Sm, Eu, Gd, Tb): a series of lanthanide boroantimonates with unusual 3D anionic structures, *Inorg. Chem.*, 2016, **55**, 10558-10566.
- (5) M. M. Ftini, A. Haddad and T. Jouini, Synthesis and crystal structure of K₃Sb₄BO₁₃, *J. Chem. Crystallogr.*, 2000, 1, 30-35.