Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Electronic Supplementary Information (ESI)

Lead-free Layered Dion-Jacobson Hybrid Double Perovskite Constructed by Aromatic Diammonium Cation

Dongying Fu*a, Shichao Wua, Yanyun Liub, Yunpeng Yaoc, Yueyue Hea, Xian-Ming Zhang*a

Table of Content

Experimental Section	2
Materials and Synthesis	2
Measurements	2
Powder X-Ray Diffraction Analysis and Thermogravimetric Analysis	2
SCXRD Structure Determination.	2
Ultraviolet-visible (UV-vis) Absorption Spectrum.	2
Computational Details	2
PXRD Spectra and Stability Test, TGA Test and Infrared spectrum	3
The 2D fingerprint plot of H ₂ O molecule	4
The electronic energy band structure of 1	4
Crystal stability test of 1	
The I-V curves of 1	5
Crystal Data and Structure Refinement for 1	<mark>6</mark>

a Institute of Crystalline Materials, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China,

b Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China

c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

^{*}E-mail: dyfu@sxu.edu.cn (D. Fu), xmzhang@sxu.edu.cn (X.-M. Zhang)

elected bond lengths (Å) for 1
elected bond angles (°) for 1

Experimental section

Materials and Synthesis

All chemicals were purchased by Aladdin except as otherwise illustrated. For the preparation of [(3AMPY)₂AgBiI₈·H₂O] (3AMPY=3-(aminomethyl) pyridinium) (1), a reaction mixture contains stoichiometric 3AMPY (0.43 g, 4 mmol), Ag₂O (0.23 g, 1 mmol) and Bi₂O₃ (0.26 g, 1 mmol) in 20 mL HI (47%) solution was heated and stirred for a few minutes to get the clear solution, after that the clarified liquid was slowly cooled to room temperature. The red rectangular crystals of (3AMPY)₂AgBiI₈·H₂O have been obtained by slow evaporation after several days.

Measurements

Powder X-Ray Diffraction Analysis and Thermogravimetric Analysis

MiniFlex 600 Powder X-Ray Diffractometer (PXRD) was used to check the phase purity of desired compounds. The experimental PXRD patterns were recorded in the 2 theta (2θ) range of 5°-50° with a step size of 3°/ min. The experimental PXRD patterns obtained at room temperature match well with the calculated data based on the single-crystal structure, which solidly confirm the purity of the as-grown crystals of $(3AMPY)_2AgBiI_8 \cdot H_2O$. Thermogravimetric (TG) measurement was implemented on a Netzsch STA 449C thermal analyser with an N_2 flow rate of 30 mL min⁻¹ and a heating rate of 10 K min⁻¹ from 300 K to 1000 K.

SCXRD Structure Determination

Single crystal X-ray diffraction (SCXRD) was performed on Bruker D8 diffractometer by using Mo $K\alpha$ radiation (λ =0.71073 Å). Intensity data acquisition, data reduction and cell refinement were performed using the "multi-scan" program. The structures of all desired compounds were solved by direct methods and refinements were made by the least-squares program. Table S1 summarizes the detailed information of crystal parameters, structure refinement and data collection. The selected bond lengths and angles are shown in Table S2-S3.

Ultraviolet-visible (UV-vis) Absorption Spectrum

UV-vis diffuse reflectance spectroscopy of $(3AMPY)_2AgBiI_8$ · H_2O was performed at room temperature on Perkin-Elmer Lambda 900 UV-Vis spectrophotometer in a variable wavelength range between 200 to 1000nm. The $BaSO_4$ was used as the 100% reflectance reference, and the powdered crystals were used for the measurements.

Near the cut-off of the optical transmission, the band gap, the absorption value and the wave frequency obey the equation: $(hv_*F(R_\infty))^{1/n} = A$ (hv_*E_g) where $h, v, F(R_\infty)$, A, and E_g are the Planck's constant, the frequency of vibration, the Kubelka-Munk equation, the proportional constant and the band gap, respectively. In the equation, n decides the characteristics of the transition in a semiconductor (n=1/2, direct absorption; n=2, indirect absorption). The values of n and E_g were determined by the following steps: first, plot $ln(\alpha hv)$ vs ln (hv_*-E_g) using the approximate E_g value, and then determine the value of n with the slope of the straight line near the band edge; second, plot $(\alpha hv_*)1/n$ vs hv_* and then obtain the band gap E_g by extrapolating the straight line to the hv_* axis intercept.

Computational Details

First-principles density function theory (DFT) calculations were performed with the Cambridge Sequential Total Energy Package (CASTEP). The exchange-correlation functional was described by a generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof functional for solids (PBEsol) scheme. The interactions between the ionic cores and the electrons were described by the norm-conserving pseudopotential.⁴ The following orbital electrons were treated as valence electrons: Bi $6s^2$ $6p^3$; Ag $4d^{10}$ $5s^2$ $5p^3$; I $5s^2$ $5p^5$; C $2s^2$ $2p^2$; N $2s^22p^3$ and H $1s^1$. The numbers of plane waves included in the basis sets were determined by a cutoff energy 765 eV. To achieve the accurate density of the electronic states, the *k*-space integrations were done with Monkhorst-Pack grids with a $6 \times 6 \times 3$ *k*-point for compound 1. The other parameters and convergent criteria were the default values of CASTEP code.

SFig.1 Experimental and simulated powder x-ray diffractions patterns (PXRD) spectra of 1.

SFig.3 The 2D fingerprint plot of H₂O molecule.

SFig.4 The electronic energy band structure of 1.

SFig.5 Crystal stability test of 1.

SFig.6 The I-V curves of 1 under the 637 nm light illumination.

Table S1. Crystal Data and Structure Refinement for (3AMPY)₂AgBiI₈·H₂O.

Formula	(3AMP) ₂ AgBiI ₈ ·H ₂ O
Formula weight	1570.38
(g/mol)	
Temperature (K)	200.02 K
Crystal system	triclinic
Space group	P-1
a (Å)	8.5258(4)
b (Å)	9.7136(5)
c (Å)	18.5101(10)
α (deg)	86.146(2)

β (deg)	88.192(2)	
γ (deg)	88.857(2)	
Volume (Å ³)	1528.46(13)	
Z	2	
$D_{\rm calcd}$ (g/cm3)	3.412	
F(000)	1368.0	
limiting indices	$-11 \le h \le 11, -12 \le k \le$	
	$12, -24 \le 1 \le 24$	
reflns collected	55189	
completeness (%)	99.8	
data / restraints /	7023/0/249	
param		
final R indices	$R_1 = 0.0302, wR_2 =$	
$[I > 2\sigma(I)]$	0.0644	
R indices (all data)	$R_1 = 0.0367, wR_2 =$	
	0.0675	

Table S2. Selected bond lengths (Å) for $(3AMPY)_2AgBiI_8 \cdot H_2O$.

Dand	(Å)	Dand	(
Bond	(Å)	Bond	(Å)		
Bi1– I8	3.0652(4)	I8– Ag1 ¹	3.7719(9)		
Bi1– I6	2.9722(4)	I1– Ag1	2.6995(8)		
Bi1– I7	3.1183(5)	I5-Ag12	3.2672(9)		
Bi1-I5	3.0839(4)	I2- Ag1	2.6923(7)		
Bi1– I4	3.0456(5)	I3- Ag1	3.0470(8)		
¹ _{1-X} ,+Y,+Z; ² +X,1+Y,+Z; ³ 1-X,1-Y,-1/2+Z; ⁴ 1-X,1-Y,1/2+Z; ⁵ +X,2-Y,1/2+Z; ⁶ +X,1-					
Y,1/2+Z; ⁷ +X,2-Y,-1/2+Z; ⁸ +X,1-Y,-1/2+Z; ⁹ +X,-1+Y,+Z; ¹⁰ 1-X,-Y,-1/2+Z; ¹¹ 1-X,-					
Y, 1/2 + Z					

 $Table~S3.~ \mbox{Selected bond angles (°) for (3AMPY)}_2 AgBiI_8 \cdot H_2O.$

Bond	(°)	Bond	(°)	
I8-Bi1-I7	87.595(13)	I1-Ag1-I63	73.556(19)	
I8-Bi1-I5	177.948(14)	I2-Ag1-I63	80.298(19)	
I6-Bi1-I8	90.958(12)	I2-Ag1-I1	152.85(3)	
I6-Bi1-I7	89.557(12)	I3-Ag1-I63	171.75(2)	
I7-Bi1-I3	92.661(13)	Ag1–I3–Bi1	155.34(2)	
I5-Bi1-I7	90.761(13)	Bi1-I8-Ag11	161.980(18)	
I4-Bi1-I8	91.007(13)	Bi1-I5-Ag12	169.68(2)	
¹ +X,1-Y,1-Z; ² +X,1/2-Y,1/2+Z; ³ +X,1/2+Y,1/2-Z; ⁴ 1-X,-Y,1-Z; ⁵ 1-X,+Y,+Z; ⁶ +X,-				
Y,1-Z; ⁷ 1-X,1/2-Y,1/2+Z; ⁸ +X,-1+Y,+Z; ⁹ 1-X,1/2-Y,-1/2+Z; ¹⁰ +X,1-Y,-Z				