Electronic Supplementary Information (ESI)

Lead-free Layered Dion-Jacobson Hybrid Double Perovskite

Constructed by Aromatic Diammonium Cation

Dongying Fu*a, Shichao Wua, Yanyun Liub, Yunpeng Yaoc, Yueyue Hea, Xian-Ming Zhang*a

- a Institute of Crystalline Materials, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China,
- *b Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China*

c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

*E-mail: dyfu@sxu.edu.cn (D. Fu), xmzhang@sxu.edu.cn (X.-M. Zhang)

Table of Content

Experimental Section	
Materials and Synthesis	
Measurements	
Powder X-Ray Diffraction Analysis and Thermogravimetric Analysis2	
SCXRD Structure Determination	
Ultraviolet-visible (UV-vis) Absorption Spectrum	
Computational Details	
PXRD Spectra and Stability Test, TGA Test and Infrared spectrum	
The 2D fingerprint plot of H ₂ O molecule	ŀ
The electronic energy band structure of 14	
Crystal stability test of 1	
The I-V curves of 1	
Crystal Data and Structure Refinement for 1	,

Selected bond lengths (Å) for 1	6
	_
Selected bond angles (°) for 1	7

Experimental section

Materials and Synthesis

All chemicals were purchased by Aladdin except as otherwise illustrated. For the preparation of $[(3AMPY)_2AgBiI_8 \cdot H_2O]$ (3AMPY=3-(aminomethyl) pyridinium) (1), a reaction mixture contains stoichiometric 3AMPY (0.43 g, 4 mmol), Ag₂O (0.23 g, 1 mmol) and Bi₂O₃ (0.26 g, 1 mmol) in 20 mL HI (47%) solution was heated and stirred for a few minutes to get the clear solution, after that the clarified liquid was slowly cooled to room temperature. The red rectangular crystals of (3AMPY)₂AgBiI₈·H₂O have been obtained by slow evaporation after several days.

Measurements

Powder X-Ray Diffraction Analysis and Thermogravimetric Analysis

MiniFlex 600 Powder X-Ray Diffractometer (PXRD) was used to check the phase purity of desired compounds. The experimental PXRD patterns were recorded in the 2 theta (20) range of 5°-50° with a step size of 3°/ min. The experimental PXRD patterns obtained at room temperature match well with the calculated data based on the single-crystal structure, which solidly confirm the purity of the as-grown crystals of $(3AMPY)_2AgBiI_8$ ·H₂O. Thermogravimetric (TG) measurement was implemented on a Netzsch STA 449C thermal analyser with an N₂ flow rate of 30 mL min⁻¹ and a heating rate of 10 K min⁻¹ from 300 K to 1000 K.

SCXRD Structure Determination

Single crystal X-ray diffraction (SCXRD) was performed on Bruker D8 diffractometer by using Mo K α radiation (λ =0.71073 Å). Intensity data acquisition, data reduction and cell refinement were performed using the "multi-scan" program. The structures of all desired compounds were solved by direct methods and refinements were made by the least-squares program. Table S1 summarizes the detailed information of crystal parameters, structure refinement and data collection. The selected bond lengths and angles are shown in Table S2-S3.

Ultraviolet-visible (UV-vis) Absorption Spectrum

UV-vis diffuse reflectance spectroscopy of $(3AMPY)_2AgBiI_8$ ·H₂O was performed at room temperature on Perkin-Elmer Lambda 900 UV-Vis spectrophotometer in a variable wavelength range between 200 to 1000nm. The BaSO₄ was used as the 100% reflectance reference, and the powdered crystals were used for the measurements.

Near the cut-off of the optical transmission, the band gap, the absorption value and the wave frequency obey the equation: $(hv_*F(R_{\infty}))^{1/n} = A (hv-E_g)$ where h, v, $F(R_{\infty})$, A, and E_g are the Planck's constant, the frequency of vibration, the Kubelka-Munk equation, the proportional constant and the band gap, respectively. In the equation, n decides the characteristics of the transition in a semiconductor (n=1/2, direct absorption; n=2, indirect absorption). The values of n and E_g were determined by the following steps: first, plot $ln(\alpha hv)$ vs $ln (hv - E_g)$ using the approximate E_g value, and then determine the value of n with the slope of the straight line near the band edge; second, plot $(\alpha hv)1/n$ vs hv and then obtain the band gap E_g by extrapolating the straight line to the hv axis intercept.

Computational Details

First-principles density function theory (DFT) calculations were performed with the Cambridge Sequential Total Energy Package (CASTEP). The exchange-correlation functional was described by a generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof functional for solids (PBEsol) scheme. The interactions between the ionic cores and the electrons were described by the norm-conserving pseudopotential.⁴ The following orbital electrons were treated as valence electrons: Bi $6s^2 \ 6p^3$; Ag $4d^{10} \ 5s^2 \ 5p^3$; I $5s^2 \ 5p^5$; C $2s^2 \ 2p^2$; N $2s^22p^3$ and H $1s^1$. The numbers of plane waves included in the basis sets were determined by a cutoff energy 765 eV. To achieve the accurate density of the electronic states, the *k*-space integrations were done with Monkhorst-Pack grids with a $6 \times 6 \times 3$ *k*-point for compound **1**. The other parameters and convergent criteria were the default values of CASTEP code.

SFig.1 Experimental and simulated powder x-ray diffractions patterns (PXRD) spectra of 1.

SFig.2 (a) The TGA of the compound 1, (b) Infrared spectrum of 1 obtained at room temperature.

SFig.3 The 2D fingerprint plot of H_2O molecule.

SFig.4 The electronic energy band structure of 1.

SFig.5 Crystal stability test of 1.

SFig.6 The I-V curves of 1 under the 637 nm light illumination.

Table S1. Crystal Data and Structure Refinement for (3AMPY)₂AgBiI₈·H₂O.

Formula	(3AMP) ₂ AgBiI ₈ ·H ₂ O	
Formula weight	1570.38	
(g/mol)		
Temperature (K)	200.02 K	
Crystal system	triclinic	
Space group	P-1	
<i>a</i> (Å)	8.5258(4)	
<i>b</i> (Å)	9.7136(5)	
<i>c</i> (Å)	18.5101(10)	
α (deg)	86.146(2)	

β (deg)	88.192(2)	
γ (deg)	88.857(2)	
Volume (Å ³)	1528.46(13)	
Ζ	2	
D_{calcd} (g/cm3)	3.412	
<i>F</i> (000)	1368.0	
limiting indices	$-11 \le h \le 11, -12 \le k \le$	
	$12, -24 \le 1 \le 24$	
reflns collected	55189	
completeness (%)	99.8	
data / restraints /	7023/0/249	
param		
final R indices	$R_1 = 0.0302, wR_2 =$	
$[I \ge 2\sigma(I)]$	0.0644	
R indices (all data)	$R_1 = 0.0367, wR_2 =$	
	0.0675	

Table S2. Selected bond lengths (Å) for $(3AMPY)_2AgBiI_8$ ·H₂O.

Bond	(Å)	Bond	(Å)
Bi1-I8	3.0652(4)	I8– Ag1 ¹	3.7719(9)
Bi1-I6	2.9722(4)	I1–Ag1	2.6995(8)
Bil-I7	3.1183(5)	I5– Ag12	3.2672(9)
Bi1-I5	3.0839(4)	I2–Ag1	2.6923(7)
Bil-I4	3.0456(5)	I3–Ag1	3.0470(8)
1 + Y + Z · 2 + X 1 + Y	$+Z^{-3}1-X_{-1}/2+Z^{-1}$	41 - X - 1 - Y - 1/2 + 7 + 5 + X	$X_{2} Y_{1/2} + Z_{6} + X_{1}$

¹_{1-X},+Y,+Z; ²+X,1+Y,+Z; ³1-X,1-Y,-1/2+Z; ⁴1-X,1-Y,1/2+Z; ⁵+X,2-Y,1/2+Z; ⁶+X,1-Y,1/2+Z; ⁷+X,2-Y,-1/2+Z; ⁸+X,1-Y,-1/2+Z; ⁹+X,-1+Y,+Z; ¹⁰1-X,-Y,-1/2+Z; ¹¹1-X,-Y,1/2+Z

Table S3. Selected bond angles (°) for $(3AMPY)_2AgBiI_8 \cdot H_2O$.

Bond	(°)	Bond	(°)	
I8–Bi1–I7	87.595(13)	I1-Ag1-I63	73.556(19)	
I8–Bi1–I5	177.948(14)	I2-Ag1-I63	80.298(19)	
I6–Bi1–I8	90.958(12)	I2–Ag1–I1	152.85(3)	
I6–Bi1–I7	89.557(12)	I3-Ag1-I63	171.75(2)	
I7–Bi1–I3	92.661(13)	Ag1–I3–Bi1	155.34(2)	
I5–Bi1–I7	90.761(13)	Bi1–I8–Ag11	161.980(18)	
I4–Bi1–I8	91.007(13)	Bi1–I5–Ag12	169.68(2)	
¹ +X,1-Y,1-Z; ² +X,1/2-Y,1/2+Z; ³ +X,1/2+Y,1/2-Z; ⁴ 1-X,-Y,1-Z; ⁵ 1-X,+Y,+Z; ⁶ +X,-				
Y,1-Z; ⁷ 1-X,1/2-Y,1/2+Z; ⁸ +X,-1+Y,+Z; ⁹ 1-X,1/2-Y,-1/2+Z; ¹⁰ +X,1-Y,-Z				