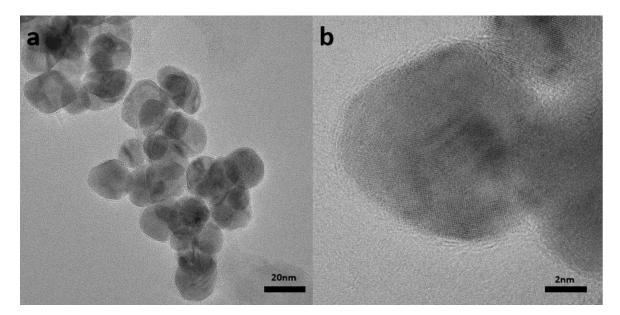
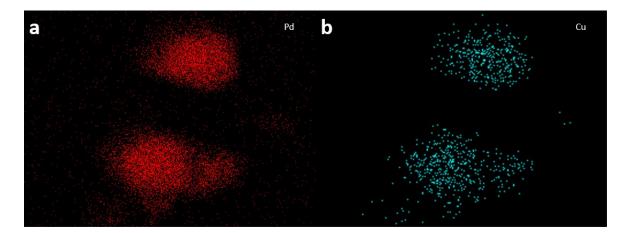
Support information

High Performance Pd_xCu_y Bimetal Catalysts With Adjustable Faraday Current

Efficiency for Nitrogen Fixation


Hongxi Zhang^{a,b}, Zengyao Wang^{a,b}, Jianfeng Shen^a*, Mingxin Ye^a*

^a Institute of special materials and technology, Fudan University, Shanghai 200433,


China

^b Department of Chemistry, Fudan University, Shanghai 200433, China

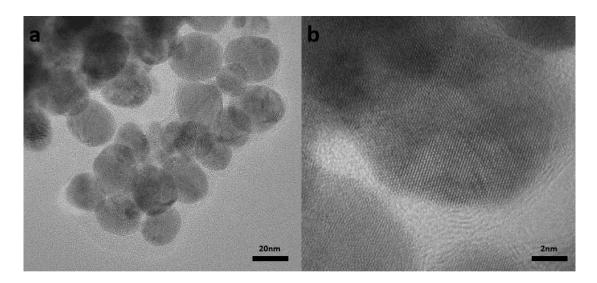

E-mail: mxye@fudan.edu.cn, jfshen@fudan.edu.cn

Figure S1.(a,b) TEM images of PdCu.

Figure S2.(a,b) TEM-EDS mapping of PdCu.

Figure S3. (a,b) TEM image of Pd₃Cu.

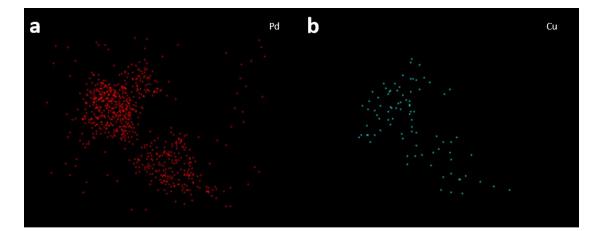


Figure S4.(a,b) TEM-EDS mapping of Pd₃Cu.

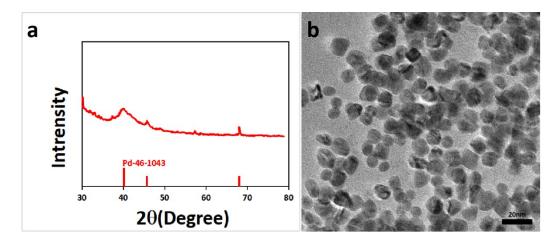


Figure S5. (a) XRD pattern and (b) TEM image of Pd.

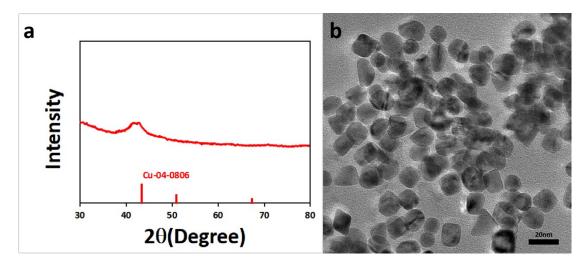


Figure S6.(a) XRD pattern and (b) TEM image of Cu.

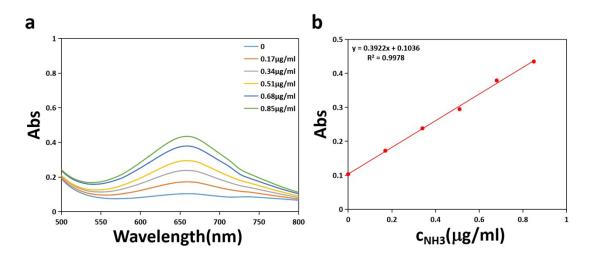
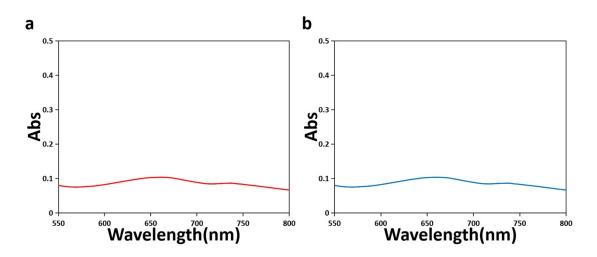



Figure S7.(a) UV-Vis curves of indophenol assays with NH_4^+ ions after incubated for 1 h at room temperature. (b) Calibration curve used for estimation of NH_3 by NH_4^+ ion concentration. The fitting curve shows good linear relation of absorbance with NH_4^+ ion concentration (y = 0.3922x + 0.1036, R²=0.9978) for three independent calibration curves.

Figure S8. (a)UV-vis spectra of 0.1M HCl and (b) after 2h reaction with Ar by the indoxyl blue method.

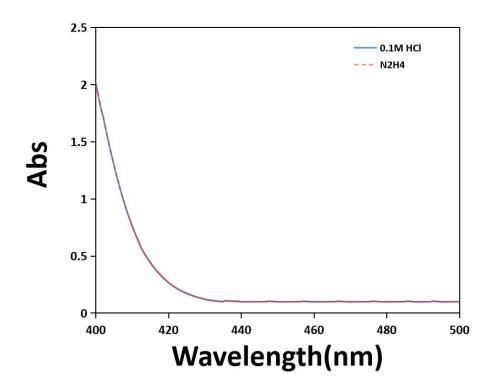


Figure S9. UV-vis spectrum for the potential by-product N₂H₄.

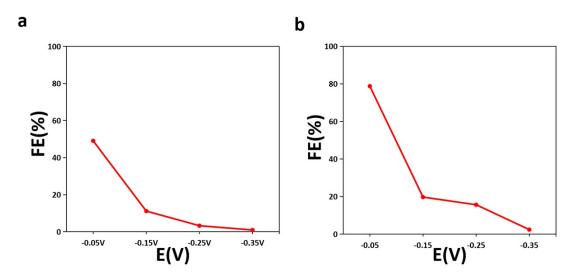


Figure S10.(a) FE of Pd₃Cu and (b) PdCu₃.

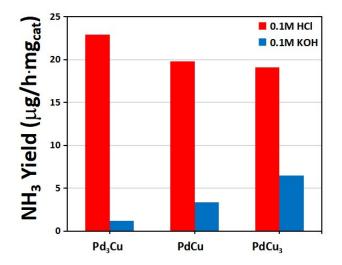


Figure S11. NH₃ yields of Pd_xCu_y at 0.1M HCl and 0.1M KOH.

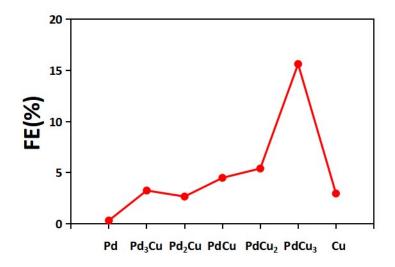


Figure S12. FE of Pd_xCu_y with more Pd/Cu atom ratio.

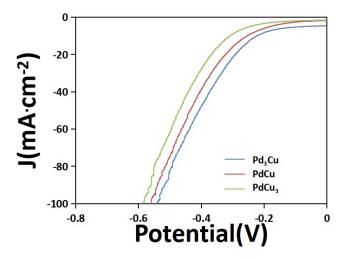


Figure S13. LSV curves of Pd₃Cu, PdCu and PdCu₃ bimetal catalysts in 0.05M H₂SO₄.

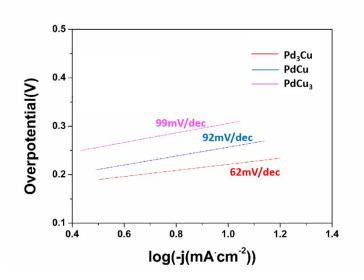


Figure S14. Tafel plots at -0.25V vs RHE. of Pd₃Cu, PdCu and PdCu₃ bimetal catalysts in 0.05M H₂SO₄.

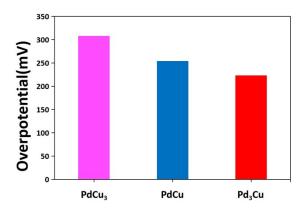


Figure S15. Overpotential of Pd₃Cu, PdCu and PdCu₃ bimetal catalysts at 10 mA·cm⁻² in 0.05M

 $H_2SO_{4\cdot}$

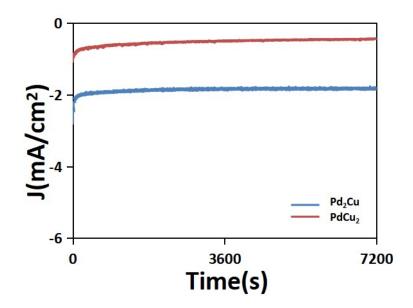


Figure S16. i-t curves at -0.25V vs. RHE. of Pd₂Cu and PdCu₂.

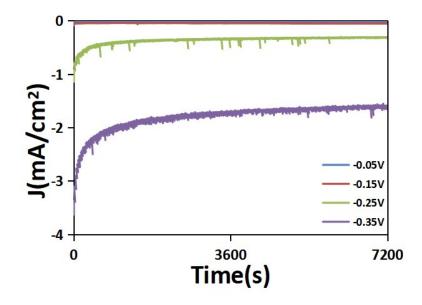


Figure S17. i-t curves of PdCu₃ at different potentials.

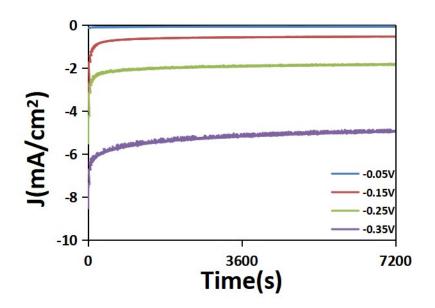
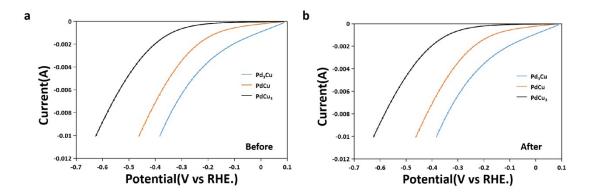



Figure S18. i-t curves at different potentials of Pd₃Cu.

Figure S19. (a)LSV curves of Pd₃Cu, PdCu and PdCu₃ bimetal catalysts before NRR test and (b) LSV curves after NRR test.

Catalysts	Electrolyte	Yield/µg·h ⁻¹ ·mg ⁻¹	FE/%	Ref.
PdCu ₃ nanoparticles	0.1 M HCl	19.1	15.62	This work
Flower-like Au	0.1 M HCl	25.57	6.05	ACV MATER 2017, 29, 1700001
Au/CeOx-RGO	0.1 M HCl	8.3	10.1	CHEMSUSCHEM, 2018, 11, 3480-3485.
Bi ₄ V ₂ O ₁₁ -CeO ₂	0.1 M HCl	23.21	10.16	SMALL METHODS, 2018, 3 , 1800333.
CoO/RGO	0.1 M Na ₂ SO ₄	21.5	8.3	<i>J MATER CHEM A</i> , 2019, 7 , 4389-4394.
Hierarchical CoP hollow nanocages	1 M KOH	10.78	7.36	SMALL METHODS, 2018, 2, 1800204.
Cr ₂ O ₃ nanofiber	0.1 M HCl	28.13	8.56	CHEM COMMUN, 2018, 54 , 12848- 12851.
Cr ₂ O ₃ /RGO	0.1 M HCl	33.3	7.33	INORG CHEM, 2019, 58, 2257-2260.
Multishelled hollow Cr ₂ O ₃ microspheres	0.1 M Na ₂ SO ₄	25.3	6.78	ACS CATAL, 2018, 8 , 8540-8544.
$Ti_3C_2T_x$ MXene nanosheets	0.1 M HCl	20.4	9.3	<i>J MATER CHEM A</i> , 2018, 6 , 24031- 24035.
Fe ₂ O ₃ nanorods	0.1 M Na ₂ SO ₄	15.9	0.94	<i>СНЕМСАТСНЕМ</i> , 2018, 10 , 4530-4535.
β-FeOOH nanorods	0.5 M LiClO ₄	23.32	6.7	CHEM COMMUN, 2018, 54 , 11332- 11335.
Nb2O5 nanofiber	0.1 M HCl	43.6	9.26	NANO ENERGY, 2018, 52 , 264-270.
Mo ₂ C-C	0.5 M Li ₂ SO ₄	11.3	7.8	ADV MATER, 2018, 30 , 1803694.
Pd-Ru with porous nanostructures	0.1 M HCl	25.92	1.53	ACS SUSTAIN CHEM ENG, 2018, 7, 2400-2405.
Pd-Ru tripods	0.1 M KOH	37.23	1.85	J MATER CHEM A, 2019, 7, 801-805.
PdCuIr	0.1 M Na ₂ SO ₄	13.43	5.29	<i>J MATER CHEM A</i> , 2019, 7 , 3190-3196.
Polymeric carbon nitride	0.1 M HCl	8.09	11.59	ANGEW CHEM INT ED, 2018, 57 , 10246-10250.

Table S1. NH₃ yield and FE of different materials