Supplementary Information for:

Fluorination-assisted dealloying synthesis of porous rGO-FeF₂@C for high-performance lithium-ion battery and the

exploration of its electrochemical mechanism

Fig. S1 The XPS survey spectrum of rGO-FeF₂@C

Fig. S2 The HRTEM image of P-FeF_{2.}

The confirmation experiment of the surface potential of FeF₂

Fig. S3 The photograph of the fluorescein sodium powders under (a) visible light and (b) UV.

The experiments were conducted using a fluorescent-labeling method to explore the surface charge of the FeF₂. Fluorescein sodium was chosen as a fluorescent label. As anionic fluorescent molecule, the fluorescein sodium prefers to close to the positively charged substances. As be shown in Fig. 3(d), the fluorescein sodium/ethanol solution showed a yellow color in visible light and yellow-green fluorescence under UV-light. However, the dried fluorescein sodium powders didn't fluoresce under UV (Fig. S2). suggests that the fluorescein sodium shows fluorescence property in only the solvation environment. When FeF₂ was added to the fluorescein sodium /ethanol solution, the original yellow solution turns to colorless and transparent in visible and the fluorescence dims under UV-light. According to previously observed phenomena, we speculate that the fluorescein sodium molecules were adsorbed on the surface FeF₂ particles. Thus, the fluorescein sodium molecules lost their fluorescence property due to diverging from the solvation environment. This indicates that the FeF₂ surface is positively charged.

Fig. S4 SEM image of rGO-FeF₂@C after (a,b) 20 cycles and (c,d) 50 cycles.

Fig. S5 (a) & (b) SEM image of rGO-FeF2@gluC.

Fig. S6 Ragone plots of comparing with different literature in power density and energy density.

materials	Current density	Voltage range	1 st discharge capacity	Reversible capacity	Cycle number	Remaining capacity	Ref
Ni@FeF2@Al2O3	200 mA g ⁻¹	4.2-1.2 V	557 mAh g ⁻¹	~400 mAh g ⁻¹	50	250 mAh g ⁻¹	1
BM-C(FeF ₂) _{0.55}	22.7 mA g ⁻¹	4.3-1.3 V	538 mAh g ⁻¹	456 mAh g ⁻¹	25	320 mAh g ⁻¹	2
FeF ₂ –carbon core–shell	30 mA g ⁻¹	4.3-1.3 V	345 mAh g ⁻¹	314 mAh g ⁻¹	50	217 mAh g ⁻¹	3
FeF ₂ nanorod/C	50 mA g ⁻¹	4.2-1.0 V	352 mAh g ⁻¹	263 mAh g ⁻¹	50	263 mAh g ⁻¹	- 4
	100 mA g ⁻¹	4.2-1.0 V	345 mAh g ⁻¹	221 mAh g ⁻¹	50	181 mAh g ⁻¹	
FeF ₂	140 mA g ⁻¹	4.0-1.0 V	-	~360 mAh g ⁻¹	50	~200 mAh g ⁻¹	5
FeF ₂ -rGO	200 mA g ⁻¹	4.5-1.5 V	520 mAh g ⁻¹	450 mAh g ⁻¹	50	<100 mAh g ⁻¹	6
FeF ₂ /C	60 mA g ⁻¹	4.3-1.2 V	503 mAh g ⁻¹	-	20	183 mAh g ⁻¹	7
FeF2 film	12.5 mA g ⁻¹	4.5-1.0 V	371 mAh g ⁻¹	~330 mAh g ⁻¹	10	348 mAh g ⁻¹	8
C-FeF ₂	20 mA g ⁻¹	4.3-1.3 V	448 mAh g ⁻¹	328 mAh g ⁻¹	50	220 mAh g ⁻¹	9
C-FeF ₂	20 mA g ⁻¹	4.3-1.3 V	418 mAh g ⁻¹	363 mAh g ⁻¹	40	297 mAh g ⁻¹	10
C-FeF ₂	20mA g ⁻¹	4.3-1.3V	442 mAh g ⁻¹	~420 mAh g ⁻¹	50	~240 mAh g ⁻¹	11
FeF ₂	20 mA g ⁻¹	5.0-1.0 V	590 mAh g ⁻¹	420 mAh g ⁻¹	25	200 mAh g ⁻¹	12
rGO-FeF ₂ @C	200 mA g ⁻¹	4.0-1.0 V	497 mAh g ⁻¹	~400 mAh g ⁻¹	50	~400mAh g ⁻¹	This
	200 mA g ⁻¹		432 mAh g ⁻¹	347 mAh g ⁻¹		348 mAh g ⁻¹	work

Tab. S1 Comparison of the electrochemical performance of the conversion type FeF_2 cathode materials.

References

Г

1 S. Kim, J. Liu, K. Sun, J. Wang, S.J. Dillon, P.V. Braun, Improved performance

in FeF₂ conversion cathodes through use of a conductive 3D scaffold and Al₂O₃ ALD Coating, *Adv. Funct. Mater.*, 2017, 1702783.

- M.A. Reddy, B. Breitung, V.S.K. Chakravadhanula, C. Wall, M. Engel, C. Kübel,
 A.K. Powell, H. Hahn, M. Fichtner, CFx derived carbon–FeF₂ nanocomposites
 for reversible lithium storage *Adv. Energy Mater.*, 2003, 3, 308-313.
- 3 Y. Zhang, L Wang, J. Li, L. Wen, X. He, A one-pot approach towards FeF₂carbon core-shell composite and its application in lithium ion batteries, *J. Alloys Compd.*, 2014, **606**, 226-230.
- J. Zhou, D Zhang, X. Zhang, H. Song, X. Chen, Carbon-nanotube-encapsulated FeF₂ nanorods for high-performance lithium-ion cathode materials, *ACS Appl. Mater. Interfaces*, 2014, 6, 21223-21229.
- 5 Q. Huang, T.P. Pollard, X. Ren, D. Kim, A. Magasinski, O. Borodin, G. Yushin, Fading mechanisms and voltage hysteresis in FeF₂-NiF₂ solid solution cathodes for lithium and lithium-ion batteries, *Small*, 2019, **15**, 1804670.
- 6 D. Ni, W. Sun, C. Lu, Z. Wang, J. Qiao, H. Cai, C. Liu, K. Sun, Improved rate and cycling performance of FeF₂-rGO hybrid cathode with poly (acrylic acid) binder for sodium ion batteries, *J. Power Sources*, 2019, **413**, 449-458.
- M. Tang, Z. Zhang, Z. Wang, J. Liu, H. Yan, J. Peng, L. Xu, S. Guo, S. Ju, G. Chen, Synthesis of FeF₂/carbon composite nanoparticle by one-pot solid state reaction as cathode material for lithium-ion battery, *J. Mater. Res. Technol.*, 2018, 7, 73-76.
- 8 M.F. Parkinson, J K. Ko, A. Halajko, S. Sanghvi, G.G. Amatucci, *Electrochim*.

Acta, 2014, **125**, 71-82.

- M.A. Reddy, B. Breitung, C. Wall, S. Trivedi, V.S. Chakravadhanula, M. Helen,
 M. Fichtner, Effect of vertically structured porosity on electrochemical performance of FeF₂ films for lithium batteries, *Energy Technol.*, 2016, 4, 201-211.
- M. Helena, M. Fichtner, M.A. Reddy, Electrochemical synthesis of carbon-metal fluoride nanocomposites as cathode materials for lithium batteries, *Electrochem*. *Commun.*, 2020, **120** 106846.
- 11 M.A. Reddy, B. Breitung, V.S.K. Chakravadhanula, M. Helen, R. Witte, C. Rongeat, C. Kubel, H. Hahn, M. Fichtner, Facile synthesis of C-FeF₂ nanocomposites from CF_x: influence of carbon precursor on reversible lithium storage, *RSC Adv.*, 2018, **8**, 36802-36811.
- 12 M.J. Armstrong, A. Panneerselvam, C. O'Regan, M.A. Morris, J.D. Holmes, Supercritical-fluid synthesis of FeF₂ and CoF₂ Li-ion conversion materials, *J. Mater. Chem. A*, 2013, 1, 10667-10676.
- A.W. Xiao, H.J. Lee, I. Capone, A. Robertson, T.U. Wi, J. Fawdon, S. Wheeler,
 H.W. Lee, N. Grobert, M. Pasta, Understanding the conversion mechanism and
 performance of monodisperse FeF₂ nanocrystal cathodes, *Nat. Mater.*, 2020, 19,
 644-654.