Defects-Boosted Molybdenite-Based Co-Catalytic Fenton Reaction

Feng Jiang¹, Limin Zhang¹, Tong Yue¹, Honghu Tang¹, Li Wang¹, Wei Sun,*¹ and Chenyang Zhang*¹, and Jinxing Chen*²

¹ School of Minerals Processing and Bioengineering, Central South University,

Changsha 410083, China.

² Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, PR China

Materials and Methods

Materials reagents

Synthetic pure molybdenum disulfide (MoS₂, ~5 μ m, purchased from Sinopharm Chemical Reagent Co., Ltd.), Ferrous sulfate (FeSO₄·7H₂O), hydrogen peroxide (30% wt), rhodamine B (RhB) and tetracycline (TC) were used without further purification.

Materials characterization

The crystal structure of the as-prepared materials was identified by X-ray diffraction (XRD, Bruker D8 diffractometer with monochromatic Cu K α radiation and wavelength of 1.5406 Å). The morphology was analyzed by field emission scanning electron

microscopy (SEM, FEI Quanta 200, Japan) and transmission electron microscopy (TEM, JEM-2100F, Japan).

Figure S1. AFM images and thickness measurement of natural molybdenite sample.

Figure S2. BET test results of natural molybdenite and synthetic MoS₂.

Figure S3. Different influencing factors of the molybdenite co-catalytic Fenton system for degradation of RhB (50 mg/L). (a) pH value influence (100 mL of aqueous solution including 0.02 g/L of FeSO₄·7H₂O, 0.5 g/L of molybdenite and 8 μ L of H₂O₂); (b) Molybdenite dosage influence (100 mL of aqueous solution including 0.02 g/L of FeSO₄·7H₂O and 8 μ L of H₂O₂, pH 3.5~4); (c) H₂O₂ dosage influence (100 mL of aqueous solution including 0.02 g/L of FeSO₄·7H₂O and 0.5 g/L of molybdenite, pH 3.5~4); and (d) FeSO₄·7H₂O dosage influence (100 mL of aqueous solution including 0.5 g/L of molybdenite and 8 μ L of H₂O₂, pH 3.5~4).

Figure S4. Zeta potentials of molybdenite particles as a function of pH.

Figure S5. FTIR spectra of RhB, original molybdenite and molybdenite after adsorbing

RhB and co-catalytic Fenton reaction.

Figure S6. XRD spectra of the molybdenite before and after cyclic tests.

Figure S7. XPS (a) Mo 3d and (b) S 2p spectra of the molybdenite before and after

cyclic tests.

Fenton system for degradation of COD.

Figure S9. Comparison of conventional Fenton reaction and molybdenite co-catalytic Fenton system for degradation of tetracycline.

Figure S10. The concentration variations of Fe²⁺ and Fe³⁺ in (a) Fenton reaction and (b) molybdenite co-catalytic Fenton system

Figure S11. Raman spectra of molybdenite under different conditions.

Figure S12. (a) TEM and (b) HRTEM images of the molybdenite after cyclic tests.

Figure S13. S 2p XPS spectra of molybdenite and synthetic MoS_2 samples.