Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supplementary information

Constructing electron transfer pathways and active centers over $W_{18}O_{49}$ nanowires by doping Fe³⁺ and incorporating with g-C₃N₅ for enhanced photocatalytic nitrogen fixation

Fig. S1 SEM image of bulk g-C₃N₅.

Fig. S2 (a) SEM images of Fe- $W_{18}O_{49}/g$ - $C_3N_{5.}$ (b)-(f) EDS mapping of Fe- $W_{18}O_{49}/g$ - C_3N_5 .

Fig. S3 XPS survey spectra of Fe- $W_{18}O_{49}/g$ - C_3N_5 .

Fig. S4 High resolution XPS spectra for O 1s of W₁₈O₄₉.

Fig. S5 High resolution XPS spectra for C 1s of Fe- $W_{18}O_{49}/g-C_3N_5$.

Fig. S6 High resolution XPS spectra for N 1s of Fe- $W_{18}O_{49}/g$ - C_3N_5 .

Fig. S7 Mott-Schottky curves of g-C₃N₅.

Fig. S8 NH_3 production rate of Fe-W₁₈O₄₉/g-C₃N₅ in the environment of N₂ and Ar, without light illumination and under full spectra.

Fig. S9 XRD spectra of Fe-W $_{18}O_{49}/g$ -C $_3N_5$ after photocatalytic nitrogen fixation.

Fig. S10 SEM image of Fe- $W_{18}O_{49}/g$ - C_3N_5 after photocatalytic nitrogen fixation.

Fig. S11 NH₃ production rate of the Fe- $W_{18}O_{49}/g$ - C_3N_5 in the existence of DMSO, DMF, and KBrO₃.

Table S1 Analysis consequence of element molar content in Fe-W₁₈O₄₉/g-C₃N₅ through EDX.

Element	W	0	Fe	С	Ν
Molar percentage (%)	16.63	51.10	0.86	18.96	12.45

Table S2 The control experiments of NH₃ formation rate of Fe- $W_{18}O_{49}/g$ - C_3N_5 and Fe- $W_{18}O_{49}$ &g- C_3N_5 .

Nanocomposite	$Fe-W_{18}O_{49}/g-C_3N_5$	$Fe-W_{18}O_{49}\&g-C_3N_5$
NH ₃ production rate	131.6 μmol g ⁻¹ h ⁻¹	86.3 μmol g ⁻¹ h ⁻¹