ESI

Boosting photocatalytic hydrogen production activity by microporous Cu^{II}-MOF nanoribbon decorated

with Pt nanoparticles

Lei Li,^{a, b} Yan Zhao,^{a, b} Qian Wang,^a Zheng-Yu Liu,^a Xiu-Guang Wang,^a En-Cui Yang,^{*a} and Xiao-Jun Zhao^{*a,b}

^a College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China

^b Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China

Materials and characterizations

All raw materials were commercially purchased from either J&K Scientific or Tianjin Chemical Reagent Factory and used as received without further purification. Doubly deionized water was used during the conventional synthesis. HL was prepared according to the literature.¹ Elemental analyses for C, H and N were carried out with a CE–440 (Leeman–Labs) analyzer. Fourier transform (FT) IR spectra (KBr pellets) were taken on an Avatar–370 (Nicolet) spectrometer in the range 4000–400 cm⁻¹. Thermogravimetric analysis (TGA) experiments were performed on a Shimadzu simultaneous DTG–60A compositional analysis instrument from room temperature to 800 °C under N₂ atmosphere at a heating rate of 5 °C min⁻¹. Powder X-ray diffraction (PXRD) patterns were obtained from a Bruker D8 ADVANCE diffractometer at 40 kV and 40 mA for Cu K α radiation ($\lambda = 1.5406$ Å), with a scan speed of 0.1 sec/step and a step size of 0.01° in 2 θ . The simulated PXRD pattern was calculated using single-crystal X-ray diffraction data and processed by the free Mercury v1.4 program provided by the Cambridge Crystallographic Data Center. The X-ray photoelectron spectroscopy (XPS) measurement was carried out on an AXIS Ultra DLD X-ray photoelectron spectroscopy (Shimadzu, Japan). The scanning electron microscope (SEM) characterizations were performed by a field-emission scanning electron microscope (SEM, FEI NOVA Nano SEM 230) with energy dispersive spectroscope (EDS). UV-vis diffuse reflectance spectra (DRS) were carried out on a U-4100 UV-vis spectrophotometer (HITACHI) equipped with an integrating sphere assembly. Fluorescence spectra were recorded in aqueous solution with a Cary Eclipse fluorescence spectrophotometer (Varian) at room temperature. Electron spin resonance (ESR) spectra were measured in tert-butanol with EDTA as trapping agent on an electron paramagnetic resonance spectrometer (ER200-SRC-10/12). The weight percentage of Pt in the resulting product was determined by inductively coupled plasma mass spectrometter (ICP-MS, iCAP RQ). Transmission electron microscopy (TEM) images, high-resolution transmission electron microscopy (HRTEM) and EDS elemental mapping were obtained by a TecnaiG2 F20 transmission electron microscopy at 200 kV. The Mott-Schottky plots were measured in 0.2 M Na₂SO₄ aqueous solution (pH = 10) adjusted by NaOH (1.0 M) aqueous solution with an AMETEK Princeton Applied Research (Versa STAT 4) electrochemical workstation using photocatalyst/FTO combination as the working electrode, a platinum foil as the counter electrode, and a saturated Ag/AgCl as the reference electrode. The working electrode photocatalyst/FTO was prepared by dropping 50 µL of sample suspension containing containing photocatalyst (3.0 mg), ethanol (1.0 mL) and Nafion (20.0 µL) directly onto a FTO plate. The surface area of the working electrode exposed to the electrolyte was about 1.0 cm². The electrochemical impedance spectroscopy (EIS) of crystalline Cu^{II}-MOF and Pt/Cu^{II}-MOF composites were carried out in 0.2 M Na₂SO₄ aqueous solution (pH = 10) with a bias of 2.0 V.

	Cu ^{II} -MOF ²
empirical formula	$C_{29}H_{19}CuN_3O_5$
F _w	553.01
cryst size [mm]	$0.22 \times 0.21 \times 0.18$
cryst syst	Orthorhombic
space group	P2 ₁ 2 ₁ 2 ₁
<i>a</i> [Å]	6.2062(4)
<i>b</i> [Å]	19.1198(12)
<i>c</i> [Å]	25.5158(17)
<i>V</i> [ų]	3027.7(3)
$Z, D_{\rm c} [{\rm g} {\rm cm}^{-3}]$	4, 1.213
h/k/l	– 5, 7 / – 24, 22 / – 30, 32
F(000)	1132
μ [mm ⁻¹]	0.759
reflections collected/ unique	19906 / 6280
R _{int}	0.0439
data / restraints / params	6280 / 0 / 344
$R_1^{a}, w R_2^{b} [I > 2\sigma(I)]$	0.0397, 0.0920
R_1, wR_2 [all data]	0.0449, 0.0948
Max. and min. transmission	0.875 and 0.851
GOF on F ²	1.050
Δho_{max} , Δho_{min} [e·Å ⁻³]	0.374 / - 0.348

Table S1 Crystal and structure refinement data for Cu^{II}-MOF^{*a*}

 ${}^{a}R_{1} = \Sigma(||F_{o}| - |F_{c}||)/\Sigma|F_{o}|; {}^{b}wR_{2} = [\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}.$

Cu(1)-O(1)	1.996(3)	Cu(1)-N(1)	2.021(3)
Cu(1)-O(4)#1	1.918(2)	Cu(1)–N(3) ^{#2}	1.999(3)
Cu(1)–O(2)	2.407(3)		
O(4) ^{#1} -Cu(1)-N(3) ^{#2}	93.22(12)	O(1)-Cu(1)-N(3)#2	91.71(12)
O(4) ^{#1} -Cu(1)-N(1)	91.70(12)	O(1)-Cu(1)-N(1)	87.49(13)
O(4) ^{#1} -Cu(1)-O(2)	105.80(11)	O(1)-Cu(1)-O(2)	58.72(11)
N(3) ^{#2} -Cu(1)-O(2)	100.93(14)	N(1)-Cu(1)-O(2)	92.15(14)

Table S2 Selected bond lengths (Å) and angles (deg) for Cu^{II}-MOF^a

^{*a*} Symmetry codes: ^{#1} – x, y – 1/2, 3/2 – z, ^{#2} 1/2– x, 1 – y, z + 1/2.

Fig. S1. (a) SEM image of **Cu^{II}-MOF** obtained from mixed H₂O-CH₃OH solution. (b) SEM image of **Cu^{II}-MOF** obtained from acidic H₂O-CH₃OH solution adjusted by 1.0 M HCl aqueous solution (pH = 3.28).

Fig. S2. FT-IR spectra of Cu^{II}-MOF and Pt(4.38 wt%)/Cu^{II}-MOF.

Fig. S3. TG curve for Cu^{II}-MOF.

Fig. S4. SEM images of Pt/Cu^{II}-MOF composites with different Pt loadings.

Fig. S5. Pt 4f XPS spectrum for Pt(4.38 wt%)/Cu^{II}-MOF.

Fig. S6. Plots of K-M function vs. energy for **Cu^{II}-MOF**, **Pt/Cu^{II}-MOF** composites and HL ligand.

Fig. S7. Mott-Schottky plot of **Pt(3.50 wt%)/Cu^{II}-MOF** in 0.2 M Na₂SO₄ aqueous solution with pH = 10 (Inset: energy band alignment diagram for **Pt(3.50 wt%)/Cu^{II}-MOF**).

Fig. S8. HR-TEM images of Pt(5.99 wt%)/Cu^{II}-MOF after photocatalysis.

Fig. S9. SEM and TEM images of Pt(4.38 wt%)/Cu^{II}-MOF after photocatalysis.

Fig. S10. Emission quenching plots of FI by **Cu^{II}-MOF** (left), **Pt(4.38 wt%)/Cu^{II}-MOF** (middle) and TEA (right) in aqueous solution (Inset: Stern-Volmer fits for the luminescence quenching of FI by **Cu^{II}-MOF**, **Pt(4.38 wt%)/Cu^{II}-MOF** and TEA).

Reference

- Y. M. Klein, E. C. Constable, C. E. Housecroft, J. A. Zampese and A. Crochet, *CrystEngComm*, 2014, 16, 9915–9929.
- 2 En-Cui Yang, CCDC 1831465: CSD communication, 2018, DOI: 10.5517/ccdc.csd.cc1zgsjr.