Electronic Supplementary Information

A Fluidized Electrocatalysis Approach for Ammonia

Synthesis Using Oxygen Vacancy-Rich Co₃O₄ Nanoparticles

Wenyi Li,^{†ab} Yixing Ye,^{†a} Shengbo Zhang,^a Changhao Liang,^{*a} and Haimin Zhang,^{*a}

^{*a*} Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. E-mail: *chliang@issp.ac.cn, zhanghm@issp.ac.cn*.

^{b.} University of Science and Technology of China, Hefei 230026, China.

Supplementary Tables and Figures

 Table S1 The comparable results of our work and other recently reported NRR
 electrocatalysts.

Catalyst	System	NH ₃ Yield Rate	FE (%)	Detection	Ref.
	/Conditions			method	
L-C0 ₃ O ₄ -4.0	0.1 M Na ₂ SO ₄	Fluidized electrocatalysis		Indophenol	This
	(pH =10.5)	system	20.7	method	work
		235.0 μg h ⁻¹ mg _{cat.} ⁻¹	(-0.20 V vs.		
		(-0.30 V vs. RHE)	RHE)		
		Catalyst-loading			
		electrocatalysis system			
		49.6 μg h⁻¹ mg⁻¹	9.9		
		(-0.30 V vs. RHE)	(-0.20 V vs.		
			RHE)		
NiO NDs/G	0.1 M Na ₂ SO ₄	18.6 μg h ⁻¹ mg ⁻¹	7.8	Indophenol	1
		(-0.7 V vs. RHE)		method	
CuO/RGO	0.1 M Na ₂ SO ₄	1.8×10 ⁻¹ mol s ⁻¹ cm ⁻²	3.9	Indophenol	2
		(-0.75 V vs. RHE)		method	
CoO QD/RGO	0.1 M Na ₂ SO ₄	21.5 μg h ⁻¹ mg ⁻¹	8.3	Indophenol	3
		(-0.6 V vs. RHE)		method	
Mo ₂ C/C	0.5 M Li ₂ SO ₄	11.3 μg h ⁻¹ mg ⁻¹ _{Mo2C}	7.8	Nessler	4
	(PH =2)	(-0.3 V vs. RHE)		method	
ZnO QDs/RGO	0.1 M Na ₂ SO ₄	17.7 μg h ⁻¹ mg ⁻¹	6.4	Indophenol	5
		(-0.65 V vs. RHE)		method	

SnO ₂ QDs/RGO	0.1 M Na ₂ SO ₄	25.6 μg h ⁻¹ mg ⁻¹	7.1	Indophenol	6
		(-0.5 V vs. RHE)		method	
P-WO ₃ @TiO ₂	0.1 M Na ₂ SO ₄	6.54×10 ⁻¹⁰ mol s ⁻¹ cm ⁻²	17.5	Indophenol	7
		(-0.55 V vs. RHE)	(-0.35 V vs. RHE)	method	
Cr ₂ O ₃ nanofiber	0.1 M HCl	28.13 μg h ⁻¹ mg ⁻¹	8.56	Indophenol	8
		(-0.75 V vs. RHE)		method	
Bi ₄ O ₁₁ /CeO ₂	0.1 M HCl	23.21 ug h ⁻¹ mg _{cat} ⁻¹	10.16	Indophenol	9
	(pH = 1)	(-0.2 V vs. RHE)		method	
Nb ₂ O ₅ /CP	0.1 M HCl	43.6 µg h^{-1} mg _{cat} ⁻¹	9.26	Indophenol	10
2 - 3		(-0.55 V vs. RHE)		method	10
MXene (Ti ₃ C ₂ T _x)	0.5 M Li ₂ SO ₄ +	4.72 µg h ⁻¹ cm ⁻²	5.78	Nessler	11
(11)021()	0.1 M HCl	(-0.1 V vs. RHE)	0.10	method	
	(pH = 2)	(11 1 11)			
TiO ₂ /Ti ₃ C ₂ T _x	0.1 M HCl	$32.17 \ \mu g \ h^{-1} \ m g \ _{cat}^{-1}$	16.07	Indophenol	12
		(-0.45 V vs. RHE)		method	
OVs-rich MoO ₂	0.1 M HCl	12.20 µg h ⁻¹ mg ⁻¹	8.2	Indophenol	13
2		(-0.15 V vs. RHE)		method	
C-Ti _v O _v /C	0.1 M LiClO ₄	14.8 µg h ⁻¹ mg _{cat} ⁻¹	17.8	Indophenol	14
$C \Pi_X O_{Y'} C$		(-0.4 V vs. RHE)		method	
Fe/Fe ₂ O ₄	0.1 M PBS	~0 19 µg cm ⁻² h ⁻¹	8 29	Indophenol	15
10,10,304	(pH = 7.2)	$(\sim 0.19 \text{ µg } \text{h}^{-1} \text{ mg}^{-1})$	0.25	method	15
	(1-1-)	(-0.3 V vs. RHE)			
Zr-TiO ₂	0.1 M KOH	8.90 μg h ⁻¹ cm ⁻²	17.3	Indophenol	16
		$(8.90 \ \mu g \ h^{-1} \ m g^{-1})$		method	
		(-0.45 V vs. RHE)			
Cu-CeO ₂ -3.9	0.1 M Na ₂ SO ₄	5.3×10 ⁻¹⁰ mol s ⁻¹ cm ⁻¹	19.1	Indophenol	17
	(pH = 6.3)	(13.3 µg h ⁻¹ mg ⁻¹)		method	
		(-0.1 V vs. RHE)			
MnO _x NA/TM	0.1 M Na ₂ SO ₄	1.63×10 ⁻¹⁰ mol s ⁻¹ cm ⁻²	11.40	Indophenol	18
		(-0.5 V vs. RHE)		method	
α-Fe ₂ O ₃	0.1 M KOH	35.55 μg h ⁻¹ mg _{cat.} ⁻¹	25.93	Indophenol	19
nanocubes		(-0.5 V vs. RHE)	(0.0 V vs. RHE)	method	
SA-Ag/NC	0.1 M HCl	270.9 µg h ⁻¹ mg _{cat.} ⁻¹	21.9	Indophenol	20
		69.4 mg h ⁻¹ mg _{Ag} ⁻¹	(-0.65 V vs. RHE)	method	
		(-0.6 V vs. RHE)			
Zn/Fe-N-C	0.1 M PBS	30.5 μg h ⁻¹ mg _{cat.} ⁻¹	26.5	Indophenol	21
		(-0.3 V vs. RHE)		method	
Au ₁ /C ₃ N ₄	0.005 M H ₂ SO ₄	1,305 μg h ⁻¹ mg ⁻¹ Δu	11.1	Indophenol	22
		(-0.1 V vs. RHE)		method	
Au@amorphous	0.1 mol L ⁻¹ HCl	21.9 μg h ⁻¹ mg _{cat} ⁻¹	15.3	Indophenol	23
SnO ₂ NPs		(-0.2 V vs. RHE)		method	

Ru@ZrO ₂ /NC	0.1 M HCl	3.665 mg _{NH3} h ⁻¹ mg _{Ru} . ⁻¹ (-0.21 V vs. RHE)	21 (-0.11 V vs. RHE)	Indophenol method	24
SA-Mo/NPC	0.1 M KOH	$34.0 \pm 3.6 \ \mu g_{NH3} \ h^{-1} \ m g_{cat.}^{-1}$ (-0.3 V vs. RHE)	14.6 ±1.6	Nessler method	25
ISAS-Fe/NC	0.1 M PBS	62.9±2.7 μg h ⁻¹ mg _{cat.} ⁻¹ (-0.4 V vs. RHE)	18.6 ±0.8	Indophenol method	26
Bi NS	0.5 M K ₂ SO ₄ (pH = 3.5)	200 mmol g ⁻¹ h ⁻¹ 0.052 mmol cm ⁻² h ⁻¹ (3400 μg h ⁻¹ mg ⁻¹)	66	Nessler method	27
FL-BP NSs	0.01M HCl	31.37 μg h ⁻¹ mg ⁻¹ (-0.7 V <i>vs.</i> RHE)	5.07 (-0.6 V vs. RHE)	Indophenol method	28
VN NPs	0.05M H ₂ SO ₄	3.3×10 ⁻¹⁰ mol s ⁻¹ cm ⁻¹ (40.4 μg h ⁻¹ mg ⁻¹) (-0.1 V vs. RHE)	6.0	Nessler method	29
MBN	0.1 M Na ₂ SO ₄	18.2 μg h ⁻¹ mg _{cat.} ⁻¹ (-0.7 V <i>vs.</i> RHE)	5.5	Indophenol method	30
PCN	0.1 M HCl	8.09 μg h ⁻¹ mg _{cat.} ⁻¹ (-0.2 V <i>vs.</i> RHE)	11.05	Indophenol method	31
B ₄ C/CPE	0.1 M HCl	26.57 μg h ⁻¹ mg _{cat.} ⁻¹ (-0.75 V vs. RHE)	15.95	Indophenol method	32
TiC/C	0.1 M HCl	14.1 μg h ⁻¹ mg _{cat.} ⁻¹ (-0.5 V vs. RHE)	5.8	Indophenol method	33
ZrS ₂ NF-Vs	0.1 M HCl	30.72 μg h ⁻¹ mg _{cat} ⁻¹ (-0.35 V vs. RHE)	10.33 (-0.30 V vs. RHE)	Indophenol method	34
MoS ₂	0.1 M Na ₂ SO ₄	8.08×10 ⁻¹¹ mol s ⁻¹ cm ⁻¹ (-0.6 V vs. RHE)	1.17	Indophenol method	35
CoS ₂ /NS-G	0.05 M H ₂ SO ₄	25.0 μg h ⁻¹ mg _{cat.} ⁻¹ .(-0.2 V <i>vs.</i> RHE)	25.9 (-0.05 V vs. RHE)	Indophenol method	36
ZrB ₂ nanocubes	0.5 M LiClO ₄	37.7 µg h ⁻¹ mg ⁻¹ .(-0.3 V <i>vs.</i> RHE)	18.2	Indophenol method	37
LaF ₃	0.5 M LiClO ₄	55.9 μg h ⁻¹ mg _{cat.} ⁻¹ (-0.45 V <i>vs.</i> RHE)	16	Indophenol method	38
Pd ₃ Cu ₁	1 М КОН	39.9 mg h ⁻¹ mg _{cat.} ⁻¹ (-0.25 V <i>vs.</i> RHE)	1.56 (-0.05 V <i>vs.</i> RHE)	Nessler method	39
Rh _{0.6} Ru _{0.4} NAs	0.1 M Na ₂ SO ₄	57.75 μg h ⁻¹ mg _{cat.} ⁻¹ (-0.2 V vs. RHE)	3.39	Indophenol method	40
PdCuIr	0.1 M Na ₂ SO ₄	13.43 μg h ⁻¹ mg _{cat} . ⁻¹ (-0.3 V vs. RHE)	5.29	Indophenol method	41

amorphous BiNi	0.1 M Na ₂ SO ₄	17.5 μg h ⁻¹ mg _{cat.} ⁻¹	13.8	Indophenol	42
alloy		(-0.6 V vs. RHE)		method	
NPC	0.05 M H ₂ SO ₄	1.40 mmol g ⁻¹ h ⁻¹	1.42	Nessler	43
		(23.8 µg h ⁻¹ mg ⁻¹)		method	
		(-0.9 V vs. RHE)			
NPC-500	0.005 M H ₂ SO ₄	1.31 mmol g ⁻¹ h ⁻¹	9.98	Indophenol	44
		(22.3 µg h ⁻¹ mg ⁻¹)		method	
		(-0.4 V vs. RHE)			
CC-450	0.1 M Na ₂ SO ₄ +	15.8 μg cm ⁻² h ⁻¹	6.92	Indophenol	45
	0.02 M H ₂ SO ₄	(-0.3 V vs. RHE)		method	
d-FG	0.1 M Na ₂ SO ₄	9.3 μ g h ⁻¹ mg _{cat.} ⁻¹	4.2	Indophenol	46
		(-0.7 V vs. RHE)		method	
Fe-N/C-CNTs	0.1 M KOH	34.83 μg h ⁻¹ mg _{cat.} ⁻¹	9.28	Indophenol	47
		(-0.2 V vs. RHE)		method	
BG	0.05 M H ₂ SO ₄	9.8 μg cm ⁻² h ⁻¹	10.8	Indophenol	48
		(11.0 µg h ⁻¹ mg ⁻¹)		method	
		(-0.5 V vs. RHE)			
BCN	0.1 M HCl	7.75 μg h ⁻¹ mg _{cat.} ⁻¹	13.79	Indophenol	49
		(-0.3 V vs. RHE)		method	
IrP ₂ @PNPC-NF	0.05 M H ₂ SO ₄	94.0 μg h ⁻¹ mg _{cat.} ⁻¹	17.8	Indophenol	50
		(-0.3 V vs. RHE)	(-0.1 V vs. RHE)	method	

Fig. S1 (a) Low-magnification TEM image of $L-Co_3O_4-7.2$ and corresponding size distribution curve. (b) High-resolution TEM image of $L-Co_3O_4-7.2$ (inset of an individual nanoparticle).

Fig. S2 (a) Low-magnification TEM image of $C-Co_3O_4-4.1$ and corresponding size distribution curve. (b) High-resolution TEM image of $C-Co_3O_4-4.1$ (inset of an individual nanoparticle).

Fig. S3 Photograph of the electrochemical NRR experimental setup.

The electrochemical NRR experimental setup was constructed to eleminate the possible interferences of NH₃ and NO_x in the feeding gases based on previously reported protocol.⁵¹⁻⁵³ The Cu-Fe-Al catalyst (**Fig. S4**) was fabricated according to the reported methods.⁵⁴⁻⁵⁶ Prior to each experiment, the Cu-Fe-Al catalyst was thermally treated at 300 °C for 2 h under 5% H₂/Ar stream. The treated Cu-Fe-Al catalyst was covered with a stainless-steel vessel which filled up with the mixed ethanol and liquid nitrogen. Moreover, a CrO₃ catalyst packed column (Dongguan Zhongtian Electronic Technology Co. LTD, China) was used to completely remove NO interference. In this purification system, any NO passed through this purification unit will be converted to water soluble NO₂, and then removed by the KMnO₄ and KOH before reaching the electrochemical cell.

Fig. S4 SEM image and photograph (inset) of the Cu-Fe-Al catalyst.

Fig. S5 (a) The calibration curve used for calculation of NH_4^+ -N concentration. (b) UV-Vis absorption spectra of the indophenol blue indicator with various concentrations of NH_4^+ -N (0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 µg mL⁻¹) after incubating for 1 h at room temperature.

Fig. S6 (a) The calibration curve used for calculation of N_2H_4 · H_2O concentration. (b) UV-Vis absorption spectra with various concentrations of N_2H_4 · H_2O (0, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0 µg mL⁻¹) after incubating for 20 min at room temperature.

Fig. S7 (a) Time-dependent current density curves after NRR for 1 h in N_2 -saturated 0.1 M Na_2SO_4 electrolyte at different potentials. UV-Vis absorption spectra of the corresponding collected samples (b) for the possible N_2H_4 detection and possible NH₃ detection from (c) cathodic compartment and (d) anodic compartment.

Fig. S8 (a) The calibration curve of NH_4^+ -N peak area (retention time of ~9.8 min) used for calculation of NH_4^+ -N concentration detected by the ion chromatograph. (b) The corresponding ion chromatograph spectra with various concentrations of NH_4^+ -N (0.05, 0.1, 0.5, 1.0, 5.0, 10.0 µg mL⁻¹) in 0.1 M Na₂SO₄.

Fig. S9 Ion chromatograph spectra of collected samples for possible NH_3 detection from (a) cathodic compartment and (b) anodic compartment after NRR for 1 h in N₂saturated 0.1 M Na₂SO₄ electrolyte at different potentials.

Fig. S10 Ion chromatograph spectra of the standard solution (1.0 ppm NO_2^- and 1.0 ppm NO_3^-) and the collected samples under various conditions.

Fig. S11 UV-Vis absorption spectra of collected solution samples from (a) cathodic compartment and (b) anodic compartment under different control conditions. Ion chromatograph spectra of collected solution samples from (c) cathodic compartment and (d) anodic compartment under different control conditions.

Fig. S12 (a, c) ¹H NMR spectra of the ¹⁵NH₄⁺ and ¹⁴NH₄⁺ standards with different concentrations. (b, d) Corresponding ¹⁵NH₄⁺ and ¹⁴NH₄⁺ calibration curves constructed by plotting the integrated ¹H NMR signal (7.00 ppm for ¹⁵NH₄⁺ and 6.97 ppm for ¹⁴NH₄⁺) against the standard concentration.

Fig. S13 Dependence of R_{NH3} and FE of L-Co₃O₄-4.0/CC electrocatalyst at different applied potentials in N₂-saturated 0.1 M Na₂SO₄ electrolyte using conventional catalyst-loading electrocatalysis system.

Fig. S14 The comparison results of of LSV curves for three Co_3O_4/CC in N₂- and Arsaturated electrolytes.

Fig. S15 Cyclic voltammetry curves of (a) L-Co₃O₄-4.0, (b) L- Co₃O₄-7.2 and (c) C-Co₃O₄-4.1 with various scan rates (25, 50, 75, 100, 125 mV s⁻¹) in the region of - 0.10 to - 0.30 V (*vs.* Ag/AgCl).

Fig. S16 The comparison results of NH_3 yield rate and FE for L-Co₃O₄-4.0 in the fluidized electrocatalysis system after 1 h and 5 h of NRR, respectively.

Fig. S17 (a) TEM image and inset HRTEM image of L-Co₃O₄-4.0 after 5 h of NRR electrolysis. (b) XRD patterns (c) Raman spectra and (d) EPR spectra of the L-Co₃O₄-4.0 before and after 5 h of NRR.

Fig. S18 (a) The surface survey XPS spectra. (b) High-resolution O 1s XPS spectra, (c) High-resolution Co 2p XPS spectra and (d) High-resolution N 1s XPS of the L- Co_3O_4 -4.0 before and after 5 h of NRR.

References

- 1. X. H. Wang, J. Wang, Y. B. Li and K. Chu, ChemCatChem, 2019, 11, 4529-4536.
- R. Zhao, Q. Geng, L. Chang, P. Wei, Y. Luo, X. Shi, A. M. Asiri, S. Lu, Z. Wang and X. Sun, *Chem. Commun.*, 2020, 56, 9328-9331.
- 3. K. Chu, Y. P. Liu, Y. B. Li, H. Zhang and Y. Tian, J. Mater. Chem. A, 2019, 7, 4389-4394.
- 4. H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue and H. Wang, *Adv. Mater.*, 2018, **30**, 1803694.
- 5. Y. P. Liu, Y. B. Li, D. J. Huang, H. Zhang and K. Chu, Chem. Eur. J. 2019, 25,1 8.
- K. Chu, Y. P. Liu, Y. B. Li, J. Wang and H. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 4389-4394.
- 7. Y. Wang, J. Dai, M. Zhang, Y.-T. Liu, J. Yu and B. Ding, *Chem. Commun.*, 2020, 56, 12937-12940.
- 8. H. Du, X. Guo, R.-M. Kong and F. Qu, Chem. Commun., 2018, 54, 12848-12851.
- C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, *Angew. Chem., Int. Ed.*, 2018, 57, 6073-6076.
- J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, *Nano Energy*, 2018, 52, 264-270.
- 11. Y. Luo, G. F. Chen, L. Ding, X. Chen, L. X. Ding and H. Wang, Joule, 2019, 3, 279-289.
- 12. Y. Fang, Z. Liu, J. Han, Z. Jin, Y. Han, F. Wang, Y. Niu, Y. Wu and Y. Xu, *Adv. Energy Mater*, 2019, **0**, 1803406.
- 13. G. Zhang, Q. Ji and K. Zhang, Nano Energy, 2019, 59, 10-16.
- Q. Qin, Y. Zhao, M. Schmallegger, T. Heil, J. Schmidt, R. Walczak, G. Gescheidt-Demner, H. Jiao and M. Oschatz, *Angew. Chem.*, *Int. Ed.*, 2019, 58, 2-8.
- L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden and X. Feng, ACS Catal., 2018, 8, 9312-9319.
- N. Cao, Z. Chen, K. Zang, J. Xu, J. Zhong, J. Luo, X. Xu and G. Zheng, *Nat. Commun.*, 2019, 10, 2877.
- S. Zhang, C. Zhao, Y. Liu, W. Li, J. Wang, G. Wang, Y. Zhang, H. Zhang and H. Zhao, *Chem. Commun.*, 2019, 55, 2952-2955.
- L. Zhang, X. Y. Xie, H. Wang, L. Ji, Y. Zhang, H. Chen, T. Li, Y. Luo, G. Cui and X. Sun, *Chem. Commun.*, 2019, 55, 4627-4630.
- 19. C. Zhang, S. Liu, T. Chen, Z. Li and J. Hao, Chem. Commun., 2019, ,55, 7370-7373.
- 20. Y. Chen, R. Guo, X. Peng, X. Wang, X. Liu, J. Ren, J. He, L. Zhuo, J. Sun, Y. Liu, Y. Wu and J. Luo, *ACS Nano*, 2020, 2020, 14, 6938-6946.
- L. Zhang, G. Fan, W. Xu, M. Yu, L. Wang, Z. Yan and F. Cheng, *Chem. Commun.*, 2020, 56, 11957-11960.
- 22. X. Wang, W. Wang, M. Qiao, G. Wu, W. Chen, T. Yuan, Q. Xu, M. Chen, Y. Zhang, X. Wang, J. Wang, J. Ge, X. Hong, Y. Li, Y. Wu and Y. Li, *Sci. Bull.*, 2018, **63**, 1246-1253.
- 23. P. Wang, Y. Ji, Q. Shao, Y. Li and X. Huang, Sci. Bull., 2020, 65, 350-358.
- 24. H. Tao, C. Choi, L. X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H. Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu and Z. Sun, *Chem*, 2019, **5**, 204-214.

- 25. L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lü, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic and H. L. Xin, *Angew. Chem., Int. Ed.*, 2019, **58**, 2321-2325.
- 26. F. Lü, S. Zhao, R. Guo, J. He, X. Peng, H. Bao, J. Fu, L. Han, G. Qi, J. Luo, X. Tang and X. Liu, *Nano Energy*, 2019, **61**, 420-427.
- Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang and C.-H. Yan, *Nat. Catal.*, 2019, 2, 448-456.
- 28. L. Zhang, L.-X. Ding, G.-F. Chen, X. Yang and H. Wang, *Angew. Chem., Int. Ed.*, 2019, **58**, 2612-2616.
- X. Yang, J. Nash, J. Anibal, M. Dunwell, S. Kattel, E. Stavitski, K. Attenkofer, J. G. Chen, Y. Yan and B. Xu, *J. Am. Chem. Soc.*, 2018, 140, 13387-13391.
- 30. J. Zhao, X. Ren, X. Li, D. Fan, X. Sun, H. Ma, Q. Wei and D. Wu, *Nanoscale*, 2019, **11**, 4231-4235.
- C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen and G. Yu, *Angew. Chem., Int. Ed.*, 2018, 57, 10246-10250.
- W. Qiu, X.-Y. Xie, J. Qiu, W. H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang and X. Sun, *Nat. Commun.*, 2018, 9, 3485.
- G. Yu, H. Guo, W. Kong, T. Wang, Y. Luo, X. Shi, Abdullah M. Asiri, T. Li and X. Sun, J. Mater. Chem. A, 2019, 7, 19657-19661.
- T. Xu, D. Ma, T. Li, L. Yue, Y. Luo, S. Lu, X. Shi, A. M. Asiri, C. Yang and X. Sun, *Chem. Commun.*, 2020, 56, 14031-14034.
- L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Mater.*, 2018, **30**, 1800191.
- P. Chen, N. Zhang, S. Wang, T. Zhou, Y. Tong, C. Ao, W. Yan, L. Zhang, W. Chu, C. Wu and Y. Xie, *Pnas* 2019, **116**, 6635-6640.
- 37. Q. Li, Y. Cheng, X. Li, Y. Guo and K. Chu, Chem. Commun., 2020, 56, 13009-13012.
- 38. P. Li, Z. Liu, T. Wu, Y. Zhang, L. Wang, L. Wang, L. Ji, Y. Zhang, Y. Luo, T. Wang, S. Liu, Y. Wu, M. Liu and X. Sun, *J. Mater. Chem. A*, 2019, 7, 17761-17765.
- F. Pang, Z. Wang, K. Zhang, J. He, W. Zhang, C. Guo and Y. Ding, *Nano Energy*, 2019, 58, 834-841.
- 40. L. Zhao, X. Liu, S. Zhang, J. Zhao, X. Xu, Y. Du, X. Sun, N. Zhang, Y. Zhang, X. Ren and Q. Wei, *J. Mater. Chem. A*, 2021, **9**, 259-263.
- 41. R. D. Kumar, Z. Wang, C. Li, A. V. Narendra Kumar, H. Xue, Y. Xu, X. Li, L. Wang and H. Wang, *J. Mater. Chem. A*, 2019, **7**, 3190-3196.
- 42. Z. Fang, P. Wu, Y. Qian and G. Yu, Angew. Chem., Int. Ed., 2020, 59, 2-9.
- 43. Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, *ACS Catal.*, 2018, **8**, 1186-1191.
- 44. C. Zhao, S. Zhang, M. Han, X. Zhang, Y. Liu, W. Li, C. Chen, G. Wang, H. Zhang and H. Zhao, *ACS Energy Lett.*, 2019, **4**, 377-383.
- 45. W. Li, T. Wu, S. Zhang, Y. Liu, C. Zhao, G. Liu, G. Wang, H. Zhang and H. Zhao, *Chem. Commun.*, 2018, **54**, 11188-11191.

- 46. J. Zhao, J. Yang, L. Ji, H. Wang, H. Chen, Z. Niu, Q. Liu, T. Li, G. Cui and X. Sun, *Chem. Commun.*, 2019, **55**, 4266-4269.
- 47. Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z. Zhang and W. Zheng, *ACS Catal.* 2019, **9**, 336-344.
- 48. X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma and G. Zheng, *Joule*, 2018, **2**, 1610-1622.
- 49. C. Chen, D. Yan, Y. Wang, Y. Zhou, Y. Zou, Y. Li and S. Wang, *Small Methods*, 2019, **15**, 1805029.
- 50. X. Yang, F. Ling, X. Zi, Y. Wang, H. Zhang, H. Zhang, M. Zhou, Z. Guo and Y. Wang, *small*, 2020, **16**, 2000421.
- S. Zhang, M. Jin, T. Shi, M. Han, Q. Sun, Y. Lin, Z. Ding, L. R. Zheng, G. Wang, Y. Zhang, H. Zhang and H. Zhao, *Angew. Chem., Int. Ed.*, 2020, **59**, 13423-13429.
- 52. B. H. R. Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov and D. R. MacFarlane, *Nat. Catal.*, 2019, **2**, 290-296.
- 53. J. Choi, B. H. R. Suryanto, D. Wang, H.-L. Du, R. Y. Hodgetts, F. M. Ferrero Vallana, D. R. MacFarlane and A. N. Simonov, *Nat. Commun.*, 2020, **11**, 5546.
- 54. L. Ma, Y. Cheng, G. Cavataio, R. W. McCabe, L. Fu and J. Li, *Appl. Catal. B: Environ.*, 2014, **156-157**, 428-437.
- 55. L. Ma, Y. Cheng, G. Cavataio, R. W. McCabe, L. Fu and J. Li, *Chem. Eng. J.*, 2013, **225**, 323-330.
- 56. Q. Ye, L. Wang and R. T. Yang, Appl. Catal. A: Gen., 2012, 427-428, 24-34.