## Varied proton conductivity and photoreduction CO<sub>2</sub> performance in isostructural heterometallic clusters based metal–organic frameworks

Hai-Ning Wang,<sup>a</sup> Hong-Xu Sun,<sup>a</sup> Yao-Mei Fu,<sup>b</sup> Xing Meng,<sup>\*a</sup> Yan-Hong Zou,<sup>a</sup> Yu-Ou He,<sup>a</sup> Rui-Gang Yang<sup>a</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China.

E-mail: mengxing837@foxmail.com

<sup>b</sup>Shandong Engineering Research Center of Green and High-value Marine Fine Chemical; Weifang University of Science and Technology, Shouguang 262700, People's Republic of China.

**Table S1** The Fe and M (M=Co and Ni) mole ratio in **MOF-Fe<sub>2</sub>Co** and **MOF-Fe<sub>2</sub>Ni** crystals by ICP analysis.

| Sample                                                                      | Concentration of Fe | Concentration of M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe:M                                                                    |
|-----------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                                                                             | (µg/mL)             | $(\mu g/mL)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |
| MOF-Fe <sub>2</sub> Co                                                      | 8.544               | 4.480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.009                                                                   |
| MOF-Fe <sub>2</sub> Ni                                                      | 9.273               | 4.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.997                                                                   |
| (a) 1.2x10°<br>1.0x10°<br>8.0x10°<br>5 6.0x10°<br>4.0x10°<br>2.0x10°<br>0.0 |                     | (b) <sup>12000</sup><br><sup>10000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>2000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>6000</sup><br><sup>7/10</sup><br><sup>7/10</sup><br><sup>7/10</sup> | ● 30°C<br>● 40°C<br>● 50°C<br>● 50°C<br>● 60°C<br>● 70°C<br>25000 30000 |

Fig. S1 Impedance spectrum of MOF-Fe<sub>3</sub> at 30°C with different RHs (a) and 98 % RH under different temperatures (b).



Fig. S2 Impedance spectrum of MOF-Fe<sub>2</sub>Co at 30 °C with different RHs (a) and 98 %

RH under different temperatures (b).



Fig. S3 Impedance spectrum of MOF-Fe<sub>2</sub>Ni at 30°C with different RHs (a) and 98 %

RH under different temperatures (b).



Fig. S4 Water vapor adsorption and desorption isotherms of MOF-Fe<sub>3</sub>.



Fig. S5 Water vapor adsorption and desorption isotherms of MOF-Fe<sub>2</sub>Co.



Fig. S6 Water vapor adsorption and desorption isotherms of MOF-Fe<sub>2</sub>Ni.



Fig. S7 PXRD patterns of MOF-Fe<sub>2</sub>M after proton conductive measurements. Table S2 Proton conductive MOFs and their proton conductivity.

| Materials | Proton conductivity (S cm <sup>-</sup>                    | Condition    | Refs. |
|-----------|-----------------------------------------------------------|--------------|-------|
|           | <sup>1</sup> )                                            |              |       |
| Im-Fe-MOF | $1.21 \times 10^{-2} \ \mathrm{S} \cdot \mathrm{cm}^{-1}$ | 60°C, 98% RH | 1     |

| Im@MOF-808                                                                                  | $3.45 \times 10^{-2} \ \mathrm{S} \cdot \mathrm{cm}^{-1}$    | 60°C, 99% RH  | 2  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------|----|
| KAUST-7                                                                                     | $2.0 \times 10^{-2} \ S \cdot cm^{-1}$                       | 90°C, 95% RH  | 3  |
| Co-fdc                                                                                      | $4.85 \times 10^{3} S \cdot cm^{1}$                          | 80°C, 98% RH  | 4  |
| Im-Cu@(NENU-3a)                                                                             | $3.16 \times 10^{-4} \ \mathrm{S} \cdot \mathrm{cm}^{-1}$    | 70°C, 90% RH  | 5  |
| Ni-BDP                                                                                      | $2.22 \times 10^{-3} \mathrm{S} \cdot \mathrm{cm}^{-1}$      | 80°C, 97% RH  | 6  |
| [Ni <sub>8</sub> (OH) <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub> (BDPCOOH) <sub>6</sub> ] | $2.22 \times 10^{-3} \ S \cdot cm^{-1}$                      | 80°C, 97% RH  | 6  |
| MOF-801                                                                                     | $1.88 \times 10^{-3}  S \cdot cm^{-1}$                       | 25°C, 98% RH  | 7  |
| $Cu^{I}\text{-}MOF \cdot pz \cdot 3H_2SO_4$                                                 | $3.0 \times 10^{-3}  S \cdot cm^{-1}$                        | 70°C, 95% RH  | 8  |
| ${Na[Cd(MIDC)]}_n$                                                                          | $1.04 \times 10^{-3} \ \mathrm{S} \cdot \mathrm{cm}^{-1}$    | 100°C, 98% RH | 9  |
| $(H[Ln(H_2O)_4]_2[MnV_{13}O_{38}] \cdot 9NMP \cdot 17$                                      | $4.68/3.46 \times 10^{-3} \mathrm{S} \cdot \mathrm{cm}^{-1}$ | 61°C, 97% RH  | 10 |
| H <sub>2</sub> O (Ln=Ce and La)                                                             |                                                              |               |    |
| MFM-510                                                                                     | $2.1 \times 10^{-5} \ S \cdot cm^{-1}$                       | 25 °C, 99% RH | 11 |
| Ho-MOF ([Ho(SIP)(H <sub>2</sub> O) <sub>5</sub> ]·3H <sub>2</sub> O                         | $8.2 \times 10^{-4}  \mathrm{S} \cdot \mathrm{cm}^{-1}$      | 70 °C, 99% RH | 12 |
| TMOF-2                                                                                      | $1.23 \times 10^{-4} \mathrm{S} \cdot \mathrm{cm}^{-1}$      | 90 °C, 98% RH | 13 |
| MIT-25                                                                                      | $5.1 \times 10^{-4} \ S \cdot cm^{-1}$                       | 75 °C, 95% RH | 14 |
| $[CH_3NH_3]2[H_3O]Ag_5Sn_4Se_{12} \cdot C_2H_5O$                                            | $2.62 \times 10^{-4} \mathrm{S} \cdot \mathrm{cm}^{-1}$      | 60 °C, 99% RH | 15 |
| Н                                                                                           |                                                              |               |    |
| ZZU-2                                                                                       | 4.63×10 <sup>-4</sup> S·cm <sup>-1</sup>                     | 98°C,100% RH  | 16 |
|                                                                                             |                                                              |               |    |



Fig. S8 SEM images of surface (left) and cross section (right) of MOF-Fe<sub>3</sub>@PP-20

composite membrane.



Fig. S9 SEM images of surface (left) and cross section (right) of MOF-Fe<sub>3</sub>@PP-40 composite membrane.



Fig. S10 SEM images of surface (left) and cross section (right) of MOF-Fe<sub>3</sub>@PP-60



composite membrane.





Fig. S12 Impedance spectra of MOF-Fe<sub>3</sub>@PP-20 composite membrane at 30 °C with different RHs (a) and 98% RH under different temperatures (b).



Fig. S13 Impedance spectra of MOF-Fe<sub>3</sub>@PP-40 composite membrane at 30 °C with different RHs (a) and 98% RH under different temperatures (b).

 Table S3 The proton conductivity of three membranes under different temperatures

with 98% RHs.

| Temperature | Conductivity of            | Conductivity of            | Conductivity of            |
|-------------|----------------------------|----------------------------|----------------------------|
| (°C)        | MOF-Fe <sub>3</sub> @PP-20 | MOF-Fe <sub>3</sub> @PP-40 | MOF-Fe <sub>3</sub> @PP-60 |
|             | $(S \text{ cm}^{-1})$      | $(S \text{ cm}^{-1})$      | (S cm <sup>-1</sup> )      |
| 30°C        | $6.01 \times 10^{-4}$      | $8.87 \times 10^{-4}$      | $1.76 \times 10^{-3}$      |
| 35°C        | $7.10 \times 10^{-4}$      | $1.14 \times 10^{-3}$      | $2.18 \times 10^{-3}$      |
| 40°C        | $1.09 \times 10^{-3}$      | $1.37 \times 10^{-3}$      | $2.50 \times 10^{-3}$      |
| 45°C        | $1.45 \times 10^{-3}$      | $1.85 \times 10^{-3}$      | $3.02 \times 10^{-3}$      |
| 50°C        | $1.99 \times 10^{-3}$      | $2.16 \times 10^{-3}$      | $3.53 \times 10^{-3}$      |
| 55°C        | $2.15 \times 10^{-3}$      | $3.00 \times 10^{-3}$      | $3.95 \times 10^{-3}$      |
| 60°C        | $2.47 \times 10^{-3}$      | $3.63 \times 10^{-3}$      | $5.46 \times 10^{-3}$      |





Fig. S14 Arrhenius plot of the proton conductivities of MOF-Fe<sub>3</sub>@PP-20 composite

Fig. S15 Arrhenius plot of the proton conductivities of MOF-Fe<sub>3</sub>@PP-40 composite

membrane.



Fig. S16 Arrhenius plot of the proton conductivities of MOF-Fe<sub>3</sub>@PP-60 composite

membrane.

| Table S4 The proton conductive MOFs and | their proton | conductivity. |
|-----------------------------------------|--------------|---------------|
|-----------------------------------------|--------------|---------------|

| Materials                       | Proton conductivity (S cm <sup>-</sup>                | Condition     | Refs. |
|---------------------------------|-------------------------------------------------------|---------------|-------|
|                                 | <sup>1</sup> )                                        |               |       |
| MOF-801@PP-X                    | $1.88 \times 10^{-3}  S \cdot cm^{-1}$                | 98% RH, 25°C  | 7     |
| JUC-200@PVA-X                   | $1.25 \times 10^{-3} \text{ S} \cdot \text{cm}^{-1}$  | 100% RH, 25°C | 17    |
| MOF-808@PVDF-55                 | $1.56 \times 10^{-4} \ S \cdot cm^{-1}$               | 100% RH, 65°C | 18    |
| SPEE/S-UiO-66@GO-10             | $1.657 \times 10^{-3} \text{ S} \cdot \text{cm}^{-1}$ | 40% RH, 100°C | 19    |
| HPW@MIL-101/SPEEK               | $6.51 \times 10^{-3} \ S \cdot cm^{-1}$               | 40% RH, 60°C  | 20    |
| CS/CMMIM@MIL-53(Fe)-75%         | $2.1 \times 10^{-3} \text{ S} \cdot \text{cm}^{-1}$   | 70% RH, 15°C  | 21    |
| PMoV <sub>2</sub> @MIL-101-11.2 | $6.31 \times 10^{-3} \text{ S} \cdot \text{cm}^{-1}$  | 98% RH, 80°C  | 22    |
| MOF-808-OX@PVA-3                | $2.1 \times 10^{-5} \text{ S} \cdot \text{cm}^{-1}$   | 98% RH, 30°C  | 23    |

| Nafion/SmH <sub>2</sub> SP-5              | $2.61 \times 10^{-2} \ S \cdot cm^{-1}$  | 100% RH, 90°C  | 24 |
|-------------------------------------------|------------------------------------------|----------------|----|
| VMT-CNFs                                  | $4.3 \times 10^{-2} \ S \cdot cm^{-1}$   | 100% RH, 100°C | 25 |
| Cr/sBDC-Gel-0.4 M                         | $7.84 \times 10^{-3} \ S \cdot cm^{-1}$  | 100% RH, 80°C  | 26 |
| TEPA@ZIF-8-H <sub>2</sub> CO <sub>3</sub> | 5.38×10 <sup>-3</sup> S·cm <sup>-1</sup> | 99% RH, 60°C   | 27 |

| Table. S5 The formation rates of different products under different irradiation | times and |
|---------------------------------------------------------------------------------|-----------|
| the selectivity of CO.                                                          |           |

| Samples                | Irradiation | The formation                         | The  | formatic                      | n The                                 | The        |
|------------------------|-------------|---------------------------------------|------|-------------------------------|---------------------------------------|------------|
|                        | time        | rate of CO                            | rate | of CH                         | I <sub>4</sub> formation              | selectivit |
|                        |             | $(\mu mol \cdot g^{-1} \cdot h^{-1})$ | (µmo | $l \cdot g^{-1} \cdot h^{-1}$ | rate of $H_2$                         | y of CO    |
|                        |             |                                       |      |                               | (µmol·g <sup>-1</sup> ·h <sup>-</sup> |            |
|                        |             |                                       |      |                               | 1)                                    |            |
| MOF-Fe <sub>3</sub>    | 4.0h        | 6.08                                  |      | 0                             | 0.27                                  | 95.7%      |
| MOF-Fe <sub>2</sub> Co | 4.0h        | 16.29                                 |      | 0                             | 0.637                                 | 96.2%      |
| MOF-Fe <sub>2</sub> Ni | 4.0h        | 18.41                                 |      | 0                             | 0.31                                  | 98.4%      |
| MOF-Fe <sub>3</sub>    | 8.0h        | 4.53                                  |      | 0                             | 0.18                                  | 96.1%      |
| MOF-Fe <sub>2</sub> Co | 8.0h        | 13.19                                 |      | 0                             | 0.095                                 | 99.3%      |
| MOF-Fe <sub>2</sub> Ni | 8.0h        | 15.81                                 |      | 0                             | 0.63                                  | 96.2%      |



Fig. S17 Mott-Schottky plots of  $MOF-Fe_3$  (a),  $MOF-Fe_2Co$  (b) and  $MOF-Fe_2Ni$  (c).



Fig. S18 Energy level plots of MOF-Fe<sub>2</sub>M.



**Fig. S19** FTIR spectra of **MOF-Fe<sub>3</sub>** (black), after proton conductivity testing (red) and photocatalysis testing (blue).



**Fig. S20** FTIR spectra of **MOF-Fe<sub>2</sub>Co** (black), after proton conductivity testing (red) and photocatalysis testing (blue).



**Fig. S21** FTIR spectra of **MOF-Fe<sub>2</sub>Ni** (black), after proton conductivity testing (red) and photocatalysis testing (blue).



Fig. S22 PXRD patterns of MOF-Fe<sub>2</sub>M after photocatalysis testing.



Fig. S23 The TEM images of MOF-Fe<sub>2</sub>Ni before (a) and after (b) CO<sub>2</sub> photoreduction.



Fig. S24 XPS spectra of MOF-Fe<sub>2</sub>Ni before (a) and after (b) CO<sub>2</sub> photoreduction.

| Material                           | Products and yields                                       | Reaction     | Photosensitizer/Sac                     |    |
|------------------------------------|-----------------------------------------------------------|--------------|-----------------------------------------|----|
|                                    |                                                           | pattern      | rifice agent                            |    |
| PCN-221(Fe0.2)                     | CO 0.52 µmol g <sup>-1</sup> h <sup>-1</sup>              | Solid-liquid | ethyl acetate/H <sub>2</sub> O          | 28 |
| Cu <sub>3</sub> (BTC) <sub>2</sub> | CO 11.48 µmol g <sup>-1</sup> h <sup>-1</sup>             | Solid-liquid | CO <sub>2</sub> /H <sub>2</sub> O vapor | 29 |
| HKUST-1                            | CO 4.537 $\mu$ mol g <sup>-1</sup> h <sup>-1</sup>        | Solid-gas    | erephthalic acid                        | 29 |
| Ag⊂Re <sub>3</sub> -MOF-16         | CO _                                                      | Solid-liquid | MeCN/TEA (20:1)                         | 30 |
| nm                                 |                                                           |              |                                         |    |
| Fe-MIL-101-NH <sub>2</sub>         | CO 4.7 µmol g <sup>-1</sup> h <sup>-1</sup>               | Solid-liquid | MeCN/H <sub>2</sub> O/                  | 31 |
|                                    | H <sub>2</sub> 2.1 µmol g <sup>-1</sup> h <sup>-1</sup>   |              | TEOA (3:2:1)                            |    |
| AD-MOF-2                           | НСООН                                                     | Solid-liquid | aqueous solution                        | 32 |
|                                    | 443.2 µmol g <sup>-1</sup> h <sup>-1</sup>                |              |                                         |    |
| MOF-253-                           | CO 3.3 µmol g <sup>-1</sup> h <sup>-1</sup>               | Solid-liquid | MeCN (2 mL)                             | 33 |
| Ru(dcbpy) <sub>2</sub>             | HCOOH 26.7 µmolg <sup>-1</sup> h <sup>-</sup>             |              |                                         |    |
|                                    | 1                                                         |              |                                         |    |
| Zr-MOF-525                         | CO 1.52 µmol g <sup>-1</sup> h <sup>-1</sup>              | Solid-liquid | H <sub>2</sub> O                        | 34 |
|                                    | CH <sub>4</sub> 0.5 µmol g <sup>-1</sup> h <sup>-1</sup>  |              |                                         |    |
| MAF-7                              | formic acid 1.52 mmol                                     | Solid-liquid | phosphate uffer (100                    | 35 |
|                                    | g <sup>-1</sup> h <sup>-1</sup>                           |              | mM, pH=7),                              |    |
|                                    |                                                           |              | TEOA(15w/v%)                            |    |
| Co-UiO-67                          | CO 329 µmol g <sup>-1</sup> h <sup>-1</sup>               | Solid-liquid | MeCN/H <sub>2</sub> O/TEOA=             | 36 |
|                                    | H <sub>2</sub> 709 μmol g <sup>-1</sup> h <sup>-1</sup>   |              | 4:1:1                                   |    |
| NH <sub>2</sub> -MIL-125           | CH <sub>4</sub> 0.69 µmol g <sup>-1</sup> h <sup>-1</sup> | Solid-liquid | H <sub>2</sub> O                        | 37 |
| PCN-224(Cu)                        | CO 3.72 µmol g <sup>-1</sup> h <sup>-1</sup>              | Solid-liquid | _                                       | 38 |
| MIL-101-Cr                         | CO 8.3 µmol g <sup>-1</sup> h <sup>-1</sup>               | Solid-liquid | H <sub>2</sub> O and TEOA               | 39 |
|                                    | CH <sub>4</sub> 1.7 µmol g <sup>-1</sup> h <sup>-1</sup>  |              |                                         |    |
| NNU-31-Zn                          | HCOOH 1.7 µmol g <sup>-1</sup> h <sup>-1</sup>            | Solid-liquid | H <sub>2</sub> O                        | 40 |
| NH <sub>2</sub> -MIL-125(Ti)       | CO 0.76 µmol g <sup>-1</sup> h <sup>-1</sup>              | Solid-liquid | Acetonitrile (3mL)                      | 41 |
|                                    |                                                           |              | triethanolamine (1                      |    |

 Table S6 The photocatalytic performances of MOFs.

|        |                                                  |           | mL)          |    |
|--------|--------------------------------------------------|-----------|--------------|----|
| ZIF-8  | CO 0.68 µmol g <sup>-1</sup> h <sup>-1</sup>     | Solid-gas | water(10 µL) | 42 |
| UiO-66 | CO 1.0 $\mu$ mol g <sup>-1</sup> h <sup>-1</sup> | Solid-gas | water        | 43 |
|        | $CH_4 \ 0.6 \ \mu mol \ g^{-1} \ h^{-1}$         |           |              |    |

## Notes and references

- F. M. Zhang, L. Z. Dong, J. S. Qin, W. Guan, J. Liu, S. L. Li, M. Lu, Y. Q. Lan, Z. M. Su and H. C. Zhou, Effect of Imidazole Arrangements on Proton-Conductivity in Metal-Organic Frameworks, J. Am. Chem. Soc., 2017, 139, 6183-6189.
- [2] H. B. Luo, Q. Ren, P. Wang, J. Zhang, L. F. Wang and X. M. Ren, High Proton Conductivity Achieved by Encapsulation of Imidazole Molecules into Proton-Conducting MOF-808, ACS Appl. Mater. Interfaces., 2019, 11, 9164-9171.
- [3] P. G. M. Mileo, K. Adil, L. Davis, A. Cadiau, Y. Belmabkhout, H. Aggarwal, G. Maurin, M. Eddaoudi and S. Devautour-Vinot, Achieving Superprotonic Conduction with a 2D Fluorinated Metal-Organic Framework, J. Am. Chem. Soc., 2018, 140, 13156-13160.
- [4] S. Chand, W. H. Deng, A. Pal and M. C. Das, Polycarboxylate-Templated Coordination Polymers: Role of Templates for Superprotonic Conductivities of up to 10<sup>-1</sup> S cm<sup>-1</sup>, Angew. Chem. Int. Ed., 2018, 57, 6662-6666.
- [5] Y. X. Ye, W. G. Guo, L. H. Wang, Z. Y. Li, Z. J. Song, J. Chen, Z. J. Zhang, S. C. Xiang and B. L. Chen, Straightforward Loading of Imidazole Molecules into Metal-Organic Framework for High Proton Conduction, J. Am. Chem. Soc., 2017, **139**, 15604-15607.
- [6] T. He, Y. Z. Zhang, H. Wu, X. J. Kong, X. M. Liu, L. H. Xie, Y. B. Dou and J. R. Li, Functionalized Base-Stable Metal-Organic Frameworks for Selective CO<sub>2</sub> Adsorption and Proton Conduction, ChemPhysChem., 2017, 18, 3245-3252.
- [7] J. Zhang, H. J. Bai, Q. Ren, H. B. Luo, X. M. Ren, Z. F. Tian and S. F. Lu, Extra Water- and Acid-Stable MOF-801 with High Proton Conductivity and Its Composite Membrane for Proton-Exchange Membrane, ACS Appl. Mater. Interfaces., 2018, 10, 28656-28663.
- [8] S. Khatua, A. K. Bar, J. A. Sheikh, A. Clearfield and S. Konar, Achieving Amphibious Superprotonic Conductivity in a CuI Metal-Organic Framework by Strategic Pyrazinium Salt Impregnation, Chem. Eur. J., 2018, 24, 872-880.
- [9] R. L. Liu, Y. R. Liu, S. H. Yu, C. L. Yang, Z. F. Li and G. Li, A Highly Proton-Conductive 3D Ionic Cadmium-Organic Framework for Ammonia and Amines Impedance Sensing, ACS Appl. Mat. Interfaces., 2019, 11, 1713-1722.
- [10] J. X. Wang, Y. D. Wang, M. J. Wei, H. Q. Tan, Y. H. Wang, H. Y. Zang and Y. G. Li, Inorganic open framework based on lanthanide ions and polyoxometalates with high proton conductivity, Inorg. Chem. Front., 2018, 5, 1213-1217.
- [11] P. Rought, C. Marsh, O. logo, S. Pili, V. G. Sakai, M. Li, M. S. Brown, S. P. Argent, I. Vitorica-Yrezabal, G. Whitehead, M. R. Warren, S. Yang and M. Schröder, Modulating proton diffusion and conductivity in metal-organic frameworks by incorporation of accessible free carboxylic acid groups, Chem. Sci., 2019,10, 1492-1499.
- [12] S. S. Wang, X. Y. Wu, Z. Li, C. Z. Lu, Designed synthesis of a proton-conductive Ho-MOF

with reversible dehydration and hydration, Dalton Transactions., 2019, 48, 9930-9934.

- [13] G. Y. Zhang and H. H. Fei, Missing metal-linker connectivities in a 3-D robust sulfonate-based metal-organic framework for enhanced proton conductivity, Chem. Commun., 2017, 53, 4156-4159.
- [14] S. S. Park, A. J. Rieth, C. H. Hendon and M. Dincă, Selective Vapor Pressure Dependent Proton Transport in a Metal-Organic Framework with Two Distinct Hydrophilic Pores, J. Am. Chem. Soc., 2018, 140, 2016-2019.
- [15] H. B. Luo, Q. Ren, Y. Liu, Proton Conduction of an Acid-Resistant Open-Framework Chalcogenidometalate Hybrid in Anhydrous versus Humid Environments, Inorg. Chem., 2020, 59, 7283-7289.
- [16] R. L. Liu, W. T. Qu, B. H. Dou, Proton-Conductive 3D LnIII Metal-Organic Frameworks for Formic Acid Impedance Sensing, Chem Asian J., 2020, 15, 182-190.
- [17] K. Cai, F. Sun, X. Q. Liang, C. Liu, N. Zhao, X. Q. Zou and G. S. Zhu, An acid-stable hexaphosphate ester based metal-organic framework and its polymer composite as proton exchange membrane, J. Mater. Chem. A., 2017, 5, 12943-12950.
- [18] H. B. Luo, M. Wang, S. X. Liu, C. Xue, Z. F. Tian, Y. Zou and X. M. Ren, Proton Conductance of a Superior Water-Stable Metal-Organic Framework and Its Composite Membrane with Poly(vinylidene fluoride), Inorg. Chem., 2017, 56, 4169-4175.
- [19] H. Z. Sun, B. B. Tang and P. Y. Wu, Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance, ACS Appl. Mater. Interfaces., 2017, 9, 26077-26087.
- [20] B. Zhang, Y. Cao, Z. Li, H. Wu, Y. Yin, L. Cao, X. He, Z. Jiang, Responses to comments on "Ni nanoparticle-decorated reduced graphene oxide for non-enzymatic glucose sensing: An experimental and modeling study, Acta., 2017, 240, 186-194.
- [21] X. F. Zheng, X. Y. Zhao, J. Huang, H. Yang, Z. Liu, Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications, Appl Organomet Chem., 2020, e5981.
- [22] F. L. Wang, C. Y. Liang, J. Y. Tang, F. Zhang, F. Y. Qu, The promotion of proton conductivity by immobilizing molybdovanadophosphoric acids in metal-organic frameworks, New J. Chem., 2020, 44, 1912-1920.
- [23] X. Meng, H. N. Wang, L. S. Wang, Y. H. Zou, Z. Y. Zhou, Enhanced proton conductivity of a MOF-808 framework through anchoring organic acids to the zirconium clusters by postsynthetic modification, CrystEngComm., 2019, 21, 3146-3150.
- [24] B. G. Montse, R. S. Ines, M. P. C. Rosario, Layered Lanthanide Sulfophosphonates and Their Proton Conduction Properties in Membrane Electrode Assemblies, Chem. Mater., 2019, 31, 9625-9634.
- [25] X. Gu, B. Li, F. L. Li, K. Zhang, M. H. Guo, Transparent and flexible vermiculite-cellulose nanofiber composite membranes with high-temperature proton conduction, J. Am. Chem. Soc., 2019, 54, 5528-5535.
- [26] M. Qiu, H. Wu, L. Cao, B. B. Shi, X. Y. He, H. B. Geng, X. L. Mao, P. F. Yang and Z. Y. Jiang. Metal-Organic Nanogel with Sulfonated Three-Dimensional Continuous Channels as a Proton Conductor, ACS Appl. Mater. Interfaces., 2020, 12, 19788-19796.
- [27] Q. Ren, J. W. Yu, H. B. Luo, J. Zhang, L. Wang, X. M. Ren, Design and Preparation of a

Superior Proton Conductor by Confining Tetraethylenepentamine in the Pores of ZIF-8 To Induce Further Adsorption of Water and Carbon Dioxide, Inorg. Chem., 2019, **58**, 14693-14700.

- [28] L. Y. Wu, Y. F. Mu, X. X. Guo, Encapsulating Perovskite Quantum Dots in Iron-Based Metal-Organic Frameworks (MOFs) for Efficient Photocatalytic CO<sub>2</sub> Reduction, Angew. Chem. Int. Ed., 2019, 58, 9491-9495.
- [29] X. He, Z. R. Gan, S. Fisenko, D. W. Wang, H. M. El-Kader and W. N. Wang, Rapid Formation of Metal-Organic Frameworks (MOFs) Based Nanocomposites in Microdroplets and Their Applications for CO<sub>2</sub> Photoreduction, Acs Appl. Mater. Interfaces., 2017, 9, 9688-9698.
- [30] K. M. Choi, D. Kim, B. Rungtaweevoranit, C. A. Trickett, J. T. D. Barmanbek, A. S. Alshammari, P. D. Yang and O. M. Yaghi, Plasmon-Enhanced Photocatalytic CO<sub>2</sub> Conversion within Metal–Organic Frameworks under Visible Light, J. Am. Chem. Soc., 2017, 139, 356-362.
- [31] Q. Jiani, S. Wang, X. Wang, Visible-light reduction CO<sub>2</sub> with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst, Appl. Catal. B., 2017, 209, 476-482.
- [32] N. Li, J. Liu, J. J. Liu, L. Z. Dong, Z. F. Xin, Y. L. Teng, Y. Q. Lan, Adenine Components in Biomimetic Metal-Organic Frameworks for Efficient CO<sub>2</sub> Photoconversion, Angew. Chem. Int. Ed., 2019, 58, 5226-5231.
- [33] X. Y. Deng, Y. H. Qin, M. M. Hao and Z. H. Li, MOF-253-Supported Ru Complex for Photocatalytic CO<sub>2</sub> Reduction by Coupling with Semidehydrogenation of 1,2,3,4-Tetrahydroisoquinoline (THIQ), Inorg. Chem., 2019, 58, 16574-16580.
- [34] W. Y. Gao, H. T. Ngo, Z. Niu, W. J. Zhang, Y. X. Pan, Z. Y. Yang, V. R. Bhethanabotla, B. Joseph, Chemoenzymatic Synthesis of 5-Hydroxymethylfurfural (HMF)-Derived Plasticizers by Coupling HMF Reduction with Enzymatic Esterification, ChemSusChem., 2020, 13, 1864-5631.
- [35] Y. Tian, Y. Zhou, Y. Z. Zong, J. S. Li, N. Yang, M. Zhang, Z. Q. Guo and H. Song, Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO<sub>2</sub> to Formic Acid, ACS Appl. Mater. Interfaces., 2020, **12**, 34795-34805.
- [36] X. S. Gao, B. Guo, C. M. Guo, Q. Meng, J. Liang and J. X. Liu, Zirconium-Based Metal-Organic Framework for Efficient Photocatalytic Reduction of CO<sub>2</sub> to CO: The Influence of Doped Metal Ions, ACS Appl. Mater. Interfaces., 2020, **12**, 24059-24065.
- [37] J. Hu, J. Ding, Q. Zhong, In situ fabrication of amorphous TiO<sub>2</sub>/NH<sub>2</sub>-MIL-125(Ti) for enhanced photocatalytic CO<sub>2</sub> into CH<sub>4</sub> with H<sub>2</sub>O under visible-light irradiation, J. Colloid. Interf. sci., 2020, **560**, 857-865.
- [38] L. Wang, P. X. Jin, J. W. Huang, H. She and Q. Z. Wang, Integration of Copper(II)-Porphyrin Zirconium Metal-Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO<sub>2</sub> Reduction, ACS Sustainable Chem. Eng., 2019, 7, 15660-15670.
- [39] Y. Xie, Z. B. Fang, L. Li, H. X. Yang and T. F. Liu, Creating Chemisorption Sites for Enhanced CO<sub>2</sub> Photoreduction Activity through Alkylamine Modification of MIL-101-Cr, ACS Appl. Mater. Interfaces., 2019, **11**, 27017-27023.
- [40] L. Z. Dong, L. Zhang, J. Liu, Q. Huang, M. Lu, W. X. Ji and Y. Q. Lan, Stable Heterometallic Cluster-Based Organic Framework Catalysts for Artificial Photosynthesis, Angew. Chem. Int.

Ed., 2020, 59, 2659-2663.

- [41] S. Y. Chen, G. T. Hai, H. Y. Gao, X. Chen, A. Li, X. W. Zhang, W. J. Dong, Modulation of the charge transfer behavior of Ni(II)-doped NH<sub>2</sub>-MIL-125(Ti): Regulation of Ni ions content and enhanced photocatalytic CO<sub>2</sub> reduction performance, Chem. Eng. J., 2021, 406, 126886-126895.
- [42] Z. C. Kong, J. F. Liao, Y. J. Dong, Y. F. Xu, H. Y. Chen, D. B. Kuang and C. Y. Su, Core@Shell CsPbBr<sub>3</sub>@Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO<sub>2</sub> Reduction, ACS Energy Lett., 2018, 3, 2656-2662.
- [43] Y. J. Ma, Q. Tang, W. Y. Sun, Z. Y. Yao, W. H. Zhu, T. Li, J. Y. Wang, Assembling ultrafine TiO<sub>2</sub> nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO<sub>2</sub> to CH<sub>4</sub> at a low concentration, Appl. Catal. B-Environ., 2020, 270, 118856-118891.