Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Tandem-like vanadium clusters chains in a polyoxovanadate-based

metal-organic framework for efficiently catalytic oxidation of sulfides

Tian-Yi Dang,^{a†} Run-Han Li,^{a†} Hong-Rui Tian,^a Qian Wang,^a Ying Lu*^a and Shu-Xia Liu*^a

^aKey Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.

E-mail: <u>luy968@nenu.edu.cn</u>; <u>liusx@nenu.edu.cn</u>

Table of Contents

1	Crystallographic Data and Structure Refinements	S3
2	The asymmetric unit of V-Ni-MOF	S5
3	PXRD patterns of V-Ni-MOF	
4	FTIR Spectrum of V-Ni-MOF	S6
5	XPS Spectra of V and Ni in V-Ni-MOF	S6
6	TGA curve of V-Ni-MOF	S7
7	PXRD patterns of V-Ni-MOF after immersing in various solvents	S7
8	¹ H-NMR Spectra of the sulfides	S8
9	¹ H-NMR Spectra of the sulfones	S11
10	Recycling tests of the V-Ni-MOF	S14
11	SEM images of V-Ni-MOF	S14
12	Compared with the crystalline materials containing polyoxovanadate.	S15
13	References	

1. Crystallographic Data and Structure Refinements

Name	V-Ni-MOF				
Empirical formula	C ₂₈ H ₂₈ N ₈ NiO ₁₁ V ₄				
Formula weight	915.05				
Temperature (K)	295.05				
Wave length (Å)	0.71073				
Crystal system	monoclinic				
Space group	C2/c				
a (Å)	24.916(2)				
b (Å)	11.1241(10)				
c (Å)	16.1128(13)				
α (deg)	90				
β (deg)	126.088(2)				
γ (deg)	90				
Volume (Å ³)	3609.1(6)				
Z, Dcalc (Mg/m^3)	4, 1.684				
Absorption coefficient (mm ⁻¹)	1.576				
F (000)	1840.0				
Crystal size (mm ³)	0.21 imes 0.2 imes 0.19				
θ range (deg)	2.227 to 25.074				
index range (deg)	$-29 \le h \le 29, -13 \le k \le 13, -19 \le l \le 18$				
Reflections collected / unique	$27823 / 3212 [R_{int} = 0.0777]$				
Data / restraints / parameters	3212 / 133 / 317				
Goodness-of-fit on F ²	1.043				
R1, wR ₂ (I > $2\sigma(I)$)	0.0416, 0.0970				
R1, wR $_2$ (all data)	0.0721, 0.1142				
Largest diff. peak and hole (e Å ⁻³)	0.40, -0.54				

Table S1. Crystallographic data and structure refinement of V-Ni-MOF

 $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o| \cdot w R_2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$

V-Ni-MOF								
Ni(1)-O(1) ¹	2.097(3)	Ni(1)-O(1)	2.097(3)					
Ni(1)-N(3)	2.072(3)	Ni(1)-N(3) ¹	2.072(3)					
Ni(1)-N(1)	2.090(3)	Ni(1)-N(1) ¹	2.090(3)					
V(1)-O(1)	1.602(3)	V(1)-O(2)	1.587(4)					
V(1)-O(0AA)	1.783(11)	V(1)-O(4AA)	1.803(15)					
V(2)-O(0AA) ³	1.747(12)	V(2)-O(6A)	1.569(10)					
V(2)-O(2AA) ²	1.779(14)	V(2)-O(4AA)	1.798(14)					
O(1) ¹ -Ni(1)-O(1)	180.0	N(3) ¹ -Ni(1)-N(1) ¹	85.88(11)					
N(3) ¹ -Ni(1)-N(1)	94.13(11)	N(3)-Ni(1)-O(1)	90.47(11)					
N(3)-Ni(1)-O(1) ¹	89.53(11)	N(3) ¹ -Ni(1)-N(3)	180					
N(1) ¹ -Ni(1)-N(1)	180	O(1)-Ni(1)-N(1)	89.52(12)					
O(1)-Ni(1)-N(1) ¹	90.48(12)	O(0AA)-V(1)-O(1)	120.4(4)					
O(0AA)-V(1)-O(2)	93.3(4)	O(4AA)-V(1)-O(2)	99.2(4)					
O(4AA)-V(1)-O(1)	114.1(5)	O(2)-V(1)-O(1)	109.3(2)					
O(6A)-V(2)-O(2AA) ²	110.7(5)	O(6A)-V(2)-O(0AA) ³	112.6(6)					
O(0AA) ³ -V(2)-O(2AA) ²	103.8(5)							

 Table S2. Selected bond lengths [Å] and angles [deg] for V-Ni-MOF

¹ 1-X,1-Y,1-Z; ² 1-X,+Y,1/2-Z; ³ 1-X,2-Y,1-Z.

2. The asymmetric unit of V-Ni-MOF

Figure S1. The asymmetric unit of V-Ni-MOF.

3. PXRD patterns of V-Ni-MOF

Figure S2. The PXRD patterns of V-Ni-MOF.

4. FTIR Spectrum of V-Ni-MOF

Figure S3. The FTIR spectrum of V-Ni-MOF.

5. XPS Spectra of V and Ni in V-Ni-MOF

Figure S4. XPS spectra of V (a) and Ni (b) in V-Ni-MOF.

6. TGA curve of V-Ni-MOF

Figure S5. The TGA curve of V-Ni-MOF.

7. PXRD patterns of V-Ni-MOF after immersing in various solvents

Figure S6. The PXRD patterns of **V-Ni-MOF** after immersing in various solvents for 7 days.

8. ¹H-NMR Spectra of the sulfides

¹H-NMR Spectra of methyl phenyl sulfide.

¹H-NMR Spectra of dibutyl sulfide.

¹H-NMR Spectra of ethyl phenyl sulfide.

¹H-NMR Spectra of methyl p-tolyl sulfide.

¹H-NMR Spectra of 4-methoxythioanisole.

¹H-NMR Spectra of 4-chlorothioanisole.

9. ¹H-NMR Spectra of the sulfones

¹H-NMR Spectra of methyl phenyl sulfone.

$\begin{array}{c} 2.97\\ 2.95\\ 2.93\\ 2.93\\ 2.93\\ 2.93\\ 2.95\\ 2.93\\ 2.95\\ 2.95\\ 1.85\\ 1.84\\ 1.84\\ 1.84\\ 1.79\\ 1.51\\ 1.79\\ 1.51\\ 1.79\\ 1.51\\ 1.46\\ 1.149\\ 1.146\\ 1.$

¹H-NMR Spectra of dibutyl sulfone.

¹H-NMR Spectra of ethyl phenyl sulfone.

¹H-NMR Spectra of methyl p-tolyl sulfone.

¹H-NMR Spectra of 4-methoxyphenylmethylsulfone.

¹H-NMR Spectra of 4-chlorophenyl methyl sulfone.

10. Recycling tests of the V-Ni-MOF

Figure S7. Recycling tests for sulfide oxidation using the V-Ni-MOF.

11. SEM images of V-Ni-MOF

Figure S8. (a) The crystal SEM images of **V-Ni-MOF**; (b) SEM images of the grinded **V-Ni-MOF**; (c) SEM images of the grinded **V-Ni-MOF** after sulfide oxidation.

12. Compared with the crystalline materials containing polyoxovanadate

Table S3. Compared with the crystalline materials containing polyoxovanadate used

 in oxidation reactions of sulfides

Entry		Time	0.16.4	Т	Con.	Defense
	Catalyst		Oxidant	(°C)	(%)	Keterence
1	$K_{6}H[V^{V}_{17}V^{IV}_{12}(OH)_{4}O_{60}(OOC(CH_{2})_{4}COO)_{8}]\cdot nH_{2}O$	1	TBHP	25	98	1
2	$[(C_2N_2H_8)_4(CH_3O)_4V^{IV}_4V^V_4O_{16}]\cdot 4CH_3OH$	4	TBHP	40	100%	2
3	$[Co_2L_{0.5}V_4O_{12}]\cdot 3DMF\cdot 5H_2O$	4	TBHP	50	> 99%	3
4	[V ₈ ^{IV} O ₈ (CH ₃ O) ₁₆ (C ₂ O ₄)](C ₆ NH ₁₆) ₂ (CH ₃ OH) ₂	4	TBHP	40	100%	4
5	$(NH_2Me_2)_{12}[(V_5O_9Cl)_6(L)_8] \cdot [MeOH]_7$	1	TBHP	25	100%	5
6	$[Co_2L_{0.5}V_4O_{12}]\cdot 3DMF\cdot 5H_2O$	4	H_2O_2	50	trace	3
7	V-Ni-MOF	0.75	TBHP	25	100%	This work
8	V-Ni-MOF	0.25	TBHP	40	100%	This work
9	V-Ni-MOF	1	H_2O_2	40	100%	This work

13. References

- K. Wang, Y. Niu, D. Zhao, Y. Zhao, P. Ma, D. Zhang, J. Wang and J. Niu, The Polyoxovanadate-Based Carboxylate Derivative K₆H[V^V₁₇V^{IV}₁₂(OH)₄O₆₀(OOC(CH₂)₄COO)₈]·nH₂O: Synthesis, Crystal Structure, and Catalysis for Oxidation of Sulfides, *Inorg. Chem.*, 2017, 56, 14053-14059.
- J. P. Cao, Y. S. Xue, N. F. Li, J. J. Gong, R. K. Kang and Y. Xu, Lewis Acid Dominant Windmill-Shaped V₈ Clusters: A Bifunctional Heterogeneous Catalyst for CO₂ Cycloaddition and Oxidation of Sulfides, *J. Am. Chem. Soc.*, 2019, 141, 19487-19497.
- B. B. Lu, J. Yang, Y. Y. Liu and J. F. Ma, A Polyoxovanadate– Resorcin[4]arene-Based Porous Metal–Organic Framework as an Efficient Multifunctional Catalyst for the Cycloaddition of CO₂ with Epoxides and the Selective Oxidation of Sulfides, *Inorg. Chem.*, 2017, 56, 11710-11720.
- Q. D. Ping, J. P. Cao, Y. M. Han, M. X. Yang, Y. L. Hong, J. N. Li, J. L. Wang, J. L. Chen, H. Mei and Y. Xu, Eight-membered ring petal-shaped V₈ cluster: An efficient heterogeneous catalyst for selective sulfur oxidation, *Inorg. Chim. Acta*, 2021, **517**, 120198.
- H. M. Gan, C. Qin, L. Zhao, C. Sun, X. L. Wang and Z. M. Su, Self-Assembled Polyoxometalate-Based Metal-Organic Polyhedra as an Effective

Heterogeneous Catalyst for Oxidation of Sulfide, *Cryst. Growth Des*, 2021, **21**, 1028-1034.