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Ⅰ. Experimental

Materials synthesis

Li2CO3, ZnO, TiO2 and (NH4)6Mo7O24·4H2O were ball-milled at 400 rpm for 5 h 

in ethanol. The molar ratio of Li: Zn: Mo: Ti is 2.2: 1-x: x: 3 (x = 0, 0.05, 0.07, 0.09). 

The vessel of the ball-milling jar is 100 mL. The precursors were dried, ground and 

finally calcined for 4 h at 700 ℃ in air. The samples were marked as LZTO, 

LZM5TO, LZM7TO and LZM9TO, respectively. Li2ZnTi3-yPyO8 and Li2Zn1-xMoxTi3-

yPyO8 materials were prepared via the same processes. The molar ratio of Li: Zn: Ti: P 

is 2.2: 1: 3-y: y (y = 0.01, 0.03, 0.05) for Li2ZnTi3-yPyO8. The samples were marked as 

LZTP1O, LZTP3O and LZTP5O, respectively. The molar ratio of Li: Zn: Mo: Ti: P is 

2.2: 0.93: 0.07: 2.97: 0.03 for Li2Zn1-xMoxTi3-yPyO8. The sample was marked as 

LZM7TP3O.

Physical and electrochemical measurements

Thermogravimetric (TG) analyses were conducted on a RD496 thermal analyzer 

at a heating rate of 10 °C min-1 from room temperature to 800 °C in air. The phases 

were investigated via an X-ray diffraction technique conducted on a Bruker D8 

Advance X-ray diffractometer with a Cu Kα radiation (λ = 1.54 Å) in the 2θ ranges of 

10-85 ° for Li2ZnTi3O8 and 10-70 ° for LiNi0.5Mn1.5O4 with the step of 0.02 °. The 

FullProf program is used for crystal structure refinements, employing the Rietveld 

method. The mass fractions of Mo and P in the final product of LZM7TP3O was 

calculated from elemental analysis by ICP (Inductive Coupled Plasma Emission 

Spectrometer, Agilent 725aes) measurement. The morphologies of the products were 
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observed by a SU8010 scanning electron microscope (SEM). The high-resolution 

transmission electron microscope (HR-TEM) (JEM-2100F) was used to observe the 

nanoscale microstructures. X-ray photoelectron spectroscopy (XPS) measurements 

(PHI 5600 CI, mono-chromatic Al-Ka radiation) were used to identify the surface 

species. The electronic conductivity of pristine and doped anodes was obtained from a 

powder resistivity tester (ST2722-SD).

The electrochemical measurements were performed in CR2025 coin-type cells. 

The working electrodes were composed of 85 wt.% active material, 10 wt.% 

conductive agent of acetylene black, and 5 wt.% binder of polyvinylidene difluoride 

(PVDF). The assembly of the cells was carried out in a glove box filled with high 

purity argon. For the half cells, Li2ZnTi3O8 or LiNi0.5Mn1.5O4 was used as the working 

electrode and the fresh lithium foil was used as the counter/reference electrode. The 

loading of the active materials is 2.8-3.0 mg cm-2 for the half cells. For the full cells, 

LiNi0.5Mn1.5O4 and Li2ZnTi3O8 were used as the positive electrode and negative 

electrode, respectively. The specific capacities of the full cells are calculated based on 

the masses of the anode active materials. The electrolyte was 1.2 M LiPF6 dissolved 

into a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) with the 

volumetric ratio of 3:7. In this study, LiNi0.5Mn1.5O4 was purchased from Shenzhen 

Biyuan Electronics Co., Ltd. Charge-discharge and cyclic voltammetry (CV) 

measurements were in the ranges of 0.02-3.0 V for Li2ZnTi3O8/Li half cells, 3.5-4.95 

V for LiNi0.5Mn1.5O4/Li half cells, and 2-4.55 V for LiNi0.5Mn1.5O4/Li2ZnTi3O8 full 

cells. The scanning rates of CV measurements were 0.5, 0.1 and 0.1 mV s-1 for 
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Li2ZnTi3O8/Li half cells, LiNi0.5Mn1.5O4/Li half cells, and LiNi0.5Mn1.5O4/Li2ZnTi3O8 

full cells, respectively. Electrochemical impedance spectroscopies (EIS) were 

recorded with an ac voltage of 5 mV from 10 mHz to 100 kHz. The coin-type cells 

after cycling were transferred to a glove box and then dissembled. The electrodes 

were rinsed using dimethyl carbonate (DMC) to remove the electrolytes from the 

electrode surfaces. Then, electrodes were dried in the glove box antechamber to 

remove the residual DMC. The phases of the electrodes were investigated via an XRD 

technique.

Ⅱ. Supplementary Figs. 1-9 and Tables 1-5

Fig. S1 TG-DTG curves of the precursors for (a) LZTO and (b) LZM7TP3O.

The thermogravimetric (TG) and differential thermogravimetric (DTG) curves of 

the precursors for LZTO and LZM7TP3O are shown in Fig. S1 at a heating rate of 10 

°C min-1 in air. The weight loss before 150 °C originates from the evaporation of 

absorbed water for the two precursors. The weight loss from 200 to 530 °C is related 

to the decomposition of Li2CO3 for the precursor of LZTO or Li2CO3, 

(NH4)6Mo7O24·4H2O and NH4H2PO4 for the precursor of LZM7TP3O. There is a 

platform on the TG curve above 530 °C, indicating the formation of LZTO or 

LZM7TP3O after this temperature. Based on the above analyses, we design an 
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optimal one-step sintering process at 700 °C for 4 h.
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Fig. S2 (a) XPS spectrum of LZM7TP3O. High-resolution XPS spectra of 

LZM7TP3O for (b) Zn 2p, (c) Mo 3d, (d) P 2p and (e) Ti 2p.

The XPS spectrum of LZM7TP3O is shown in Fig. S2a. Mo and P elements 

exist in LZM7TP3O. Zn 2p spectrum consists of Zn 2p3/2 (1021.5 eV) and Zn 2p1/2 

(1044.6 eV) (Fig. S2b). The major peaks at 253.6 and 232.4 eV (Fig. S2c) are 

attributed to Mo6+ 3d5/2 and Mo6+ 3d3/2, respectively [1, 2]. The peak located at 139.5 

eV (Fig. S2d) is attributed to P5+ 2p. The high-resolution XPS spectrum of Ti 2p 

displays two peaks located at 464.9 (Ti 2p1/2) and 458.7eV (Ti 2p3/2) (Fig. S2e), which 

are the binding energies of Ti4+ in LZTO [3]. The peaks at 458.1 and 463.9 eV are 

assigned to Ti3+ 2p3/2 and Ti3+ 2p1/2 [4], respectively. That is to say, there are Ti3+ ions 

on the surface of LZM7TP3O. Therefore, the extra charges of Mo6+ and P5+ should be 

compensated by the existence of Ti3+, indicating that Mo and P elements have been 

doped into LZTO. 
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Fig. S3 (a) TEM image of LZM7TP3O. Elemental mappings of (b) Zn, (c) Ti, (d) O, 

(e) Mo and (f ) P in LZM7TP3O.



S8

Fig. S4 N2 adsorption-desorption isotherms of (a) LZTO and (b) LZM7TP3O (insets: 

pore size distributions).

Table S1 Specific surface areas and pore diameters of LZTO and LZM7TP3O. 

Samples Specific surface areas (m2 
g-1) Pore diameters (nm)

LZTO 21.4 2.28

LZM7TP3O 23.4 2.84
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Table S2 Cyclic performance of LZTO corresponding to the 2nd cycle in recent 

publications.

Materials Current densities 
(A g-1)

Cycle 
numbers

Capacity 
retention

References

Li2ZnTi3O8@C 0.229 100 99.2% [5]
Li2ZnTi3O8@C 0.458 100 86.8% [5]
C-LZTO 0.458 200 91.3% [6]
NC-LZTO 0.458 200 99% [6]
C-LZTO 1.145 200 80.6% [6]
NC-LZTO 1.145 200 93.3% [6]
LZTO-0 1 100 93.8% [7]
LZTO-1 1 100 95.9% [7]
LZTO-2 1 100 99.5% [7]
LZTO-3 1 100 95.8% [7]
LZTO-0 1 100 91.7% [8]
LZTO-1 1 100 93.3% [8]
LZTO-2 1 100 95.5% [8]
LZTO-3 1 100 93.2% [8]
Li2ZnTi3O8 0.1 50 59.6% [9]
Li2Zn0.5Cu0.5Ti3O8 0.1 50 67.5% [9]
LZTO 1 500 64% [10]
Li2Zn0.9Cu0.1Ti3O8 0.1 80 93% [11]
Li2Zn0.85Cu0.15Ti3O8 0.1 80 98.5% [11]
Li2ZnTi3O8@Li2MoO4 1 500 86.3% [12]
Li2ZnTi3O8@Li2MoO4 0.5/2 500 75.7% [12]
Li2ZnTi3O8/La2O3 2 500 57.2% [13]
Li2ZnTi3O8 2 500 25% [13]
Li2ZnTi3O8/C@Cu 1 600 67.6% [14]
Li2ZnTi3O8/C 1 600 40.9% [14]
Li2ZnTi3O8/C@Cu 2 500 56.5% [14]
Li2ZnTi3O8/C 2 500 44.4% [14]
Li2ZnTi3O8 1 100 76.9% [15]
Li2ZnTi3O8 2 100 90.7% [15]
Li2ZnTi2.9Al0.1O8 1 100 91.6% [15]
Li2ZnTi2.9Al0.1O8 2 100 86.6% [15]
Li2ZnTi3O8/LiCoO2 2 500 41.7% [16]
Li2ZnTi3O8 2 500 26.7% [16]
Li2ZnTi3O8 (COS) 1 600 56.4% [17] 
Li2ZnTi3O8 (PVDF) 1 600 25% [17]
Li2ZnTi3O8 (COS) 2 100 67.6% [17]
Li2ZnTi3O8 (PVDF) 2 100 50.4% [17]
Li2ZnTi3O8 1 600 92.5% [18]
Li2ZnTi3O8 2 500 78.3% [18]
LZTO 1 100 91% [19]
LZTO/C-1 1 100 92.4% [19]
LZTO/C-2 1 100 94.8% [19]
LZTO/C-3 1 100 79.8% [19]
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Table S2 (Contd.)

Materials Current densities 
(A g-1)

Cycle 
numbers

Capacity 
retention

References

Pristine Cu-LZTO 1 200 86.9% [20]
Bare Cu-LZTO 1 200 87% [20]
Cu-G-LZTO 1 200 89.6% [20]
Cu-G-Au-LZTO 1 200 98.7% [20]
Pristine Cu-LZTO 2 200 75% [20]
Bare Cu-LZTO 2 200 85.1% [20]
Cu-G-LZTO 2 200 93.1% [20]
Cu-G-Au-LZTO 2 200 93.4% [20]
LZTO-700-3 1 200 66.9% [21]
LZTO@C-700-1 1 200 60.8% [21]
LZTO@C-700-3 1 200 71.7% [21]
LZTO@C-700-5 1 200 69.7% [21]
LZTO-700-3 2 200 72.3% [21]
LZTO@C-700-1 2 200 67.2% [21]
LZTO@C-700-3 2 200 73.1% [21]
LZTO@C-700-5 2 200 65.7% [21]
LZTO@C-N-1 1 200 71.3% [22]
LZTO@C-N-2 1 200 77.7% [22]
LZTO@C-N-3 1 200 83.0% [22]
LZTO@C-N-3 2 200 75.5% [22]
LZTO 1 200 68.5% [23]
LZTO@C-N-1 1 200 61.8% [23]
LZTO@C-N-2 1 200 68.1% [23]
LZTO@C-N-3 1 200 63.8% [23]
LZTO@C-N-2 2 200 73.7% [23]
LZTO@C-N-2 3 200 75% [23]
LZTO 1 400 75.8% [24]
LZTO/G 1 400 76.4% [24]
LZTO 2 300 63.1% [24]
LZTO/G 2 300 72.3% [24]
LZTO@GNS 1 550 70.3% [25]
LZTO@GNS-CNT 1 550 81.3% [25]
LZTO@GNS 2 500 69% [25]
LZTO@GNS-CNT 2 500 91.8% [25]
LZTO 1 600 81.4% [26]
LZTMO@G 1 600 82.4% [26]
LZTO 2 300 57.2% [26]
LZTMO@G 2 300 89.7% [26]
LZTO@C 1 200 70.5% [27]
LZTO@C 2 200 65.7% [27]
LZTO@C@La2O3 1 200 89.8% [27]
LZTO@C@La2O3 2 200 77.2% [27]
LZTO-0 1.5 500 89.3% [3]
LZTO-1 1.5 500 90.5% [3]
LZTO/NMO 1 400 85.3% [28]
Li2ZnAg0.15Ti2.85O8 1 100 91.4% [29]
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Table S2 (Contd.)

Materials Current 
densities (A g-1)

Cycle 
numbers

Capacity 
retention

References

Li2ZnAg0.15Ti2.85O8 2 100 82% [29]
Li2ZnTi3O8 1 100 83.1% [29]
Li2ZnTi3O8 2 100 99.2% [29]
LZTO/C-3 1 500 94.4% [30]
LZTO 1 400 34.6% [31]
LZTW3O 1 400 93.1% [31]
LM6ZTW3O 1 400 94.7% [31]
LZTN1O 1 600 99.1% [32]
LZM7TP3O 1 600 109.5% The work
LZM7TP3O 1.5 500 101.1% The work
LZM7TP3O 2 500 98.2% The work
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Table S3 Rate capability of LZTO in recent publications.

Materials Current 
densities (A g-1)

Specific capacities 
(mAh g-1)

Cycle 
numbers

References

Li2ZnTi3O8@C 2.29 190 35 [5]
Li2ZnTi3O8 2.29 189 35 [5]
LZTO 2.29 138.2 50 [6]
C-LZTO 2.29 180.9 50 [6]
NC-LZTO 2.29 190.6 50 [6]
LZTO-0 2 75 50 [7]
LZTO-1 2 140 50 [7]
LZTO-2 2 170 50 [7]
LZTO-3 2 168 50 [7]
LZTO 2 78 25 [10]
Li2ZnTi3O8@Li2MoO4 2 112 60 [12]
Li2ZnTi3O8 2 55 60 [12]
Li2ZnTi3O8/La2O3 3 149.3 40 [13]
Li2ZnTi3O8 3 116.9 40 [13]
Li2ZnAg0.15Ti2.85O8 1.6 125 50 [29]
Li2ZnTi3O8 (COS) 2 161 25 [17]
Li2ZnTi3O8 (PVDF) 2 135.5 25 [17]
Li2ZnTi3O8 1.5 175 40 [18]
Li2ZnTi3O8 1.5 135 40 [18]
Li2ZnTi3O8 1.5 100 40 [18]
LZTO-700-3 2.8 141.9 60 [21]
LZTO@C-700-1 2.8 174.5 60 [21]
LZTO@C-700-3 2.8 180.5 60 [21]
LZTO@C-700-5 2.8 173.8 60 [21]
Li2ZnTi3O8 1.6 150 50 [33]
Li2Mg0.5Zn0.5Ti3O8 0.8 175 40 [33]
Li2ZnTi3O8/C 2 145.6 50 [34]
R-100-LZTO 1.6 161.8 50 [35]
R-10-LZTO 1.6 147.1 50 [35]
Li2ZnTi3O8/TiO2 2 173.4 50 [36]
Li2ZnTi3O8/TiO2 3 161.6 60 [36]
Li2ZnTi2.9Al0.1O8 1.6 131.8 50 [15]
Li2ZnTi3O8/C 1.6 118 50 [37]
Li2Zn0.6Cu0.4Ti3O8 1 124.8 50 [38]
Li2ZnTi3O8 0.458 172.7 30 [39]
Li2ZnTi3O8/C-10 1.8 121.8 50 [40]
LZTO 1.145 47 106 [41]
LZTO@RGO10 1.145 50 106 [41]
LZTO@RGO25 1.145 154 106 [41]
LZTO@RGO50 1.145 113 106 [41]
C&N coated Li2ZnTi3O8 2.5 190.6 40 [42]
Li1.95Na0.05ZnTi3O8 0.458 162.3 80 [43]
LTO-MB-05 2.29 100 20 [44]
LZTO-2 2.29 135 20 [45]
LZTNO 1.145 80 15 [46]
Li2ZnTi3O8/C 2 178 60 [47]
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Table S3 (Contd.)

Materials Current 
densities (A 
g-1)

Specific 
capacities 
(mAh g-1)

Cycle 
numbers

References

Li2Zn0.9Cu0.1Ti3O8 1 165.4 50 [11]
LZTO/KCl 1.6 135.6 50 [48]
P-LZTO 1.6 53.3 40 [28]
LZTO/NMO 1.6 161.3 40 [28]
LZTO/NMO-1 1.6 101.8 40 [28]
P-LZTO 1.6 44 50 [49]
LZTO/LMS-1 1.6 107.1 50 [49]
LZTO/LMS-2 1.6 140.4 50 [49]
LZTO/LMS-3 1.6 144.9 50 [49]
PZ 1.6 69.3 50 [50]
FA1 1.6 124.5 50 [50]
FA2 1.6 144.3 50 [50]
FA3 1.6 96.1 50 [50]
FA2-800 1.6 143.5 50 [50]
FA2-850 1.6 127.6 50 [50]
P-LZTO 1.6 32.4 50 [51]
LZTO/LZO 1.6 109.8 50 [51]
LZTO/LZO-1 1.6 85.3 50 [51]
P-LZTO 1.6 65.8 50 [52]
LZTO/C-1 1.6 55.6 50 [52]
LZTO/C-2 1.6 106.7 50 [52]
LZTO/C-3 1.6 102.5 50 [52]
Li2ZnTi2.9Cr0.1O8 2 156.7 50 [53]
LM6ZTW3O 2 199 80 [31]
LM6ZTW3O 2.5 191.7 100 [31]
LM6ZTW3O 3 177.9 120 [31]
LZTO/C-3 2 169.8 40 [30]
LZTO/C-3 3 150.9 50 [30]
LZTO-E 2 138 40 [54]
LZTO-E 3 125 50 [54]
Li2ZnAg0.15Ti2.85O8 1.6 125 50 [29]
Li2Zn0.9Nb0.1Ti3O8 2 160 40 [55]
Li2Zn0.9Nb0.1Ti3O8 3 147 50 [55]
FLZTO-2 1 179.4 60 [56]
NWLZTO-2 1 132.8 60 [57]
Li1.95V0.05ZnTi3O8 1.145 84.7 100 [58]
LZM7TP3O 1.5 210.3 60 The work
LZM7TP3O 2 201.8 80 The work
LZM7TP3O 2.5 191.9 100 The work
LZM7TP3O 3 180.5 120 The work
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Table S4 Rate capability of some other anodes with comparable theoretical specific 

capacity with LZTO in recent publications.

Materials Current 
densities (A 
g-1/C)

Specific 
capacities 
(mAh g-1)

Cycle 
numbers

References

TiO2@HCNs 10 C 186 50 [59]
TiO2@C 5 C 90 30 [60]
TiO2-carbonized PAN 1 74.7 40 [61]
TiO2@rGO 10 C 85.6 40 [62]
TiO2 0.185 152 100 [63]
7% Co-doped TiO2 5 C 70 30 [64]
TiO2 (300) 1 167 12 [65]
TiO2-B 10 C 181.3 50 [66]
TiO2-B-graphene 5 C 185 30 [67]
TiO2-B/MoS2 10 C 158 60 [68]
TiO2-B@VS2 10 C 171.2 50 [69]
TiNb6O17 5 C 127.3 80 [70]
Ti2Nb10O29 10 C 176 1 [71]
Ti2Nb10O29/Ag 10 C 172 30 [72]
TiNb2O7 1.6 145.7 50 [73]
TiNb2O7 6 C 183 35 [74]
Nb2O5/TiNb2O7 10 C 168 60 [75]
Ti2Nb10O29 10 C 179.1 40 [76]
Ti0.98Nb2.02O7 5 C 153 60 [77]
Li3VO4 2 110 25 [78]
Li3VO4 3 69 30 [78]
Li3VO4 0.2 C 168 10 [79]
Li3VO4@C 2 141 1 [80]
LZM7TP3O 2 (8.7 C) 201.8 80 The work
LZM7TP3O 2.5 (10.9 C) 191.9 100 The work
LZM7TP3O 3 (13.1 C) 180.5 120 The work

Fig. S5 IR-drop data of LZTO and LZM7TP3O electrodes at 0.1 A g-1 when charging 
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is switched to discharging for the (a) 100th cycle and (b) 200th cycle. 

The magnitude of internal resistance can be characterized by the voltage drop, or 

IR drop, when charging/discharging is switched to discharging/charging (Fig. S5). 

Compared with LZTO, LZM7TP3O has smaller IR drop during the cycling process. 

Fig. S6 Ex-situ XRD patterns of the LZTO and LZM7TP3O electrodes after cycling 

for 200 cycles at 1 A g-1.

Fig. S6 presents the XRD patterns of the LZTO and LZM7TP3O electrodes after 

cycling for 200 cycles at 1 A g-1. The diffraction peaks of the LZM7TP3O electrode 

are still sharp after cycling, indicating that the structure of the LZM7TP3O retains 

significantly stability during insertion and de-insertion of Li+ ions. However, some of 

the diffraction peaks for the LZTO electrode are blurry, indicating that the structure of 

the LZTO is partly destroyed during cycling process.
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Fig. S7 Surface SEM images of (a-b) LZTO, and (c-d) LZM7TP3O before and after 

cycling for 200 cycles at 1 A g-1. Cross-sectional SEM images of (e) LZTO, and (f) 

LZM7TP3O after cycling for 200 cycles at 1 A g-1.

The SEM images of the LZTO and LZM7TP3O electrodes before and after 

cycling for 200 cycles at 1 A g-1, are shown in Fig. S7. The surface of the LZTO 

electrode is severely damaged after repeated Li+ insertion/de-insertion, and some 

cracks appear (Fig. S7b). The cracks will prevent the transportation of electrons and 

the diffusion of Li+ ions, and then lead to the capacity fading. However, there is no 
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obvious crack on the surface of LZM7TP3O (Fig. S7d). The integrated surface can 

keep good electrical contact between active particles. From the cross-sectional SEM 

images as shown in Figs. S7e-f, compared with the LZM7TP3O electrode, the 

detachment of the active material layer from the Cu substrate is more pronounced for 

the LZTO electrode, indicating the better adhesion between LZM7TP3O and the 

current collector. This strong adhesion helps to maintain a good electrical contact 

between the current collector and LZM7TP3O.
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Fig. S8 Impedance spectra of the LZTO and LZM7TP3O electrodes (a) before cycling 

and (b) after cycling at different current densities in Fig. 5d and corresponding 

equivalent circuits (inset). (c) Relationship between Zre and ω-1/2.

The electrochemical impedance data were collected on as assembled cells before 

and after cycling at different current densities in Fig. 5d and are presented in Figs. 

S8a-b. The potentials are ca. 2 V. The curves are similar for the two electrodes, 

composed of a small intercept, one semicircle and a straight line for each electrode 
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before cycling. The equivalent circuit model is shown in Fig. S8a (inset). Rb is the 

combined impedance of the electrolyte and cell components; Cdl and Rct, are the 

double layer capacitance and charge transfer resistance; W represents Warburg 

impedance. The charge transfer resistance is 29.95 and 21.99 Ω for LZTO and 

LZM7TP3O (Table S5), respectively. When the two electrodes were cycled at 

different current densities, there are two semicircles on the impedance spectra. The 

equivalent circuit model is shown in Fig. S8b (inset). Csei and Rsei represent the 

capacitance and the resistance of the SEI (solid electrolyte interface) layer for the first 

semicircle; Cdl and Rct correspond to the second semicircle. The charge transfer 

resistance is 155 and 28.73 Ω for LZTO and LZM7TP3O (Table S5), respectively. 

The charge transfer resistance decreases after doping. Small charge transfer resistance 

is advantageous to the electrochemical performance. 

To further investigate the electrode kinetics, the diffusion coefficients of Li+ ions 

in the two samples are estimated based on the Warburg diffusion in low frequency 

(Fig. S8b) using the following equation [38]

                                                                         (S1)2 2 2 4 4 2 2/ (2 )
Li
D R T A n F C  

where R is the gas constant (8.314 J mol-1 K-1); T is the room absolute temperature 

(298.5 K); A is the surface area of the electrode (1.13 cm2 in this work); n is the 

number of electrons transferred in the half reaction for the redox couple; F is Faraday 

constant (96,485 C mol-1); C is the concentration of Li+ ion in the compound, and can 

be calculated based on the following equation 
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23

3 4
6.022 10

C
V




                                                                                     (S2)

σ is the Warburg factor which obeys the following relationship:

-1/2
re e ctZ R R                                                                                (S3)

Fig. S8c shows the relationship between Zre and ω-1/2. Based on the Equations S1 

and S3, the lithium diffusion coefficients (DLi
+) of LZTO and LZM7TP3O can be 

calculated and the specific values are 1.12×10-10 and 1.47×10-9 cm2 s-1, respectively. 

Compared with LZTO electrode, Mo-P co-doped LZTO material has high DLi
+, which 

indicates the fast diffusion of Li+ ions and thus guarantees good rate capability.

Table S5 Impedance parameters calculated from equivalent circuit model, lithium 

diffusion coefficients (DLi
+) and electronic conductivity of LZTO and LZM7TP3O.

Before cycling After cycling σ (S cm-1)Samples

Rb (Ω) Rct (Ω) Rb (Ω) Rsei (Ω) Rct (Ω)

DLi+ (cm2 s-1)

LZTO 3.411 29.95 6.079 78.64 155 1.12×10-10 3.89×10-5

LZM7TP3O 3.838 21.99 11.421 17.74 28.73 1.47×10-9 6.91×10-5
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Fig. S9 Cyclic voltammograms of (a) LiNi0.5Mn1.5O4/Li, (b) LZM7TP3O/Li and (c) 

LiNi0.5Mn1.5O4/LZM7TP3O.

Fig. S9 shows the cyclic voltammograms of LiNi0.5Mn1.5O4/Li, LZM7TP3O /Li 

and LiNi0.5Mn1.5O4/LZM7TP3O in 3.5-5.0 V, 0.02-3 V and 2-4.55 V, respectively. 

For LiNi0.5Mn1.5O4/Li (Fig. S9a), the peaks at 4.03/3.97 V are due to Mn4+/Mn3+ 

redox couple, and the peaks at 4.75 (4.80)/4.61 V are due to Ni3+/Ni2+ and Ni4+/Ni3+, 

respectively. For LZM7TP3O/Li (Fig. S9b), a pair of redox peaks appears at 

1.24/1.55 V, which can be attributed to the redox of Ti4+/Ti3+ couple. Moreover, a 
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reduction peak ca. 0.5 V is observed. There are three oxidation peaks at 2.67, 3.46 

and 4 V, and one sharp reduction peak at 3.24 V for the LiNi0.5Mn1.5O4/LZM7TP3O 

full cell (Fig. S9c). Li+ ions can be inserted/de-inserted to the maximum extent in the 

range of 2.0-4.55 V for the LiNi0.5Mn1.5O4/LZM7TP3O full cell. In addition, the 

potential window will not cause a lot of side reactions between active materials and 

electrolytes.
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