Electronic Supplementary Information

Two New Tellurite Halides with Cationic Layers: Syntheses, Structures, and Characterizations of CdPb₂Te₃O₈Cl₂ and Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄

Chen Bai,^{#ab} Yu Chu,^{#a} Jiazheng Zhou,^a Linan Wang,^a Ling Luo,^a Shilie Pan^{*a} and Junjie Li^{*a}

^a CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.

^bCollege of Chemistry and Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, China.

These authors contributed equally to this work.

*Corresponding authors: lijunjie@ms.xjb.ac.cn, slpan@ms.xjb.ac.cn.

Table Captions

Table S1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{Å}^2 \times 10^3)$ for CdPb₂Te₃O₈Cl₂. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S2. Bond lengths [Å] and angles [°] for CdPb₂Te₃O₈Cl₂.

Table S3. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{Å}^2 \times 10^3)$ for Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S4. Bond lengths [Å] and angles [°] for Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄.

 Table S5. Selected Mulliken atomic populations.

 Table S6. Selected bond distances and Mulliken overlap populations for characteristic atomic pairs.

Figure Captions

Figure S1. The EDS spectra of $CdPb_2Te_3O_8Cl_2$ (a) and $Cd_{13}Pb_8Te_{14}O_{42}Cl_{14}$ (b).

Figure S2. (a-g) Coordination of Cd1-Cd7 atoms in Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄.

Figure S3. (a-d) Coordination of Pb1-Pb4 atoms in Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄.

Figure S4. (a-g) Coordination of Te1-Te7 atoms in Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄.

Figure S5. The Cd coordination environments in $C_3H_9Cd_{1.5}Cl_3O_4P$, CdOHCl, $Cd(IO_3)Cl$ and $Cd_5(BO_3)_3Cl$.

Figure S6. The Pb coordination environments in $Pb_3O_2Cl_2$, $Pb_{17}O_8Cl_{18}$, $Ba_{27}Pb_8O_8Cl_{54}$ and $RbPb_8O_4Cl_9$.

Figure S7. XRD patterns of CdPb₂Te₃O₈Cl₂ (a) and Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄ (b) before and after heating at 550 °C (CdPb₂Te₃O₈Cl₂) and 650 °C (Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄).

Figure S8. (a) SHG intensities of $CdPb_2Te_3O_8Cl_2$ and $AgGaS_2$ as the references at 2.09 µm radiation. (b) Calculated birefringence (Δn) of $CdPb_2Te_3O_8Cl_2$.

Figure S9. SHG intensities of $CdPb_2Te_3O_8Cl_2$ and KDP as the references at 1064 nm radiation.

Figure S10. The electron density maps of Cd²⁺, Pb²⁺and Te⁴⁺.

Figure S11. Calculated band structures of $CdPb_2Te_3O_8Cl_2$ and $Cd_{13}Pb_8Te_{14}O_{42}Cl_{14}$ under different accuracy.

U	-5				
Atom	X	У	Z	U(eq)	BVS
Cd(1)	-5000	-5000	-7679(3)	13(1)	1.86
Pb(1)	-3393(1)	-7480(1)	-4664(2)	15(1)	2.27
Te(1)	-6305(1)	-8043(2)	-5051(1)	12(1)	3.83
Te(2)	-5000	-5000	-3486(2)	13(1)	3.91
O(1)	-4347(8)	-5710(20)	-5235(17)	19(4)	2.12
O(2)	-5577(9)	-7290(20)	-3530(20)	20(3)	2.08
O(3)	-5892(11)	-7510(20)	-7157(19)	21(4)	2.08
O(4)	-5902(8)	-10177(19)	-4810(20)	15(3)	2.14
Cl(1)	-2549(4)	-4913(8)	-2346(8)	28(1)	0.75

Table S1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for CdPb₂Te₃O₈Cl₂.U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Pb(1)-Cl(1)	3.172(7)	O(1)-Cd(1)-O(2)#5	77.9(5)
Pb(1)-O(1)	2.297(16)	O(1)#3-Cd(1)-O(2)#4	77.9(5)
Pb(1)-O(3)#1	2.363(16)	O(1)#3-Cd(1)-O(2)#5	130.1(6)
Pb(1)-O(4)#2	2.302(16)	O(1)#3-Cd(1)-O(3)#3	89.4(6)
Te(1)-O(2)	1.890(17)	O(1)#3-Cd(1)-O(3)	75.7(6)
Te(1)-O(3)	1.872(16)	O(1)-Cd(1)-O(3)#3	75.7(6)
Te(1)-O(4)	1.896(15)	O(1)-Cd(1)-O(3)	89.4(6)
Te(2)-O(1)	1.909(14)	O(1)-Cd(1)-O(4)#5	104.5(5)
Te(2)-O(1)#3	1.909(14)	O(1)-Cd(1)-O(4)#4	158.1(6)
Te(2)-O(2)#3	2.138(19)	O(1)#3-Cd(1)-O(4)#5	158.1(6)
Te(2)-O(2)	2.138(19)	O(1)#3-Cd(1)-O(4)#4	104.5(5)
Cd(1)-Cd(1)#3	0.000(4)	O(2)#5-Cd(1)-O(2)#4	149.5(8)
Cd(1)-O(1)#3	2.334(14)	O(2)#4-Cd(1)-O(3)#3	67.6(6)
Cd(1)-O(1)	2.334(14)	O(2)#5-Cd(1)-O(3)#3	117.6(6)
Cd(1)-O(2)#4	2.536(19)	O(2)#5-Cd(1)-O(3)	67.6(6)
Cd(1)-O(2)#5	2.536(19)	O(2)#4-Cd(1)-O(3)	117.6(6)
Cd(1)-O(3)#3	2.64(2)	O(3)#3-Cd(1)-O(3)	162.1(7)
Cd(1)-O(3)	2.64(2)	O(4)#4-Cd(1)-O(2)#4	65.0(5)
Cd(1)-O(4)#4	2.350(15)	O(4)#5-Cd(1)-O(2)#5	65.0(5)
Cd(1)-O(4)#5	2.350(15)	O(4)#4-Cd(1)-O(2)#5	92.6(5)
		O(4)#5-Cd(1)-O(2)#4	92.6(5)
O(1)-Pb(1)-Cl(1)	93.6(5)	O(4)#4-Cd(1)-O(3)	68.7(5)
O(1)-Pb(1)-O(3)#1	75.7(6)	O(4)#5-Cd(1)-O(3)	125.9(5)
O(1)-Pb(1)-O(4)#2	95.3(6)	O(4)#5-Cd(1)-O(3)#3	68.7(5)
O(3)#1-Pb(1)-Cl(1)	77.7(5)	O(4)#4-Cd(1)-O(3)#3	125.9(5)
O(4)#2-Pb(1)-Cl(1)	147.6(4)	O(4)#4-Cd(1)-O(4)#5	88.8(8)
O(4)#2-Pb(1)-O(3)#1	74.5(6)	O(3)-Te(1)-O(2)	102.0(8)
O(2)-Te(1)-O(4)	88.0(7)	O(3)-Te(1)-O(4)	98.5(8)
O(1)#3-Te(2)-O(1)	87.5(9)	O(1)#3-Cd(1)-O(1)	68.9(7)
O(1)#3-Te(2)-O(2)	87.2(7)	O(1)-Cd(1)-O(2)#4	130.1(6)
O(1)-Te(2)-O(2)#3	87.2(7)	O(1)-Te(2)-O(2)	91.6(8)
O(1)#3-Te(2)-O(2)#3	91.6(8)	O(2)-Te(2)-O(2)#3	178.3(9)

Table S2. Bond lengths [Å] and angles $[\circ]$ for CdPb₂Te₃O₈Cl₂.

Symmetry transformations used to generate equivalent atoms:

^{#1} -x-1,-y-3/2,z+1/2 ^{#2} -x-1,-y-2,z ^{#3} -x-1,-y-1,z ^{#4} x,y+1/2,z-1/2 ^{#5} -x-1,-y-3/2,z-1/2

of the orthogonalized U_{ij} tensor. U(eq) BVS Atom у Z X Cd(1) 13010(1) 4958(1) 5437(1) 12(1)1.95 Cd(2) 7958(1) 405(1) 13(1)1.93 5074(1) Cd(3) -3726(1)5002(1) 14(1)2.08 8776(1) Cd(4) 15410(1) 4995(1) 2843(1) 13(1) 1.96 Cd(5) 11275(1) 5013(1) 13(1)1.97 3677(1)Cd(6) 10360(1) 5008(1) 7976(1) 14(1)1.92 10000 1.89 Cd(7) 10000 5000 22(1)Pb(1) 913(1) 1895(1) 10872(1)14(1)1.97 Pb(2) 8178(1) 1770(1) 3352(1) 16(1) 2.21 Pb(3) 15782(1) 14(1)2.33 1655(1)5819(1) Pb(4) 1.99 3598(1) 1900(1) 8323(1) 16(1)Te(1) 11903(1) 2709(1) 6680(1) 10(1)3.84 Te(2) 6922(1) 2514(1) 1692(1) 11(1)4.12 Te(3) 14272(1) 11(1)3.92 2745(1)4218(1) Te(4)-427(1)2438(1) 9194(1) 11(1)4.04 Te(5) 4748(1)2291(1) 9988(1) 10(1)4.06 Te(6) 2290(1) 3.89 7454(1) 7343(1) 11(1)Te(7) 12107(1) 2302(1)2582(1) 11(1)3.90 O(1) 11842(9) 3379(9) 1820(4)17(2)2.06 O(2) 11103(9) 4250(9) 6176(4) 18(2) 2.11 O(3) 12388(9) 3677(9) 7446(3) 13(2)2.10 O(4) 3060(9) 3355(9) 10411(4)16(2)2.19 O(5) 7474(10) 20(2) 2.35 3106(9) 2497(4)O(6) 13843(9) 3169(9) 6293(4) 17(2)2.28 O(7) 5900(9) 3380(9) 7833(4) 15(2)2.05 O(8) 4494(10) 3309(9) 9209(4) 22(2)2.18 O(9) 15950(9) 3644(9) 13(2) 2.18 3755(3) O(10) 10344(9) 3157(9) 3021(4) 18(2)2.25 O(11) 8618(9) 3512(9) 1266(3) 13(2)2.18 O(12) -91(10)3390(9) 9969(4) 16(2)2.19 O(13) 15114(9) 3294(9) 4990(3) 14(2)2.24 O(14) -1528(11)3931(11) 8821(5) 38(3) 2.13 13326(9) O(15) 3530(9) 3054(4) 18(2)1.86 O(16) 1381(9) 3242(9) 8787(4) 19(2) 2.04 O(17) 1.91 9164(9) 3522(9) 7320(4) 18(2)O(18) 6952(9) 3119(9) 17(2)1.93 6555(3)4240(10) O(19) 12789(10) 4396(4) 22(2)2.16

Table S3. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters (Å²× 10³) for Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄. U_{eq} is defined as one third of the trace

O(20)	5486(12)	4012(12)	1747(5)	36(2)	2.26
O(21)	6214(12)	3385(11)	10326(7)	56(4)	2.00
Cl(1)	14627(3)	-22(4)	7054(1)	23(1)	0.81
Cl(2)	9448(3)	29(3)	2121(1)	21(1)	0.70
Cl(3)	2038(3)	106(3)	9581(1)	21(1)	0.71
Cl(4)	8887(3)	9970(4)	6190(1)	25(1)	0.88
Cl(5)	6283(3)	-59(4)	8737(1)	29(1)	0.65
Cl(6)	7311(4)	9434(4)	4622(2)	28(1)	0.92
Cl(7)	10925(4)	7066(4)	5156(2)	37(1)	0.62

Pb(1)-Cl(3)	3.199(3)	Cd(3)-O(1)#5	2.464(8)
Pb(1)-O(1)#1	2.577(8)	Cd(3)-O(4)#9	2.364(8)
Pb(1)-O(4)	2.433(8)	Cd(3)-O(7)#2	2.492(7)
Pb(1)-O(11)#1	2.541(8)	Cd(3)-O(8)#2	2.318(9)
Pb(1)-O(12)	2.516(8)	Cd(3)-O(14)	2.148(9)
Pb(2)-Cl(2)	3.111(3)	Cd(3)-O(20)#10	2.142(9)
Pb(2)-O(5)	2.265(8)	Cd(4)-O(3)#4	2.316(8)
Pb(2)-O(9)#2	2.640(8)	Cd(4)-O(5)#3	2.522(8)
Pb(2)-O(10)	2.336(8)	Cd(4)-O(6)#4	2.573(8)
Pb(3)-Cl(1)	3.068(3)	Cd(4)-O(7)#6	2.375(8)
Pb(3)-O(6)	2.313(8)	Cd(4)-O(9)	2.324(7)
Pb(3)-O(13)	2.370(8)	Cd(4)-O(15)	2.277(8)
Pb(3)-O(18)#3	2.333(7)	Cd(4)-O(20)#3	2.435(9)
Pb(4)-Cl(5)	3.099(3)	Cd(5)-O(2)#6	2.171(8)
Pb(4)-O(3)#2	2.695(8)	Cd(5)-O(10)	2.359(8)
Pb(4)-O(7)	2.565(8)	Cd(5)-O(15)	2.491(8)
Pb(4)-O(8)	2.429(9)	Cd(5)-O(17)#6	2.505(8)
Pb(4)-O(16)	2.399(8)	Cd(5)-O(18)#6	2.326(8)
Te(1)-Cd(1)	3.3555(10)	Cd(5)-O(19)	2.185(8)
Te(1)-O(2)	1.897(8)	Cd(6)-O(1)#6	2.405(8)
Te(1)-O(3)	1.897(7)	Cd(6)-O(3)	2.322(8)
Te(1)-O(6)	1.864(8)	Cd(6)-O(11)#6	2.311(7)
Te(2)-O(5)	1.859(8)	Cd(6)-O(14)#3	2.502(11)
Te(2)-O(11)	1.896(8)	Cd(6)-O(16)#3	2.522(8)
Te(2)-O(20)	1.828(9)	Cd(6)-O(17)	2.245(8)
Te(3)-Cd(1)	3.3244(10)	Cd(7)-Cl(4)#11	2.570(3)
Te(3)-Cd(1)#4	3.3029(10)	Cd(7)-Cl(4)	2.570(3)
Te(3)-O(9)	1.875(8)	Cd(7)-Cl(6)#11	2.603(3)
Te(3)-O(13)	1.889(7)	Cd(7)-Cl(6)	2.603(3)
Te(3)-O(19)	1.872(8)	Cd(7)-Cl(7)	2.781(3)
Te(4)-Cd(2)#5	3.2953(10)	Cd(7)-Cl(7)#11	2.781(3)
Te(4)-O(12)	1.872(8)	Te(7)-O(10)	1.876(8)
Te(4)-O(14)	1.850(9)	Te(7)-O(15)	1.882(8)
Te(4)-O(16)	1.879(8)	Cd(1)-Cl(7)	2.713(3)
Te(5)-O(4)	1.898(7)	Cd(1)-O(2)	2.260(8)
Te(5)-O(8)	1.884(8)	Cd(1)-O(6)	2.540(8)
Te(5)-O(21)	1.819(10)	Cd(1)-O(9)#4	2.353(7)
Te(6)-Cd(5)#6	3.3544(10)	Cd(1)-O(13)#4	2.402(8)
Te(6)-O(7)	1.889(8)	Cd(1)-O(13)	2.474(8)
Te(6)-O(17)	1.874(8)	Cd(1)-O(19)	2.279(8)
Te(6)-O(18)	1.879(7)	Cd(2)-O(4)#5	2.423(8)
Te(7)-O(1)	1.881(8)	Cd(2)-O(8)#5	2.641(9)

Table S4. Bond lengths [Å] and angles [°] for $Cd_{13}Pb_8Te_{14}O_{42}Cl_{14}$.

Cd(2)-O(11)	2.375(7)	O(7)#6-Cd(4)-O(6)#4	100.4(3)
Cd(2)-O(12)#7	2.387(8)	O(7)#6-Cd(4)-O(20)#3	69.4(3)
Cd(2)-O(12)#5	2.411(8)	O(9)-Cd(4)-O(5)#3	72.2(3)
Cd(2)-O(16)#5	2.377(9)	O(9)-Cd(4)-O(6)#4	71.9(3)
Cd(2)-O(21)#8	2.188(10)	O(9)-Cd(4)-O(7)#6	159.7(3)
O(16)#5-Cd(2)-O(4)#5	104.3(3)	O(9)-Cd(4)-O(20)#3	125.3(3)
O(16)#5-Cd(2)-O(8)#5	71.3(3)	O(15)-Cd(4)-O(3)#4	174.5(3)
O(16)#5-Cd(2)-O(12)#5	67.7(3)	O(15)-Cd(4)-O(5)#3	101.7(3)
O(16)#5-Cd(2)-O(12)#7	117.4(3)	O(15)-Cd(4)-O(6)#4	119.9(3)
O(21)#8-Cd(2)-O(4)#5	93.1(4)	O(15)-Cd(4)-O(7)#6	93.0(3)
O(21)#8-Cd(2)-O(8)#5	81.5(4)	O(15)-Cd(4)-O(9)	75.8(3)
O(21)#8-Cd(2)-O(11)	81.9(4)	O(15)-Cd(4)-O(20)#3	85.3(3)
O(21)#8-Cd(2)-O(12)#7	90.5(4)	O(20)#3-Cd(4)-O(5)#3	62.1(3)
O(21)#8-Cd(2)-O(12)#5	156.0(4)	O(20)#3-Cd(4)-O(6)#4	153.9(3)
O(21)#8-Cd(2)-O(16)#5	136.3(4)	O(2)#6-Cd(5)-O(10)	85.1(3)
O(1)#5-Cd(3)-O(7)#2	95.2(3)	O(2)#6-Cd(5)-O(15)	149.7(3)
O(4)#9-Cd(3)-O(1)#5	77.4(3)	O(2)#6-Cd(5)-O(17)#6	75.3(3)
O(4)#9-Cd(3)-O(7)#2	172.2(2)	O(2)#6-Cd(5)-O(18)#6	115.3(3)
O(8)#2-Cd(3)-O(1)#5	172.4(3)	O(2)#6-Cd(5)-O(19)	128.8(3)
O(8)#2-Cd(3)-O(4)#9	110.2(3)	O(10)-Cd(5)-O(15)	65.9(3)
O(8)#2-Cd(3)-O(7)#2	77.2(3)	O(10)-Cd(5)-O(17)#6	79.2(3)
O(14)-Cd(3)-O(1)#5	73.9(3)	O(15)-Cd(5)-O(17)#6	90.2(3)
O(11)-Cd(2)-O(8)#5	109.6(3)	O(18)#6-Cd(5)-O(10)	131.6(3)
O(11)-Cd(2)-O(12)#5	110.6(3)	O(18)#6-Cd(5)-O(15)	81.0(3)
O(11)-Cd(2)-O(12)#7	72.7(3)	O(18)#6-Cd(5)-O(17)#6	66.1(3)
O(11)-Cd(2)-O(16)#5	76.1(3)	O(19)-Cd(5)-O(10)	115.7(3)
O(12)#7-Cd(2)-O(4)#5	113.1(3)	O(19)-Cd(5)-O(15)	74.9(3)
O(12)#5-Cd(2)-O(4)#5	76.1(3)	O(19)-Cd(5)-O(17)#6	150.5(3)
O(12)#7-Cd(2)-O(8)#5	171.1(3)	O(19)-Cd(5)-O(18)#6	86.2(3)
O(12)#5-Cd(2)-O(8)#5	111.5(3)	O(1)#6-Cd(6)-O(14)#3	69.1(3)
O(12)#7-Cd(2)-O(12)#5	74.8(3)	O(1)#6-Cd(6)-O(16)#3	125.4(3)
O(1)#1-Pb(1)-Cl(3)	143.81(18)	O(3)-Cd(6)-O(1)#6	161.8(3)
O(4)-Pb(1)-Cl(3)	77.22(18)	O(3)-Cd(6)-O(14)#3	124.0(3)
O(4)-Pb(1)-O(1)#1	74.0(2)	O(3)-Cd(6)-O(16)#3	72.4(3)
O(4)-Pb(1)-O(11)#1	112.1(3)	O(11)#6-Cd(6)-O(1)#6	83.4(3)
O(4)-Pb(1)-O(12)	74.0(3)	O(11)#6-Cd(6)-O(3)	107.0(3)
O(11)#1-Pb(1)-Cl(3)	136.64(17)	O(11)#6-Cd(6)-O(14)#3	91.6(3)
O(11)#1-Pb(1)-O(1)#1	75.7(2)	O(11)#6-Cd(6)-O(16)#3	74.4(3)
O(12)-Pb(1)-Cl(3)	75.24(18)	O(14)#3-Cd(6)-O(16)#3	62.5(3)
O(12)-Pb(1)-O(1)#1	116.3(3)	O(17)-Cd(6)-O(1)#6	93.2(3)
O(12)-Pb(1)-O(11)#1	67.9(2)	O(17)-Cd(6)-O(3)	77.5(3)
O(5)-Pb(2)-Cl(2)	74.0(2)	O(17)-Cd(6)-O(11)#6	173.9(3)
O(5)-Pb(2)-O(9)#2	70.8(3)	O(17)-Cd(6)-O(14)#3	82.5(3)
O(5)-Pb(2)-O(10)	75.7(3)	O(17)-Cd(6)-O(16)#3	103.7(3)

O(9)#2-Pb(2)-Cl(2)	140.79(16)	Cl(4)#11-Cd(7)-Cl(4)	180
O(10)-Pb(2)-Cl(2)	79.1(2)	Cl(4)-Cd(7)-Cl(6)	90.58(9)
O(10)-Pb(2)-O(9)#2	107.8(3)	Cl(4)-Cd(7)-Cl(6)#11	89.42(9)
O(6)-Pb(3)-Cl(1)	76.0(2)	Cl(4)#11-Cd(7)-Cl(6)#11	90.58(9)
O(6)-Pb(3)-O(13)	74.4(3)	Cl(4)#11-Cd(7)-Cl(6)	89.42(9)
O(6)-Pb(3)-O(18)#3	74.7(3)	Cl(4)#11-Cd(7)-Cl(7)#11	88.03(11)
O(13)-Pb(3)-Cl(1)	145.7(2)	Cl(4)-Cd(7)-Cl(7)	88.03(11)
O(18)#3-Pb(3)-Cl(1)	82.59(19)	Cl(4)-Cd(7)-Cl(7)#11	91.97(11)
O(18)#3-Pb(3)-O(13)	105.6(3)	Cl(4)#11-Cd(7)-Cl(7)	91.97(11)
O(3)#2-Pb(4)-Cl(5)	150.09(17)	Cl(6)#11-Cd(7)-Cl(6)	180.00(14)
O(7)-Pb(4)-Cl(5)	79.51(18)	Cl(6)-Cd(7)-Cl(7)	96.67(11)
O(7)-Pb(4)-O(3)#2	76.3(2)	Cl(6)#11-Cd(7)-Cl(7)	83.33(11)
O(8)-Pb(4)-Cl(5)	77.5(2)	Cl(6)#11-Cd(7)-Cl(7)#11	96.67(11)
O(8)-Pb(4)-O(3)#2	111.8(3)	Cl(6)-Cd(7)-Cl(7)#11	83.33(11)
O(8)-Pb(4)-O(7)	73.9(3)	Cl(7)-Cd(7)-Cl(7)#11	180.00(15)
O(16)-Pb(4)-Cl(5)	140.3(2)	O(2)-Cd(1)-O(13)#4	151.9(3)
O(16)-Pb(4)-O(3)#2	68.2(3)	O(2)-Cd(1)-O(19)	116.0(3)
O(16)-Pb(4)-O(7)	118.4(3)	O(6)-Cd(1)-Cl(7)	145.44(19)
O(16)-Pb(4)-O(8)	74.9(3)	O(9)#4-Cd(1)-Cl(7)	95.0(2)
O(3)-Te(1)-O(2)	104.0(3)	O(9)#4-Cd(1)-O(6)	72.1(3)
O(6)-Te(1)-O(2)	87.7(4)	O(9)#4-Cd(1)-O(13)	105.6(3)
O(6)-Te(1)-O(3)	89.3(3)	O(9)#4-Cd(1)-O(13)#4	66.8(3)
O(5)-Te(2)-O(11)	91.2(4)	O(13)-Cd(1)-Cl(7)	145.37(19)
O(20)-Te(2)-O(5)	87.8(4)	O(13)#4-Cd(1)-Cl(7)	85.0(2)
O(20)-Te(2)-O(11)	100.4(4)	O(13)-Cd(1)-O(6)	68.7(2)
O(9)-Te(3)-O(13)	88.1(3)	O(13)#4-Cd(1)-O(6)	116.5(3)
O(19)-Te(3)-O(9)	106.5(4)	O(13)#4-Cd(1)-O(13)	78.3(3)
O(19)-Te(3)-O(13)	87.5(3)	O(19)-Cd(1)-Cl(7)	83.1(2)
O(12)-Te(4)-O(16)	90.6(4)	O(19)-Cd(1)-O(6)	122.2(3)
O(14)-Te(4)-O(12)	98.7(4)	O(19)-Cd(1)-O(9)#4	154.2(3)
O(14)-Te(4)-O(16)	88.6(4)	O(19)-Cd(1)-O(13)#4	87.4(3)
O(8)-Te(5)-O(4)	90.6(4)	O(19)-Cd(1)-O(13)	66.2(3)
O(21)-Te(5)-O(4)	95.4(5)	O(4)#5-Cd(2)-O(8)#5	63.9(2)
O(21)-Te(5)-O(8)	101.7(5)	O(10)-Te(7)-O(15)	89.3(3)
O(17)-Te(6)-O(7)	103.8(3)	O(2)-Cd(1)-Cl(7)	82.9(2)
O(17)-Te(6)-O(18)	89.4(3)	O(2)-Cd(1)-O(6)	65.4(3)
O(18)-Te(6)-O(7)	93.1(3)	O(2)-Cd(1)-O(9)#4	89.1(3)
O(1)-Te(7)-O(15)	104.3(3)	O(2)-Cd(1)-O(13)	124.1(3)
O(10)-Te(7)-O(1)	92.6(3)		

Symmetry transformations used to generate equivalent atoms:

^{#1} x-1,y,z+1 ^{#2} x-1,y,z ^{#3} x+1,y,z ^{#4} -x+3,-y+1,-z+1 ^{#11} -x+2,-y+2,-z+1 ^{#5} -x+1,-y+1,-z+1 ^{#6} -x+2,-y+1,-z+1 ^{#7} x+1,y,z-1 ^{#10} -x,-y+1,-z+1 ^{#8} x,y,z-1 ^{#9} -x,-y+1,-z+2

Compound				Charge	Q (in e)
CdDb Ta O Cl	Atom	Cd	Pb	Tel	Te2
	population	0.98	1.06	1.82	1.98

Table S5. Selected Mulliken atomic populations.

Table S6. Selected bond distances and Mulliken overlap populations for characteristic atomic pairs.

Compound-FBB	Value Atomic/ pair	bond distances/ <i>d</i> (Å)	overlap populations /(e)
	Te1-O	1.872-1.896	0.39-0.47
	Te2-O	1.908-2.141	0.23-0.49
CdPb ₂ Te ₃ O ₈ Cl ₂	Pb-O	2.299-2.363	0.08-0.11
	Pb-Cl	3.172-3.431	0.00-0.07
	Cd-O	2.334-2.642	0.16-0.18

Figure S1. The EDS spectra of $CdPb_2Te_3O_8Cl_2$ (a) and $Cd_{13}Pb_8Te_{14}O_{42}Cl_{14}$ (b).

Figure S2. (a-g) Coordination of Cd1-Cd7 atoms in $Cd_{13}Pb_8Te_{14}O_{42}Cl_{14}$.

Figure S3. (a-d) Coordination of Pb1-Pb4 atoms in $Cd_{13}Pb_8Te_{14}O_{42}Cl_{14}$.

Figure S4. (a-g) Coordination of Te1-Te7 atoms in $Cd_{13}Pb_8Te_{14}O_{42}Cl_{14}$.

Figure S5. (a) The structure of $[CdO_2Cl_4]$ in $C_3H_9Cd_{1.5}Cl_3O_4P^1$; (b) The structure of $[CdO_3Cl_3]$ in CdOHCl²; (c) The structure of $[CdO_4Cl_2]$ in Cd(IO₃)Cl³; (d) The structure of $[CdO_5Cl_1]$ in Cd₅(BO₃)₃Cl⁴.

Figure S6. The structure of $[PbO_2Cl_4]$ (a) and $[PbO_2Cl_2]$ (b) in $Pb_3O_2Cl_2^5$; (c) The structure of $[PbO_2Cl_3]$ in $Pb_{17}O_8Cl_{18}^6$; (d) The structure of $[PbO_3Cl_3]$ in $Ba_{27}Pb_8O_8Cl_{54}^7$ and $RbPb_8O_4Cl_9^8$; (e) The structure of $[PbOCl_5]$ in $RbPb_8O_4Cl_9$.

Figure S7. XRD patterns of CdPb₂Te₃O₈Cl₂ (a) and Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄ (b) before and after heating at 550 °C (CdPb₂Te₃O₈Cl₂) and 650 °C (Cd₁₃Pb₈Te₁₄O₄₂Cl₁₄).

Figure S8. (a) SHG intensities of $CdPb_2Te_3O_8Cl_2$ and $AgGaS_2$ as the references at 2.09 µm radiation. (b) Calculated birefringence (Δn) of $CdPb_2Te_3O_8Cl_2$.

Figure S9. SHG intensities of CdPb₂Te₃O₈Cl₂ and KDP as the references at 1064 nm radiation.

Figure S10. The electron density maps of Cd^{2+} , $Pb^{2+}and Te^{4+}$.

Figure S11. Calculated band structures of $CdPb_2Te_3O_8Cl_2$ and $Cd_{13}Pb_8Te_{14}O_{42}Cl_{14}$ under different accuracy. Band structures of $CdPb_2Te_3O_8Cl_2$ under different accuracy: energy cutoff was set at 910 eV, a spacing of 0.04 Å⁻¹ (a) and energy cutoff was set at 700 eV, a spacing of 0.035 Å⁻¹ (b); Band structures of $Cd_{13}Pb_8Te_{14}O_{42}Cl_{14}$ under different accuracy: energy cutoff was set at 910 eV, a spacing of 0.035 Å⁻¹ (b); Band structures of spacing of 0.04 Å⁻¹ (c); energy cutoff was set at 700 eV, a spacing of 0.035 Å⁻¹ (d).

References

1. A. V. Anyushin, D. A. Mainichev, N. K. Moroz, P. A. Abramov, D. Y. Naumov, M. N. Sokolov, V. P. Fedin, Cd²⁺ Complexation with P(CH₂OH)₃, OP(CH₂OH)₃, and (HOCH₂)₂PO₂⁻: coordination in solution and coordination polymers, *Inorg. Chem.*, 2012, **51**, 9995-10003.

Y. Cudennec, A. Riou, Y. Gérault and A. Lecerf, Synthesis and crystal structures of Cd(OH)Cl and Cu(OH)Cl and relationship to brucite type, *J. Solid State Chem.*, 2000, 151, 308-312.

3. B.-P. Yang and J.-G. Mao, Synthesis, crystal structure and optical properties of two new layered cadmium iodates: Cd(IO₃)X (X=Cl, OH), *J. Solid State Chem.*, 2014, **219**, 185-190.

4. Y. X. Song, M. Luo, C. S. Lin, N. Ye, G. Y. Yan and Z. S. Lin, Experimental and ab initio studies of $Cd_5(BO_3)_3Cl$: the first cadmium borate chlorine NLO material with isolated BO₃ groups, *Dalton Trans.*, 2017, **46**, 15228-15234.

5. O. I. Siidra, S. V. Krivovichev, T. Armbruster and W. Depmeier, Crystal chemistry of the mendipite-type system Pb₃O₂Cl₂—Pb₃O₂Br₂, *Z. Kristallogr.*, 2008, **223**, 204-211.

6. H. Zhang, S. L. Pan, X. Y. Dong, Z. H. Yang, X. L. Hou, Z. Wang, K. B. Chang and K. R. Poeppelmeier, Pb₁₇O₈Cl₁₈: a promising IR nonlinear optical material with large laser damage threshold synthesized in an open system, *J. Am. Chem. Soc.*, 2015, **137**, 8360-8363.

7. Z. Li, X. X. Jiang, W. H. Xing, Z. S. Lin, J. Y. Yao and Y. C. Wu, Alkali-earth metal lead(ii) oxyhalide Ba₂₇Pb₈O₈Cl₅₄ exhibiting interesting [Pb₄Ba₄O₄]⁸⁺ species, *New J. Chem.*, 2020, **44**, 1699-1702.

8. Z. X. Fan, C. Bai, H. S. Shi, M. Zhang, B. Zhang, J. Zhang and J. J. Li, RbPb₈O₄Cl₉: the first alkali metal lead oxyhalide with distorted [PbO₃Cl₃] and [PbOCl₅] mixed-anion groups, *Dalton Trans.*, 2021. **50**, 14038-14043.