The direct identification of quantum cutting in Tm^{3+} ion and energy transfer in Tm^{3+}/Yb^{3+} system based on $Ba_2Gd_2Si_4O_{13}$ oxide host

Jia Zhang^{a,b,*}, Yuqing Pei^a, Chunlin Ma^a, Yining Zhang^a

^aPhysics department and Jiangsu Key Laboratory of Modern Measurement

Technology and Intelligence, Huaiyin Normal University, 111 West Chang Jiang

Road, Huai'an 223300, China

^bJiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin

Normal University, 111 West Chang Jiang Road, Huai'an 223300, China

*Corresponding author.

E-mail address: zhangjianew@126.com

Figure S1 XRD patterns of BGS:0.06Tm³⁺ and BGS:0.06Tm³⁺,0.2Yb³⁺

Figure S2 Excitation spectrum of BGS:0.06Tm³⁺ monitored at 806 nm

Figure S3 Decay curves of BGS:0.06Tm³⁺

Figure S4 Normalized emission spectra of BGS: xTm^{3+} (0.04 $\leq x \leq 0.1$) under (a) 472

and (b) 355 nm excitation

Figure S5 Emission spectra of BGS:xTm³⁺ ($0.04 \le x \le 0.1$) under 355 nm excitation,

inset shows the dependence of 450 nm emission intensity on Tm³⁺ concentration

Figure S6 Normalized (for 650 nm) emission spectra of BGS: xTm^{3+} (0.04 $\leq x \leq 0.1$)

under 355 nm excitation

Figure S7 Excitation spectra of BGS: xTm^{3+} (0.04 $\leq x \leq 0.1$) monitored at 650 nm

Figure S8 Decay curves of BGS:0.06Tm³⁺,yYb³⁺ ($0 \le y \le 0.3$) measured under

different conditions: (a) $\lambda_{ex} = 355$ nm, $\lambda_{em} = 663$ nm; (b) $\lambda_{ex} = 472$ nm, $\lambda_{em} = 650$ nm;

(c)
$$\lambda_{ex} = 472 \text{ nm}, \lambda_{em} = 807 \text{ nm}$$

Figure S9 ET efficiencies (η_{ET}) of BGS:0.06Tm^{3+},yYb^{3+} $(0 \leq y \leq 0.3)$ from different

excited states of Tm³⁺ to Yb³⁺ excited by different wavelengths

$\lambda_{ex} (nm)$	$\lambda_{em} \left(nm \right)$	$\tau_{1}\left(\mu s\right)$	$\tau_{2}\left(\mu s\right)$	B_1	B_2
355	807	75.0	-	2648.0	-
472	807	115.5	301.2	7986.3	1363.6
683	807	71.2	-	1979.1	-
355	450	18.7	-	4213.8	-
472	650	209.6	-	2092.7	-

Table S1 τ_i and B_i (*i* = 1, 2) values of the decay curves for BGS:0.06Tm³⁺

Table S2 τ_i and B_i (i = 1, 2) values of the decay curves for BGS:0.06Tm³⁺,yYb³⁺ ($0 \le 1$

у	$\tau_{1}\left(\mu s\right)$	$\tau_{2}\left(\mu s\right)$	B_1	B_2
0	115.5	301.2	7986.3	1363.6
0.05	90.7	242.9	7299.8	1438.3
0.1	75.2	214.0	5320.7	1717.2
0.2	76.7	210.7	7349.2	1193.0
0.3	70.2	197.4	6402.3	1241.1

 $y \leq 0.3)$ by exciting at 472 nm and monitoring 807 nm