Supporting Information for

Harmonious K-I-O Co-modification of g-C₃N₄ for Improved Charge Separation and Photocatalysis

Shifei Kang^{1#}, Zhihao Zhang^{1#}, Maofen He¹, Zirou Fang¹, Di Sun², Lulu Zheng³, Xijiang Chang^{4*}, Lifeng Cui^{5*}

1. Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, P.R. China

2. Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital & Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, P.R. China

3. Engineering Research Center of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China

4. College of Science, Donghua University, Shanghai, 201620, P.R. China

5. College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.

[#] These authors contribute the same to this work.

* Corresponding authors.

E-mail: changxj@dhu.edu.cn (Xijiang Chang), lifeng.cui@gmail.com (Lifeng Cui)

Figure S1. Photographs of $(a)g-C_3N_4$ and $(b-d)g-CN-KIO_3$ water dispersions at different concentrations.

The specific experimental details are as follows: $10\text{mg g-}C_3N_4$ and g-CN-KIO₃ were weighed and added in 10ml water (1mg/ml), respectively. Stir the mixture for 10 minutes and let stand for 5 minutes. Undissolved g-C₃N₄ powder can be obviously observed in Fig.S1a, while there is no residue of dissolved powder in medium g-CN-KIO₃ solution (Fig.S1 b). This phenomenon can be attributed to the excellent hydrophilic change caused by oxygen treatment. The maximum soluble concentration of g-CN-KIO₃ was further verified by put 50mg (Fig.S1 c) and 100mg (Fig.S1 d) g-CN-KIO₃ into 10ml water and repeat the above operations. It can be seen that when g-CN-KIO₃ is 100mg (10mg/ml), a small amount of g-CN-KIO₃ residue appeared. The solubility of g-CN-KIO₃ dispersion is 10 times better than that of the untreated g-C₃N₄.

	C(at.%)	N(at.%)	O(at.%)	K(at.%)	I(at.%)
g-C ₃ N ₄ (XPS)	48.06	50.17	1.77	-	-
g-CN-KIO ₃ (EDS)	35.94	53.21	7.96	2.28	0.61
g-CN-KIO ₃ (XPS)	46.93	48.39	2.50	1.98	0.20
g-CN-KIO ₃ (ICP-MS)	-	-	-	1.71	0.45

Table S1. The atomic percentages of C, N, O, K and I in g-C₃N₄ and g-CN-KIO₃

	Op	timization mechanism		Supporting evidence		
K doping	1. 2.	The band structu adjustment Photoelectron chemic	re • al •	The gap of 2.09 of g-CN-KiO ₃ - 2 is much smaller than that of 2.56 eV of $g-C_3N_4$ g-CN-KIO ₃ has the highest		
	1	performance		photocurrent		
			•	The EIS of g -CN-KIO ₃ is smaller than that of g -C ₃ N ₄		
3.		Accelerate the flow charge	of •	The emission peak of g-CN- KiO ₃ in PL spectrum is obviously weaker than that of g- C_3N_4		
I doping	1. The enhanced electrica conductivity		al •	The EIS of g -CN-KIO ₃ is smaller than that of g -C ₃ N ₄		
	2.	Improve the surface electronic structure ar	e • Id	g-CN-KIO ₃ has the highest photocurrent		
		charge carrier mobility	•	Compared to pure $g-C_3N_4$, $g-CN-KIO_3$ shows an enhanced EPR signal		
Oxygen treatment	1.	The band structu adjustment	re•	existence of mesopores		
	2.	Change the morphology		TEM showed surface pores in g-CN-KiO3		
	3.	The increase of C-O specie	s •	XPS spectra show that the concentration of O atom increases		
	4.	Enhanced hydrophilicity	•	The solubility dispersion is almost 10 times that of the untreated $g-C_3N_4$.		

Table S2. K/I/O doping optimization mechanism and its supporting evidences