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Figure S1. Photographs of (a)g-C3N4 and (b-d)g-CN-KIO3 water dispersions at 
different concentrations.
The specific experimental details are as follows: 10mg g-C3N4 and g-CN-KIO3 were 
weighed and added in 10ml water (1mg/ml), respectively. Stir the mixture for 10 
minutes and let stand for 5 minutes. Undissolved g-C3N4 powder can be obviously 
observed in Fig.S1a, while there is no residue of dissolved powder in medium g-CN-
KIO3 solution (Fig.S1 b). This phenomenon can be attributed to the excellent 
hydrophilic change caused by oxygen treatment. The maximum soluble concentration 
of g-CN-KIO3 was further verified by put 50mg (Fig.S1 c) and 100mg (Fig.S1 d) g-
CN-KIO3 into 10ml water and repeat the above operations. It can be seen that when g-
CN-KIO3 is 100mg (10mg/ml), a small amount of g-CN-KIO3 residue appeared. The 
solubility of g-CN-KIO3 dispersion is 10 times better than that of the untreated g-C3N4.

Table S1. The atomic percentages of C, N, O, K and I in g-C3N4 and g-CN-KIO3

C(at.%) N(at.%) O(at.%) K(at.%) I(at.%)

g-C3N4(XPS) 48.06 50.17 1.77 - -

g-CN-KIO3(EDS) 35.94 53.21 7.96 2.28 0.61

g-CN-KIO3(XPS)

g-CN-KIO3(ICP-MS)

46.93

-

48.39

-

2.50

-

1.98

1.71

0.20

0.45
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Table S2. K/I/O doping optimization mechanism and its supporting evidences

Optimization mechanism Supporting evidence
1. The band structure 

adjustment
 The gap of 2.09 of g-CN-KiO3-

2 is much smaller than that of 
2.56 eV of g-C3N4

 g-CN-KIO3 has the highest 
photocurrent

2. Photoelectron chemical 
performance

 The EIS of g-CN-KIO3 is 
smaller than that of g-C3N4 

K doping

3. Accelerate the flow of 
charge

 The emission peak of g-CN-
KiO3 in PL spectrum is 
obviously weaker than that of g-
C3N4

1. The enhanced electrical 
conductivity

 The EIS of g-CN-KIO3 is 
smaller than that of g-C3N4 

 g-CN-KIO3 has the highest 
photocurrent

I doping

2. Improve the surface 
electronic structure and 
charge carrier mobility

 Compared to pure g-C3N4, g-
CN-KIO3 shows an enhanced 
EPR signal

1. The band structure 
adjustment

 existence of mesoporesOxygen 
treatment

2. Change the morphology  TEM showed surface pores in 
g-CN-KiO3

3. The increase of C-O species

4. Enhanced hydrophilicity

 XPS spectra show that the 
concentration of O atom 
increases

 The solubility dispersion is 
almost 10 times that of the 
untreated g-C3N4.


