Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

SUPPORTING INFORMATION

Structure and mechanism behind the inhibitory effect of water

soluble metalloporphyrins on Aβ₁₋₄₂ aggregation

Qianqian Zhang^a, Yiqing Liu^a, Jinming Wu^b, Lizheng Zeng ^a, Jingjing Wei ^a, Shitao

Fua, Huixian Yec, Zhonghong Gao*a, Hailing Li*a

^a Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of

Chemistry and Chemical Engineering, Huazhong University of Science &

Technology, Wuhan, 430074, P. R. China

^b Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen,

Switzerland

^c School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an,

Jiangxi 343009, People's Republic of China.

*Corresponding Author:

Dr. Zhonghong Gao

Tel: 86-27-87543532

Fax: 86-27-87543632

E-mail: zhgao144@ hust.edu.cn

Dr. Hailing Li

Tel: 86-27-87543532

Fax: 86-27-87543632

E-mail: <u>lihailing86@hust.edu.cn</u>

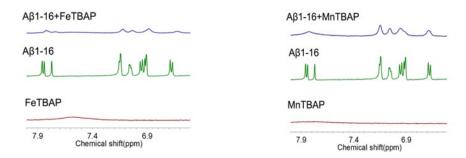


Figure S1 1 H NMR spectra of $A\beta_{1\text{-}16}$ in the presence or absence of FeTBAP and MnTBAP in deuterated PB (10 mM, pH=7.4). Before experiment, the samples were incubated at 37 $^{\circ}$ C for 1 h. The final concentration of $A\beta_{1\text{-}16}$ or porphyrin was 200 μ M.