Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Electronic Supplementary Information

MoS₂ quantum dot-decorated MXene nanosheets as efficient hydrogen

evolution electrocatalysts

Huajie Huang,⁺ Ya Xue,⁺ Yongshuai Xie, Ying Yang, Lu Yang, Haiyan He, Quanguo

Jiang*, Guobing Ying*

College of Mechanics and Materials, Hohai University, Nanjing 210098, China

*E-mails: jiangqg@hhu.edu.cn or yinggb2010@126.com

Supplementary Results

Fig. S1 Representative SEM image of bulk Ti₃AlC₂ at different magnifications.

Fig. S2 Representative SEM image of 2D exfoliated $Ti_3C_2T_x$ at different magnifications.

Fig. S3 Typical XRD patterns of $Ti_3C_2T_x$ nanosheets and Ti_3AlC_2 powder.

Fig. S4 The Tyndall phenomenon of the as-obtained $Ti_3C_2T_x$ MXene suspension.

Fig. S5 (a) Representative AFM image of the $Ti_3C_2T_x$ MXene nanosheets. (b) The corresponding thickness analysis along the white lines displays that the uniform thickness of $Ti_3C_2T_x$ nanosheets is about 3 nm.

Fig. S6 Representative FE-SEM images of four ratios of (a) $MQDs(1\%)/Ti_3C_2T_x$, (b) $MQDs(3\%)/Ti_3C_2T_x$, (c) $MQDs(5\%)/Ti_3C_2T_x$, and (d) $MQDs(10\%)/Ti_3C_2T_x$ catalysts.

Fig. S7 EDX spectrum of the 2D MQDs/Ti $_3C_2T_x$ nanoarchitecture on copper mesh discloses the presence of Ti, C, Mo and S components in the composite.

Fig. S8 High-resolution Mo 3d spectrum of MQDs(5%)/Ti₃C₂T_x, showing that the binding energies for Mo⁴⁺ peaks of MQDs(5%)/Ti₃C₂T_x are shifted negatively compared with those of pure MoS₂.

Fig. S9 LSV curves of MQDs(5%)/Ti $_3C_2T_x$ and Pt/C electrodes in 0.5 M H $_2SO_4$ solution.

Fig. S10 The CV curves for (a) $MoS_2 QDs$, (b) $Ti_3C_2T_x$ and (c) bulk MoS_2 at potential from 0.24 V to 0.44 V (vs. RHE) at scan rates from 20 to 120 mV s⁻¹. (d) The specific C_{dl} values of $MQDs(5\%)/Ti_3C_2T_x$, $MoS_2 QDs$, $Ti_3C_2T_x$ and bulk MoS_2 .

Fig. S11 Representative (a, b) FE-SEM images and (c) corresponding particle distribution of the MQDs(5%)/Ti₃C₂T_x catalyst after the cycling test.

Table S1. Comparison of HER properties for the 2D MQDs/Ti₃C₂T_x catalysts with those of the state-of-the-art MoS₂- and Ti₃C₂T_x-based catalysts.

Type of electrocatalyst	Electrolyte	Onset potential (mV)	Tafel slope (mV dec ⁻¹)	Ref.
MQDs(5%)/Ti ₃ C ₂ T _x	0.5 M H ₂ SO ₄	66	74	This work
MoS ₂ /C	0.5 M H ₂ SO ₄	~80	78	S1
MoS ₂ /CNTs	0.5 M H ₂ SO ₄	~130	87	S2
$MoSe_2/Ti_3C_2T_x$	0.5 M H ₂ SO ₄	61	91	S3
RGO aerogel/Ti $_3C_2T_x$	0.5 M H ₂ SO ₄	~70	130	S4
MoS ₂ /g-C ₃ N ₄ /RGO	0.5 M H ₂ SO ₄	170	79	S5
Co_4S_3/N -doped C/MoS ₂	0.5 M H ₂ SO ₄	~120	82	S6
Co ₉ S ₈ /MoS ₂ /CNFs	0.5 M H ₂ SO ₄	N.A.	110	S7
$Pt/Ti_3C_2T_x$	0.5 M H ₂ SO ₄	N.A.	79	S8
$Ti_3C_2T_x$ nanofibers	0.5 M H ₂ SO ₄	~100	97	S9

References

- S1 Q. Xu, Y. Liu, H. Jiang, Y. Hu, H. Liu and C. Li, Unsaturated sulfur edge engineering of strongly coupled MoS₂ nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation, *Adv. Energy Mater.*, 2019, **9**, 1802553.
- S2 Y. Dai, X. Wang, P. Wang, Y. Sun, R. Han and C. Luo, Enhanced hydrogen evolution for MoS₂/CNTs induced by ethylene-glycol via charge transfer and proton concentration in acid solution, *Int. J. Hydrogen Energy*, 2021, **46**, 6419-6426.
- S3 J. Huang, X. Liu, F. Meng, L. He, J. Wang, J. Wu, X. Lu, Y. Tong and P. Fang, A facile

method to produce MoSe₂/MXene hybrid nanoflowers with enhanced electrocatalytic activity for hydrogen evolution, *J. Electroanal. Chem.*, 2020, **856**, 113727.

- S4 Y. Cheng, Y. Zhan, J. Ran, Z. Wang, S. Agnoli, H. Xia and G. Granozzi, Hybrid MXene/reduced graphene oxide aerogel microspheres for hydrogen evolution reaction, *Ionics*, 2021, 27, 3099-3108.
- S5 M. Yan, Q. Jiang, L. Yang, H. He and H. Huang, Three-dimensional ternary hybrid architectures constructed from graphene, MoS₂, and graphitic carbon nitride nanosheets as efficient electrocatalysts for hydrogen evolution, ACS Appl. Energy Mater., 2020, **3**, 6880-6888.
- S6 C. Bao, X. Liu, M. Li, J. Meng, Y. Cai, X. Huang, T.-P. Loh and Z. Wang, MoS_2 nanosheet-decorated C-N/Co₄S₃ nanorod hybrid as a bifunctional electrocatalyst, *Electrochem. Commun.*, 2019, **106**, 106515.
- S7 H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B.
 Liu, J. Yao and X. Zhang, When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting, *Adv. Mater.*, 2015, 27, 4752-4759.
- S8 B. Li, R. Ye, Q. Wang, X. Liu, P. Fang and J. Hu, Facile synthesis of coral-like Pt nanoparticles/MXene ($Ti_3C_2T_x$) with efficient hydrogen evolution reaction activity, *lonics*, 2021, **27**, 1221-1231.
- S9 W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao, X. Fan and X. Guo, MXene nanofibers as highly active catalysts for hydrogen evolution reaction, *ACS Sustain. Chem. Eng.*, 2018, 6, 8976-8982.