Rapid Electron/Ion Transport in CNT/LiTi₂(PO₄)₃@C-N Electrodes for Aqueous Lithium-ion Batteries with High Stability, Flexibility and Safety

Jun Lin,^a Zhigang Zhang,^a Fangfang Xue,^a Deng Long,^a Qiuhong Li*^a

* Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, PR China.

* Corresponding authors.

E-mail addresses: liquhong@xmu.edu.cn

Fig. S1 SEM images of LTP (a, b) and LTP@C-N nanoparticles (c, d).

Fig. S2 (a) SEM image and corresponding element mapping images of Ti, P, C and N. (b) EDS spectrum of the LTP@C-N nanoparticles.

Fig. S3 Schematic illustration of the self-standing CNT/LTP@C-N films' preparation process.

Fig. S4 Images of the CNT/LTP@C-N films before and after bending and folding.

Fig. S5 (a) SEM image and corresponding element mapping images of CNT/LTP@C-N film from a sectional view. (b) EDS spectrum of CNT/LTP@C-N sample. The LTP@C-N particles uniformly distribute across the conductive and intertwined CNT network. Across the CNT/LTP@C-N film, Ti, P, C and N elements distribute evenly.

Fig. S6 (a) Top-view and (b) side-view FESEM images of the LTP electrode prepared by a conventional slurry coating method onto Cu foil. The insets in (a, b) are the enlarged region of the corresponding areas.

Fig. S7 (a) Charge/discharge profiles of CNT at 1 C (1 C=140 mAg⁻¹). (b) The cycle performance of CNT at 1 C in organic electrolyte.

Fig. S8 The morphology and phase of the CNT/LTP@C-N free-standing electrode after cycles: (a) low-magnification and (b) high-magnification SEM images. (c) Photograph, showing good structural integrity. (d) XRD pattern.

Fig. S9 (a, b) SEM images of the as-prepared LMO and CNT/LMO samples. (c) XRD pattern. (d) Charge/discharge profiles of CNT/LMO cathode at 1 C (1 C=148 mAg⁻¹). (e) The cycle performance of CNT/LMO at 1 C. (f) Rate performance in organic electrolyte.

Table S1. The data of LTP, LTP@C-N and CNT/LTP@C-N based on the equivalent circuit.

sample	Rs(Ω)	Rct(Ω)	RSEI(Ω)
LTP	4.922	286.6	86.89
LTP@C-N	6.004	119.1	24.43
CNT/LTP@C-N	3.95	32.32	/

Table S2. Comparison of the electrochemical performance of LTP-based anode materials for LIBs.

LTP anode materials	Rat	e Capability	Cycle performance	
	C-rates	Specific Capacity	Cycle life at different	Capacity
		(mAh/g)	C-rate	retention
rGO-LTP hybrid ^[1]	1 C	123	100 cycles @10 C	92 %
	50 C	83		
Sn-doped LiTi ₂ (PO ₄) ₃ /C nanofibers ^[2]	100 mA g ⁻¹	111	/	/
	2 A g ⁻¹	102		
LiTi ₂ (PO ₄) ₃ @N-C Composite ^[3]	20 C	120	1000 cycles@10 C	89.5 %
	50 C	87		
$LiTi_2(PO_4)_3/C^{[4]}$	1 C	125.6	1000 cycles@5 C	94.4 %
	10 C	92.5	1000 cycles@20 C	80.4 %
$LiTi_2(PO_4)_3/C^{[5]}$	0.1 C	133.8	500 cycles@5 C	97.7 %
	100 C	20		
LiTi ₂ (PO ₄) _{2.88} F _{0.12} ^[6]	10 C	107	1000 cycles@10 C	87.8 %
	40 C	90		
$LiTi_2(PO_4)_3/C^{[7]}$	1 C	114	1000 cycles@10 C	90 %
	20 C	84		
$LiTi_2(PO_4)_3/C^{[8]}$	0.5 C	109.8	2000 cycles@10 C	85 %
	20 C	84.4		
LiTi ₂ (PO ₄) ₃ /CNT ^[9]	0.05 C	133.8	200 cycles@0.1 C	96.2 %
CNT/LTP@C-N (This work)	1 C	143	200 cycles@1 C	93.4 %
	30 C	85	1500 cycles@5 C	87.3 %

LTP anode materials	Rate Capability		Cycle performance	
	C-rates	Specific Capacity	Cycle life at different	Capacity retention
		(mAh/g)	C-rate	
VO2(B)/C//LiMn2O4 ^[10]	/	/	25 cycles @0.69 mA cm	n ⁻² Failed
LiTi2(PO4)3//LiFePO4 ^[11]	1 C	55	1000 cycles @1 C	90 %
$Mo_6S_8//LiMn_2O_4^{[12]}$	0.15 C	40	1000 cycles @4.5 C 72 %	
	4.5 C	30		
$Mo_6S_8//LiNi_{0.5}Mn_{1.5}O_4^{[13]}$	0.15 C	30	400 cycles @5 C	70 %
	4.5 C	17		
Mo ₆ S ₈ //LiCoO ₂ ^[14]	0.5 C	60	1000 cycles @2.5 C	87 %
	2.5 C	38		
LiFePO4//LiFePO4 ^[15]	0.5 C	116	500 cycles @1.1 C	80 %
	5 C	50		
$LiV_{3}O_{8}//LiMn_{2}O_{4}^{[16]}$	0.1 A g ⁻¹	32	500 cycles @0.5 A g ⁻¹	80 %
LiVPO ₄ F/LiVPO ₄ F ^[17]	2 C	58.1	4000 cycles @20 C	87 %
	60 C	40.8		
LiTi ₂ (PO ₄) ₃ /LiCoO ₂ ^[18]	1 C	130.3	2000 cycles @1 C	86 %
	50 C	112.1		
LiTi ₂ (PO ₄) ₃ /LiMn ₂ O ₄ ^[19]	1 C	105	120 cycles @1 C	80.6 %
	10 C	89	120 cycles @10 C	97 %
LiTi ₂ (PO ₄) ₃ /LiMn ₂ O ₄ ^[3]	1 C	123	100 cycles @0.22 C	91.2 %
	10 C	103	400 cycles @1.08 C	90.4 %
CNT/LTP@C-N//LiMn2O4	1 C	126.5	200 cycles @1 C	96.3 %
(This work)	15 C	57	1000 cycles @3 C	70.2 %

 Table S3. Comparison of the electrochemical performance of the state-of-the-art aqueous lithium-ion batteries.

References

- 1 C.H. Lim, A.G. Kannan, H.W. Lee, D.K. Kim, A high power density electrode with ultralow carbon via direct growth of particles on graphene sheets, J. Mater. Chem. A, 2013, **1**, 6183-6190.
- L. Liu, T. Song, H. Han, H. Park, J. Xiang, Z. Liu, Y. Feng, U. Paik, Electrospun Sn-doped LiTi₂(PO₄)₃/C nanofibers for ultra-fast charging and discharging, J. Mater. Chem. A, 2015, **3**, 10395-10402.
- 3 D. Sun, X. Xue, Y. Tang, Y. Jing, B. Huang, Y. Ren, Y. Yao, H. Wang, G. Cao, High-Rate LiTi₂(PO₄)₃@N-C Composite via Bi-nitrogen Sources Doping, ACS Appl. Mater. Interfaces, 2015, 7, 28337-28345.
- 4 J. Sun, Y. Sun, L. Gai, H. Jiang, Y. Tian, Carbon-coated mesoporous LiTi₂(PO₄)₃ nanocrystals with superior performance for lithium-ion batteries, Electrochim. Acta, 2016, **200**, 66-74.
- 5 S. Yu, H. Tempel, R. Schierholz, O. Aslanbas, X. Gao, J. Mertens, L.G.J. de Haart, H. Kungl, R.A. Eichel, LiTi₂(PO₄)₃/C Anode Material with a Spindle-Like Morphology for Batteries with High Rate Capability and Improved Cycle Life, ChemElectroChem, 2016, 3, 1157-1169.
- 6 H. Wang, H. Zhang, Y. Cheng, K. Feng, X. Li, H. Zhang, Rational design and synthesis of LiTi₂(PO₄)_{3-x}F_x anode materials for high-performance aqueous lithium ion batteries, J. Mater. Chem. A, 2017, 5, 593-599.
- 7 W. Sun, J. Liu, X. Liu, X. Fan, K. Zhou, X. Wei, Bimolecular-induced hierarchical nanoporous LiTi₂(PO₄)₃/C with superior high-rate and cycling performance, ChemComm, 2017, 53, 8703-8706.
- 8 M. Li, L. Liu, N. Zhang, S. Nie, Q. Leng, J. Xie, Y. Ouyang, J. Xia, Y. Zhang, F. Cheng, X. Wang, Mesoporous LiTi₂(PO₄)₃/C composite with trace amount of carbon as high-performance electrode materials for lithium ion batteries, J. Alloys Compd., 2018, **749**, 1019-1027.
- 9 S. Yu, Q. Xu, C.L. Tsai, M. Hoffmeyer, X. Lu, Q. Ma, H. Tempel, H. Kungl, H.D. Wiemhoefer, R.A. Eichel, Flexible All-Solid-State Li-Ion Battery Manufacturable in Ambient Atmosphere, ACS Appl. Mater. Interfaces, 2020, 12, 37067-37078.
- W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes, Science, 1994, 264, 1115-1118.
- 11 J. Y. Luo, W. J. Cui, P. He, Y. Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte, Nat. Chem., 2010, **2**, 760-765.
- 12 L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 2015, **350**, 938-943.
- 13 F. Wang, L. Suo, Y. Liang, C. Yang, F. Han, T. Gao, W. Sun, C. Wang, Spinel LiNi_{0.5}Mn_{1.5}O₄ Cathode for High-Energy Aqueous Lithium-Ion Batteries, Adv. Energy Mater., 2017, 7, 1600922.
- 14 F. Wang, Y. Lin, L. Suo, X. Fan, T. Gao, C. Yang, F. Han, Y. Qi, K. Xu, C. Wang, Stabilizing high voltage LiCoO₂ cathode in aqueous electrolyte with interphase-forming additive, Energy Environ. Sci., 2016, 9, 3666-3673.
- 15 D. Gordon, M.Y. Wu, A. Ramanujapuram, J. Benson, J.T. Lee, A. Magasinski, N. Nitta, C. Huang, G. Yushin, Enhancing Cycle Stability of Lithium Iron Phosphate in Aqueous Electrolytes by Increasing Electrolyte Molarity, Adv. Energy Mater., 2016, 6, 1501805.
- 16 Z. Liu, H. Li, M. Zhu, Y. Huang, Z. Tang, Z. Pei, Z. Wang, Z. Shi, J. Liu, Y. Huang, C. Zhi, Towards wearable electronic devices: A quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability, Nano Energy, 2018, 44, 164-173.
- 17 C. Yang, X. Ji, X. Fan, T. Gao, L. Suo, F. Wang, W. Sun, J. Chen, L. Chen, F. Han, L. Miao, K. Xu, K. Gerasopoulos, C. Wang, Flexible Aqueous Li-Ion Battery with High Energy and Power Densities, Adv. Mater., 2017, 29, 1701972.
- 18 L. Xue, Q. Zhang, X. Zhu, L. Gu, J. Yue, Q. Xia, T. Xing, T. Chen, Y. Yao, H. Xia, 3D LiCoO₂ nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries,

Nano Energy, 2019, 56, 463-472.

19 Z. Liu, X. Qin, H. Xu, G. Chen, One-pot synthesis of carbon-coated nanosized LiTi₂(PO₄)₃ as anode materials for aqueous lithium ion batteries, J. Power Sour., 2015, **293**, 562-569.