Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Synthesis of Metal Silicides Using Polyhedral Oligomeric Silsesquioxane as Silicon Source for Semi-Hydrogenation of phenylacetylene

Ming Cheng ^a, Xu Zhang ^{b*}, Zhenbo Guo ^a, Zhen Zhou ^d, Zhiqiang Wang ^{c*} and

Minghui Zhang a*

^a. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),

College of Chemistry, Nankai University, Tianjin, 300071, PR China.

^b. Engineering Research Center of Advanced Functional Material Manufacturing of

Ministry of Education, School of Chemical Engineering, Zhengzhou University,

Zhengzhou, 450001, PR China.

^c. Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal

University, Tianjin, 300387, PR China.

^d. School of Materials Science and Engineering, Institute of New Energy Material

Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of

Education), Nankai University, Tianjin, 300350, PR China.

*Corresponding Author

Chemicals

Analytical-grade $Pd(CH_3COO)_2$, $Ni(acac)_2$, $RuCl_3$, and $PtCl_4$ were obtained from Tianjin Xiensi Chemical Reagents, China. Tetrahydrofuran, toluene, dimethoxymethylsilane, and phenyltriethoxysilane were purchase from Aladdin. All chemicals were from commercial sources and used without further purification.

Synthesis of Ni₂Si/SiO₂, Ru_xSi/SiO₂ and Pt_xSi/SiO₂ catalyst

20 mg nickel Ni(acac)₂ was dispersed in 20 mL of tetrahydrofuran, 1 g of the as-prepared phenyl-POSS sample was added. After stirring for 2 h at room temperature. Finally, the mixture

E-mail: zhangmh@nankai.edu.cn; zqwang@mail.nankai.edu.cn; zhangxu@nankai.edu.cn;

was separated by rotary evaporator, and dried at 70 °C overnight in the oven. The resulting solid was heated to 1000 °C at a ramp of 20 °C/min and kept for 2 h under hydrogen atmosphere. The catalysts were designated as Ni_2Si/SiO_2 catalyst. The Ru_xSi/SiO_2 and Pt_xSi/SiO_2 catalysts were prepared by the same way as Ni_2Si/SiO_2 catalyst, except for using 20 mg RuCl₃ or PtCl₄ in 20 mL ethanol.

Figure S1. The XRD pattern of Pd/SiO₂-1000 catalyst.

Figure S2. Pd 3d XPS spectra of Pd_2Si/SiO_2 -X and Pd/SiO_2 catalysts.

Figure S3. O₂-TPO-MS profile of the Pd₂Si/SiO₂-1000-H₂ catalyst.

Figure S4. The XRD pattern of Pd-POSS-AC-1000 $\rm H_2$ sample.

Figure S5. XRD patterns of Ru-POSS-1000-H $_2$ and Ru/SiO $_2$ -1000-H $_2$ catalysts.

Figure S6. XRD patterns of Pt-POSS-600/800/1000-H $_2$ and Pt/SiO $_2$ -1000-H $_2$ catalysts.

Figure S7. TEM images of Ru_xSi/SiO_2 catalyst.

Figure S8. TEM images of Pt_xSi/SiO_2 catalyst.

Figure S9. EDX-mapping of Ru, Si and C element in Ru_xSi/SiO₂ catalyst.

Figure S10. EDX-mapping of Pt, Si and C element in Pt_xSi/SiO_2 catalyst.

Figure S11. Pt 3d XPS spectrums of Pt_xSi/SiO_2 and Pt/SiO_2 catalysts.

Figure S12. Ru 3d XPS spectrums of Ru_xSi/SiO_2 and Ru/SiO_2 catalysts.

Figure S13. The XRD patterns of Ni-POSS-800/1000-H $_2$ and Ni/SiO $_2$ -1000-H $_2$ catalysts.

Figure S14. The TEM images of Ni_2Si/SiO_2 catalyst.

Figure S15. EDX-mapping of Ni, Si and C element in Ni₂Si/SiO₂ catalyst.

Figure S16. Ni 2p XPS spectrums of Ni_2Si/SiO_2 and Ni/SiO_2 catalysts.

Figure S17. The XRD pattern of Pd₂Si/SiO₂-HT catalyst.

Figure S18. The TEM images and element distribution of Pd₂Si/SiO₂-HT catalyst.

Figure S19. Pd 3d XPS spectrum of Pd₂Si/SiO₂ catalyst.

Figure S20. Top (upper) and side (lower) view of optimized atomic structures for (a) Pd(111) and (b) Pd₂Si(111) surface. The black green and yellow balls represent Pd and Si atoms, respectively.

Figure S21. Optimized atomic configurations of phenylacetylene adsorbed on (a) Pd(111) and (b) Pd₂Si(111) surface. The grey and white balls represent carbon and hydrogen atoms, respectively.

Figure S22. Deformation electronic density of styrene adsorbed on (a) Pd(111) and (b) Pd₂Si(111) surface with an isosurface of 0.003 e Å⁻³. The yellow and cyan regions represent the accumulation and depletion of electron, respectively.